Pengaruh Interlayer Elektroplating Zinc pada Kekuatan Mekanik Friction Stir Spot Welding Aa1100-Ss400

Lingga Arti Saputra, Nota Ali Sukarno, Siti Zulaehah

Abstract


Sambungan FSSW dengan material yang berbeda banyak digunakan pada kendaraan. Namun, masalah muncul ketika material tersebut tidak tersambung dengan sempurna. Penggunaan interlayer Zn mampu meningkatkan kemampuan sambungan. Variasi penggunaan dwell time dan diameter shoulder digunakan untuk memperjelas peranan interlayer electroplating Zn. Pengujian tarik geser yang telah dilakukan membuktikan bahwa penggunaan interlayer electroplating Zn memiliki kemampuan sambungan yang lebih baik. Nilai maksimal pengujian tarik geser sebesar 3.8 kN. Nilai maksimal sambungan tanpa interlayer elektroplating Zn 2.5 kN. Pengujian kekerasan menunjukkan nilai yang lebih besar 63 HV dari pada sambungan tanpa menggunakan interlayer elektroplating Zn. 


Keywords


FSSW; Interlayer Electroplating Zn; Dwell Time; Shoulder

Full Text:

PDF

References


Arti Saputra, L., Muhayat, N., & Triyono, T. (2018). Effect of Zn interlayer particles on mechanical properties and microstructure of friction stir spot welding aluminum alloy. MATEC Web of Conferences, 218, 1–6. https://doi.org/10.1051/matecconf/201821804005

Bilici, M. K., Irfan, A., & Kurtulmus, M. (2011). The optimization of welding parameters for friction stir spot welding of high density polyethylene sheets. Materials & Design, 32(7), 4074–4079. https://doi.org/10.1016/j.matdes.2011.03.014

Boucherit, A., & Taillard, R. (2017). Effect of a Zn interlayer on dissimilar FSSW of Al and Cu. Materials & Design. https://doi.org/10.1016/j.matdes.2017.03.063

Desantes, J. M., Molina, S., & Novella, R. (2020). Comparative global warming impact and NO X emissions of conventional and hydrogen automotive propulsion systems. Energy Conversion and Management, 221, 113137. https://doi.org/10.1016/j.enconman.2020.113137

Dhara, S., & Das, A. (2020). Impact of ultrasonic welding on multi-layered Al–Cu joint for electric vehicle battery applications: A layer-wise microstructural analysis. Materials Science & Engineering: A, 791, 139795. https://doi.org/10.1016/j.msea.2020.139795

Evdokimov, A., Doynov, N., Ossenbrink, R., Obrosov, A., & Weiß, S. (2021). Thermomechanical laser welding simulation of dissimilar steel-aluminum overlap joints. International Journal of Mechanical Sciences, 190, 106019. https://doi.org/10.1016/j.ijmecsci.2020.106019

Jedrasiak, P., & Shercli, H. R. (2019). Small strain fi nite element modelling of friction stir spot welding of Al and Mg alloys. Journal of Materials Processing Technology, 263, 207–222. https://doi.org/10.1016/j.jmatprotec.2018.07.031

Kawajiri, K., Kobayashi, M., & Sakamoto, K. (2020). Lightweight materials equal lightweight greenhouse gas emissions ?: A historical analysis of greenhouse gases of vehicle material substitution. Journal of Cleaner Production, 253, 119805. https://doi.org/10.1016/j.jclepro.2019.119805

Li, W., Li, J., Zhang, Z., Gao, D., Wang, W., & Dong, C. (2014). Improving mechanical properties of pinless friction stir spot welded joints by eliminating hook defect. Materials and Design, 62, 247–254. https://doi.org/10.1016/j.matdes.2014.05.028

Lin, Y., & Chen, J. (2015). Journal of Materials Processing Technology Influence of process parameters on friction stir spot welded aluminum joints by various threaded tools. Journal of Materials Processing Technology, 225, 347–356. https://doi.org/10.1016/j.jmatprotec.2015.06.024

Lin, Y., Liu, J., Lin, B., Lin, C., & Tsai, H. (2012). Effects of process parameters on strength of Mg alloy AZ61 friction stir spot welds. Journal of Materials & Design, 35, 350–357. https://doi.org/10.1016/j.matdes.2011.08.050

Nugroho, A. W., Purnomo, F. H., & Rahman, M. B. N. (2021). Karakterisasi sambungan friction stir spot welding pada plat aluminium 5083. Semesta Teknika, 24(1), 34–46. https://doi.org/10.18196/st.v24i1.12603

Piccini, J. M., & Svoboda, H. G. (2015). Effect of the tool penetration depth in Friction Stir Spot Welding ( FSSW ) of dissimilar aluminum alloys. Procedia Materials Science, 8, 868–877. https://doi.org/10.1016/j.mspro.2015.04.147

Saputra, L. A. (2021). Pengaruh interlayer Zn pada kekuatan mekanik sambungan friction stir spot welding material aluminium paduan. Perwira Journal of Science and Engineering (PJSE), 1(1), 100–105.

