The Potential of Biogas Slurry and Palm Oil Mill Effluent Slurry as Slow-Release Fertilizer Pellet Through Densification

Reni Astuti Widyowanti, Candra Ginting, Rengga Arnalis Renjani

Abstract


Organic fertilizer can yield higher production compared to regular fertilizer if properly applied. Thus, it can be a solution to improve nutrient content of soil. The biggest source of bio slurry in plantation is from Palm Oil Mill Effluent (POME) and cow dung biogas. This research aimed to analyze the residue’s potential from the result of biogas processing and bio slurry from POME as slow-release fertilizer pellet. Bio slurry was processed into pellet through densification process using pellet mill. The research was arranged in a Randomized Block Design method with five slurry compositions as treatments, including 70:30, 60:40, 50:50, 40:60, and 30:70 (ratio of biogas slurry and POME slurry), each consisted of three replications. According to the data obtained, fertilizer pellets had characteristics of 25 – 29 mm of length, 5.23 – 5.85 mm of diameter, 0.44 – 0.53 g/cm3 of density, 54.78% - 81.96% of durability, and 7.81% - 8.57% of moisture content. Based on density and durability aspects, 30:70 composition was the higher. Macronutrient content of the five compositions were 1.88% - 2.72%, in which on day 22, N, P, and K release was 0.36 – 1.01%, 73.51 – 97.48%, and 3.19 – 7.85%, respectively. Meanwhile, on day 17, the nutrition solution conductivity of all compositions had already reached 0.80 – 1 mS/cm.


Keywords


Biogas; densification; fertilizer pellet; palm oil mill effluent; slurry

References


Afu, S. M., Asadu, C. L. A., Ofem, K., & Olim, D. (2016). Contribution of organic matter fractions to cation exchange capacity of organic matter under four land uses in Southeastern Nigeria. African Journal of Agricultural Science and Technology, 4(12), 871–876.

Arifin, M. R., Ahmed, O. H., Isa, I. M., & Khairuddin, M. N. (2019). Effects of Moisture Level on Nitrogen Availability in Tropical Peat Soil Cultivated with. AGRIVITA Journal of Agricultural Science, 41(1), 166–174. https://doi.org/10.17503/agrivita.v41i1.2007

Ciesielczuk, T., Poluszyńska, J., & Rosik-Dulewska, C. (2017). Homemade slow-action fertilizers, as an economic solution for organic food production. Journal of Ecological Engineering, 18(2), 78–85. https://doi.org/10.12911/22998993/68139

Danarto, Y. C., Nugrahey, A., & Noviani, S. M. (2017). Kinetika Slow Release Pupuk Urea Berlapis Chitosan Termodifikasi. Equilibrium, 16(36).

Dharmawati, N. D., Farida, G. Y., Wahyono, & Renjani, R. A. (2017). Process Analysis of Raw Palm Oil Mill Effluent using Single Feeding System. Proceeding of ISAE International Seminar, 497–504.

Fernández-Escobar, R., Benlloch, M., Herrera, E., & Garc, J. M. (2004). Effect of traditional and slow-release N fertilizers on growth of olive nursery plants and N losses by leaching. Scientia Horticulture, 101(2004), 39–49. https://doi.org/10.1016/j.scienta.2003.09.008

Kaplan, L., Tlustoš, P., Száková, J., & Najmanová, J. (2013). The influence of slow-release fertilizers on potted chrysanthemum growth and nutrient consumption. Plant, Soil and Environment, 59(9), 385–391.

Kim, P., Hensley, D., & Labbé, N. (2014). Geoderma Nutrient release from switchgrass-derived biochar pellets embedded with fertilizers. Geoderma, 232–234, 341–351. https://doi.org/10.1016/j.geoderma.2014.05.017

Kumar, S., Malav, L. C., Malav, M. K., & Khan, S. A. (2015). Biogas Slurry: Source of Nutrients for Eco-friendly Agriculture. International Journal of Extensive Research, 2(2015), 42–46.

Lawong, W., Hwangdee, P., & Thumma, S. (2011). Development of Two Pellet Die Organic Fertilizer Compression Machine. Engineering Procedia, 8, 266–269. https://doi.org/10.1016/j.proeng.2011.03.049

Loh, S. K., Lai, M. E., Ngatiman, M., Lim, W. S., Choo, Y. M., Zhang, Z., & Salimon, J. (2013). Zero discharge treatment technology of palm oil mill effluent. Journal of Oil Palm Research, 25(3), 273–281.

