The Yield Gap Maize under Intensive Cropping System in Central Java
Abstract
The study aimed to estimate the level of the yield gaps of maize in major producing areas, point out the causes of yield gaps in farmers’ maize fields, and identify opportunities to the existing yield gaps through management practices of maize production in Central Java. This is the strategy for closing the existing yield gaps to achieve food self-sufficiency in agricultural land. Methods to estimates the yield gaps should cover data sources on physical conditions (weather and soil), management practices, and smallholder shapes. The relevant methods for estimating actual yields (Ya), potential (Yp), and water-limited (Yw) were compared. The yield gaps of maize under intensive cropping systems in rainfed ecosystems resulted in significant differences in all cultivation situations. The lowland rainfed maize showed Ya, Yp, and Yw values of 5.57, 12.83, and 12.47 ton/ha, respectively. The major causes of the yield gaps include variety, land preparation, and water issues concerned with the limited water inputs.
Keywords
Full Text:
PDFReferences
Affholder, F., Poeydebat, C., Corbeels, M., Scopel, E. & Tittonell, P. (2013) The yield gap of major food crops in family agriculture in the tropics: Assessment and analysis through field surveys and modelling. Field Crops Res., 143, 106–118, http://dx.doi.org/10.1016/j.fcr.2012.10.021.
Agus, F., Andrade, J.F., Rattalino Edreira, J.I., Deng, N.Y., Purwantomo, D.K.G., Agustiani, N, Aristya, V.E., Batubara, S.F., Herniwati, Hosang, E.Y., Krisnadi, L.Y., Makka, A., Samijan, Cenacchi, N., Wiebe, K. & Grassini, P. (2019) Yield gaps in intensive rice–maize cropping sequences in the humid tropics of Indonesia. Field Crops Res., 237, 12-22, https://doi.org/10.1016/j.fcr.2019.04.006.
Aramburu Merlos, F., Monzon, J.P., Mercau, J.L., Taboada, M., Andrade, F.H., Hall, A.J., Jobbagy, E., Cassman, K.G. & Grassini, P. (2015) Potential for crop production increase in Argentina through closure of existing yield gaps. Field Crops Res. 184, 145–154, https://doi.org/10.1016/j.fcr.2015.10.001.
Araya, A., Gowda, P.H., Rouhi Rad, M., Ariyaratne, C.B., Ciampitti, I.A., Rice, C.W. & Prasad, P.V.V. (2021) Evaluating optimal irrigation for potential yield and economic performance of major crops in southwestern Kansas. Agric. Water Manag, 244, 106536, https://doi.org/10.1016/j.agwat.2020.106536.
Boling, A.A., Tuong, T.P., van Keulen, H., Bouman, B.A.M., Suganda, H. & Spiertz, J.H.J. (2010) Yield gap of rainfed rice in farmers’ fields in Central Java Indonesia. Agric. Syst., 103, 307–315, doi: 10.1016/j.agsy.2010.02.003.
CGIAR-SO (2021) CGIAR 2030 Research and Innovation Strategy: Transforming Food, Land, and Water Systems in a Climate Crisis. CGIAR System Organization, Montpellier, France. https://hdl.handle.net/10568/110918.
Erenstein, O., Chamberlin, J. & Sonder K. (2021) Estimating the global number and distribution of maize and wheat farms. Glob. Food Sec., 30, 100558, https://doi.org/10.1016/j.gfs.2021.100558.
FAOStat (2021) FAO Stat. FAO, Rome. Available at: http://www.fao.org/faostat. Last accessed 25.8.2021.
Grassini, P., Torrion, J.A., Yang, H.S., Rees, J., Andersen, D., Cassman, K.G. & Specht, J.E. (2015) Soybean yield gaps and water productivity in the western U.S. Corn Belt. Field Crops Res., 179, 150–163, http://dx.doi.org/10.1016/j.fcr.2015.04.015.
IFPRI (International Food Policy Research Institute) (2018) 2018 Global Food Policy Report. International Food Policy Research Institute, Washington, DC. https://doi.org/10.2499/9780896292970.