Suryanarayanan, R., & Sridhar, V. G. (2020). Materials Today : Proceedings Studies on the influence of process parameters in friction stir spot welded joints – A review. Materials Today: Proceedings, 37(2), 2695-2702. https://doi.org/10.1016/j.matpr.2020.08.532

Taub, A., Moor, E. D., Luo, A., Matlock, D. K., Speer, J. G., & Vaidya, U. (2019). Materials for automotive lightweighting. Annual Review of Materials Research, 49, 327-359. https://doi.org/10.1146/annurev-matsci-070218-010134

Uematsu, Y., Kakiuchi, T., Ogawa, D., & Hashiba, K. (2020). Fatigue crack propagation near the interface between Al and steel in dissimilar Al/steel friction stir welds. International Journal of Fatigue, 138, 105706. https://doi.org/10.1016/j.ijfatigue.2020.105706

Venukumar, S., Baby, B., Muthukumaran, S., & Kailas, S. V. (2014). Microstructural and mechanical properties of walking friction stir spot welded AA 6061-T6 sheets. Procedia Materials Science, 6(Icmpc), 656–665. https://doi.org/10.1016/j.mspro.2014.07.081

Wang, B., Lei, B. B., Zhu, J. X., Feng, Q., Wang, L., & Wu, D. (2015). EBSD study on microstructure and texture of friction stir welded AA5052-O and AA6061-T6 dissimilar joint. Materials and Design, 87, 593–599. https://doi.org/10.1016/j.matdes.2015.08.060

Wang, D., & Lee, S. C. (2007). Microstructures and failure mechanisms of friction stir spot welds of aluminum 6061-T6 sheets. 186. Journal of Materials Processing Technology, 186(1-3), 291–297. https://doi.org/10.1016/j.jmatprotec.2006.12.045

Xu, R. Z., Ni, D. R., Yang, Q., Liu, C. Z., & Ma, Z. Y. (2015a). Influence of Zn interlayer addition on microstructure and mechanical properties of friction stir welded AZ31 Mg alloy. Journal of Materials Science, 4160–4173. https://doi.org/10.1007/s10853-015-8841-3

Xu, R. Z., Ni, D. R., Yang, Q., Liu, C. Z., & Ma, Z. Y. (2015b). Influencing mechanism of Zn interlayer addition on hook defects of friction stir spot welded Mg – Al – Zn alloy joints. Materials & Design, 69, 163–169. https://doi.org/10.1016/j.matdes.2014.12.045

Xu, R. Z., Ni, D. R., Yang, Q., Liu, C. Z., & Ma, Z. Y. (2016). Pinless friction stir spot welding of Mg ‒ 3Al ‒ 1Zn alloy with Zn interlayer. Journal of Materials Science & Technology. 32(1), 76–88. https://doi.org/10.1016/j.jmst.2015.08.012

You, Q., Wu, F., Shen, L., Pepin, N., Jiang, Z., & Kang, S. (2020). Tibetan Plateau ampli fication of climate extremes under global warming of. Global and Planetary Change, 192, 103261. https://doi.org/10.1016/j.gloplacha.2020.103261

Yuce, C., Karpat, F., & Yavuz, N. (2019). Investigations on the microstructure and mechanical properties of laser welded dissimilar galvanized steel – aluminum joints. The International Journal of Advanced Manufacturing Technology, 104, 2693-2704. https://doi.org/10.1007/s00170-019-04154-7

Zhang, B., Chen, X., Pan, K., & Yang, C. (2019). J-integral based correlation evaluation between microstructure and mechanical strength for FSSW joints made of automotive aluminum alloys. Journal of Manufacturing Processes, 44, 62–71. https://doi.org/10.1016/j.jmapro.2019.05.039

Zhang, Z., Xiao, B. L., & Ma, Z. Y. (2015). Enhancing mechanical properties of friction stir welded 2219Al-T6 joints at high welding speed through water cooling and post-welding arti fi cial ageing. Materials Characterization, 106, 255–265. https://doi.org/10.1016/j.matchar.2015.06.003




DOI: https://doi.org/10.18196/st.v24i2.13015

Refbacks



Copyright (c) 2021 Lingga Arti Saputra, Nota Ali Sukarno, Siti Zulaehah

Editorial Office :

SEMESTA TEKNIKA

Faculty of Engineering, Universitas Muhammadiyah Yogyakarta.

Jln. Brawijaya Tamantirto Kasihan Bantul 55183 Indonesia

Telp:(62)274-387656, Fax.:(62)274-387656

Email: semesta_teknika@umy.ac.id, semestateknika@umy.university

Website: http://http://journal.umy.ac.id/index.php/st

Creative Commons License

Semesta Teknika is licensed under a Creative Commons Attribution 4.0 International License.