Lykas, C., Katsoulas, N., Giaglaras, P., & Kittas, C. (2006). Electrical Conductivity and pH Prediction in a Recirculated Nutrient Solution of a Greenhouse Soilless Rose Crop. Journal of Plant Nutrition, 29(2006), 1585–1599. https://doi.org/10.1080/01904160600848904

Mahal, N. K., Osterholz, W. R., Miguez, F. E., Poffenbarger, H. J., Sawyer, J. E., Olk, D. C., Archontoulis, S. V., & 1, M. J. C. (2019). Nitrogen Fertilizer Suppresses Mineralization of Soil Organic Matter in Maize Agroecosystems. Frontires in Ecology and Evolution, 7, 1–12. https://doi.org/10.3389/fevo.2019.00059

Marafon, A. C., & Endres, L. (2013). Silicon : fertilization and nutrition in higher plants. Amazonian Journal of Agricultural and Environmental Sciences, 56(4), 380–388. https://doi.org/10.4322/rca.2013.057 Anderson

Martínez-Alcántara, B., Martínez-Cuenca, M. R., Bermejo, A., Legaz, F., & Quiñones, A. (2016). Liquid organic fertilizers for sustainable agriculture: Nutrient uptake of organic versus mineral fertilizers in citrus trees. PLoS ONE, 11(10), 1–20. https://doi.org/10.1371/journal.pone.0161619

Möller, K. (2015). Effects of anaerobic digestion on soil carbon and nitrogen turnover, N emissions, and soil biological activity. A review. Agronomy for Sustainable Development, 35(3), 1021–1041. https://doi.org/10.1007/s13593-015-0284-3

Nasir, A., Khalid, M. U., Anwar, S., Arslan, C., Akhtar, M. J., & Sultan, M. (2012). Evaluation of bio-fertilizer application to ameliorate the environment and crop production. Pakistan Journal of Agricultural Sciences, 49(4), 527–531.

Pertiwiningrum, A., Budyanto, E. C., Hidayat, M., Rochijan, Soeherman, Y., & Habibi, M. F. (2017). Making organic fertilizer using sludge from biogas production as carrier agent of Trichoderma harzianum. Journal of Biological Sciences, 17(1), 21–27. https://doi.org/10.3923/jbs.2017.21.27

Pocius, A., Jotautiene, E., Pekarskas, J., & Palsauskas, M. (2016). Investigation of Physical-Mechanical Properties of Experimental Organic Granular Fertilizers. Engineering for Rural Development, 1115–1120.

Puspadewi, S., Sutari, W., & Kusumiyati. (2016). The effect of organic liquid fertilizer concentration and N, P, K fertilizer dosage on growth and yield of sweet corn (Zeamays L. var. Rugosa bonaf) cultivar Talenta (An Indonesia Language). Jurnal Kultivasi, 15(3), 208–216.

Renjani, R. A., & Wulandani, D. (2019). Pellet Mill Fixed Dies Type for Production of Solid Fuel Pellets from Acacia mangium Bark. IOP Conference Series: Materials Science and Engineering, 557(1). https://doi.org/10.1088/1757-899X/557/1/012057

Renjani, R. A., Wulandani, D., Saulia, L., & Hermawan, W. (2016). Design Improvement of Pelletization Machine for Production Solid Fuel from Acacia mangium Bark. In L. O. Nelwan, U. Ahmad, R. Hasbullah, & I. W. Astika (Eds.), International Conference on the Role of Agricultural Engineering for Sustainable Agriculture Production (Issue 1, pp. 197–202). Department of Mechanical and Biosystem Engineering IPB.

Reza, B., Ali-Akbari, G., Hossein-Kianmehr, M., Sarvastani, Z. a T., & Hamzekhanlu, M. Y. (2011). The effect of pellet fertilizer application on corn yield and its components. African Journal of Agricultural Research, 6(10), 2364–2371. https://doi.org/10.5897/AJAR11.011

Sahebi, M., Hanafi, M. M., Siti, A., Akmar, N., Rafii, M. Y., Azizi, P., Tengoua, F. F., Nurul, J., Azwa, M., & Shabanimofrad, M. (2015). Importance of Silicon and Mechanisms of Biosilica Formation in Plants. BioMed Research International, 2015.