Laborte, A.G., de Bie, C.A.J.M., Smaling, E.M.A., Moya, P.F., Boling, A.A. & Van Ittersum, M.K. (2012). Rice yields and yield gaps in Southeast Asia: past trends and future outlook. Eur. J. Agron., 36, 43(1), 9-20, doi: 10.1016/j.eja.2011.08.005.
Leitner, S., Pelster, D.E., Werner, C., Merbold, L., Baggs, E.M., Mapanda, F. & Butterbach-Bahl, K. (2020) Closing maize yield gaps in sub-Saharan Africa will boost soil N2O emissions. Curr. Opin. Environ. Sustain, 47, 95-105, https://doi.org/10.1016/j.cosust.2020.08.018.
Lowder, S.K., S´anchez, M.V. & Bertini, R. (2021) Which farms feed the world and has farmland become more concentrated? World Dev., 142, 105455, https://doi.org/10.1016/j.worlddev.2021.105455.
Rattalino Edreira, J.I., Mourtzinis, S., Conley, S.P., Roth, A.S., Ciampittic, I.A., Lichtd, M.A., Kandele, H., Kyverygaf, P.M., Lindseyg, L.E., Muellerh, D.E., Naevei, S.L., Nafzigerj, E., Spechta, J.E., Stanleye, J., Statonk, M.J. & Grassini, P. (2017) Assessing causes of yield gaps in agricultural areas with diversity in climate and soils. Agric. For. Meteorol., 247, 170–180, http://dx.doi.org/10.1016/j.agrformet.2017.07.010.
Rotter, R.P., Tao, F., Hohn, J.G. & Palosuo, T. (2015) Use of crop simulation modelling to aid ideotype design of future cereal cultivars. J. Exp. Bot., 66, 3463–3476. doi: 10.1093/jxb/erv098.
Sheehy, J.E., Mitchell, P.L. & Ferrer, A.B. (2006) Decline in rice grain yields with temperature: Models and correlations can give different estimates. Field Crops Res., 98, 2-3, 151–156, https://doi.org/10.1016/j.fcr.2006.01.001.
Stuart, A.M., Pame, A.R.P, Silva, J.V., Dikitanan, R.C., Rutsaert, P., Malabayabas, A.J.B., Lampayan, R.M., Radanielson, A.M. & Singleton, G.R. (2016) Yield gaps in rice-based farming systems: Insights from local studies and prospects for future analysis. Field Crops Res., 194, 43–56, http://dx.doi.org/10.1016/j.fcr.2016.04.039.
UN DESA (2016) World population prospects 2016. Available at: https://esa.un.org/unpd/wpp/Graphs/DemographicProfiles/ Last accessed 20.11.2019.
Van Ittersum, M. K., Cassman, K. G., Grassini, P., Wolf, J., Tittonell, P. & Hochman, Z. (2013). Yield gap analysis with local to global relevance – a review. Field Crops Res., 143, 4–17, http://dx.doi.org/10.1016/j.fcr.2012.09.009.
Van Wart, J., Grassini, P. & Cassman, K.G. (2013) Impact of derived global weatherdata on simulated crop yields. Glob. Change Biol., 19, 3822–3834, doi: 10.1111/gcb.12302.
Zhang, Y., Yan, J. Rong, X., Han, Y., Yang, Z., Hou, K., Zhao, H. & Hu, W. (2021) Responses of maize yield, nitrogen and phosphorus runoff losses and soil properties to biochar and organic fertilizer application in a light-loamy fluvo-aquic soil. Agric. Ecosyst. Environ., 314, 107433, https://doi.org/10.1016/j.agee.2021.107433.
DOI: https://doi.org/10.18196/pt.v10i1.8789
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Vina Eka Aristya
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Address:
Planta Tropika
Department of Agrotechnology, Faculty of Agriculture, Universitas Muhammadiyah Yogyakarta
Jl. Brawijaya, Tamantirto, Kasihan, Bantul, D.I. Yogyakarta, Indonesia
Phone: +62 274 387656, Ext.: 224 / +62 81329320575
Email: plantatropika@umy.ac.id
E-ISSN: 2528-7079
p-ISSN: 0216-499X
Planta Tropika is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.