Salman, Febriyenti, & Akmal, D. (2015). Pengaruh Penggunaan Penyalut Bioblend PS/PCL Terhadap pelepasan Zat Aktif Urea Granul. Jurnal Riset Kimia, 8(2), 158–164.

Santi, L. P., Nurhaimi-Haris, & Mulyanto, D. (2018). Effect of bio-silica on drought tolerance in plants Effect of bio-silica on drought tolerance in plants. International Biotechnology Conference on Estate Crops.

Siddiqui, M. H., & Al-whaibi, M. H. (2014). Role of nano-SiO 2 in germination of tomato ( Lycopersicum esculentum seeds Mill .). Saudi Journal of Biological Sciences, 21(1), 13–17. https://doi.org/10.1016/j.sjbs.2013.04.005

Stelte, W., Sanadi, A., Shang, L., Holm, J. K., Ahrenfeldt, J., & Henriksen, U. B. (2012). Recent Developments in Biomass Pelletization - A Review. Bioresources, 7(3), 4451–4490.

Wahyu, C., Respito, A., & Pramuni, E. (2018). Environmental Technology & Innovation Slow release fertilizer preparation from sugar cane industrial waste. Environmental Technology & Innovation, 10(2018), 275–280. https://doi.org/10.1016/j.eti.2018.02.010

Wang, H., Xu, J., Liu, X., Zhang, D., Li, L., Li, W., & Sheng, L. (2019). Effects of long-term application of organic fertilizer on improving organic matter content and retarding acidity in red soil from China. Soil & Tillage Research, 195(2019), 104382. https://doi.org/10.1016/j.still.2019.104382

Widyowanti, R. A., Dharmawati, N. D., Hertini, E. S., & Renjani, R. A. (2019). Characterization of Organic Fertilizer Pellet from Slurry of Palm Oil Mill Effluent As Slow Release Fertilizer (an Indonesian Language). Jurnal Teknik Pertanian Lampung, 8(3), 187–197. https://doi.org/10.23960/jtep-l.v8.i3.187-197

Widyowanti, R. A., Sunardi, Setyorini, T., & Renjani, R. A. (2021). Pendampingan Pembuatan dan Aplikasi Pelet Pupuk Limbah Biogas untuk Tanaman Perkebunan. Wikrama Parahita: Jurnal Pengabdian Masyarakat, 5(1), 15–21. https://doi.org/10.30656/jpmwp.v5i1.2632

Wigena, I. G. ., Purnomo, J., Tuherkih, E., & Saleh, A. (2006). Effect of Compacted Compound Slow Release Fertilizer to Immature Oil Palm Growth and Yield on Xanthic Hapludox, in Merangin, Jambi (An Indonesia Language). Jurnal Tanah Dan Iklim, 24, 10–20.

Wu, T. Y., Mohammad, A. W., Jahim, J., & Anuar, N. (2009). A holistic approach to managing palm oil mill effluent (POME): Biotechnological advances in the sustainable reuse of POME. Biotechnology Advances, 27(1), 40–52. https://doi.org/10.1016/j.biotechadv.2008.08.005

Zakaria, A. J., Jol, H., Sultan, U., Abidin, Z., Tembila, C., Tun, B., Razak, A., Tun, B., Razak, A., Ventures, F. G., Tun, B., & Razak, A. (2016). The Potential of Treated Palm Oil Mill Effluent (POME) Sludge As an Organic Fertilizer. AGRIVITA Journal of Agricultural Science, 38(2), 142–154. https://doi.org/10.17503/agrivita.v38i2.753




DOI: https://doi.org/10.18196/pt.v9i2.9588

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Reni Astuti Widyowanti, Candra Ginting, Rengga Arnalis Renjani

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.





 

Editorial Office
Planta Tropika
Department of Agrotechnology, Faculty of Agriculture, Universitas Muhammadiyah Yogyakarta
Jl. Brawijaya, Tamantirto, Kasihan, Bantul, D.I. Yogyakarta, Indonesia
Phone: +62 274 387656, Ext.: 224 / +62 81329320575
Email: plantatropika@umy.ac.id
E-ISSN: 2528-7079
p-ISSN: 0216-499X

 

Creative Commons License
Planta Tropika is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.