Analisis Kekuatan Mekanik pada Struktur Cooling Tank Section Untai FASSIP-03 NT Berbasis Simulasi Software

Dedy Haryanto, Giarno Giarno, Adhika Enggar Pamungkas, Ainur Rosidi, Gregorius Bambang Heru Kusnugroho, Mulya Juarsa

Abstract


Untai Fasilitas Simulasi Sistem Pasif-03 Nanobubble Transparent (FASSIP-03 NT) mulai didesain pada tahun 2021. Komponen pada untai FASSIP-03 NT terdiri dari Heating Tank Section (HTS) dan Cooling Tank Section (CTS) yang dilengkapi dengan Helical Heat Exchanger, Pyrex Glass Tube dan sistem pemipaan. CTS berfungsi sebagai komponen untuk mensimulasikan penukar kalor dari teras reaktor nuklir. Pengujian secara simulasi dan analisisnya dilakukan untuk mengetahui kekuatan mekanik terdiri dari tegangan mekanik dan translational displacement pada desain komponen CTS. Hasil pengujian secara simulasi diperoleh tegangan mekanik maksimal sebesar 1,61 x 108 N/m2 lebih kecil daripada yield strength material stainless steel 304 sebesar 1,73 x 108 N/m2. Translational displacement yang terjadi sebesar 3,04 mm pada bagian sisi belakang CTS. Hasil pengujian secara simulasi dan analisisnya menunjukkan bahwa desain CTS dapat dipabrikasi dan aman digunakan sebagai penukar kalor pada untai FASSIP-03 NT.

Keywords


CTS; kekuatan mekanik; tegangan mekanik; translational displacement; FASSIP-03 NT

Full Text:

PDF

References


Anonim. (2011), Yield strength-strength (mechanics) of materials strength/mechanics of materials, http://www.engineersedge.com, December 1st.

Antariksawan A., R. (2000). Accident analysis of PWR station blackout with pump seal leak using Melcor 1.8. 4, Proceeding of the Sixth: Seminar on Technology and Safety of Nuclear Power Plants and Nuclear Facilities, 1 November 2000.

Antariksawan, A. R., Widodo, S., Juarsa, M., Giarno, Kusuma, M. H., & Putra, N. (2018). Preliminary investigation of natural circulation stability in FASSIP-01 experimental facility using RELAP5 code, AIP Conference Proceedings, 2001(1). https://doi.org/10.1063/1.5050011

Antariksawan, A. R., Juarsa, M., Giarno, Kusuma, M. H., & Putra, N. (2018). Simulation of operational conditions of FASSIP-02 natural circulation cooling system experimental loop. Jurnal Sains dan Teknologi Nuklir Indonesia (Indonesian Journal of Nuclear Science and Technology, 19(1), 41-52. http://doi.org/10.17146/jstni.2018.19.1.4036

Bauer Energy Design, (2021), http://www.nanobubbles.com/, accessed on July 24th.

Byrne, R., C. (1988). Standard of the tubular exchanger manufacturers association, tubular exchanger manufacturers association, (TEMA) Inc, 25 North Broadway Tarrytown, New York 10591 seventh edition.

Daugherty, R. L. (1989). Fluid mechanics with engineering applications. McGraw-Hill.

Haryanto, D., Giarno, G., Kusnugroho, G. B. H, & Juarsa, M. (2020). Analisis kekuatan mekanik main steam generator pada fasilitas PASCONEL, Prosiding Seminar Nasional Teknologi Energi Nuklir 2020 (ISSN:2355-7524), 18 November 2020.

Haryanto, D., Giarno, G., Witoko, J. P., Hatmoko, S., Santosa, K., Juarsa, M., Kusuma, M. H., Antariksawan, A. R., & Putra, N. (2018). Analisis kekuatan mekanik struktur dengan penambahan beban komponen FASSIP-02 menggunakan software CATIA. Prosiding Seminar Nasional Teknologi Energi Nuklir Tahun 2018, ISSN: 2355-7524.

Haryanto, D., Giarno, G., Witoko, J. P., Hatmoko, S., Santosa, K., Juarsa, M., Kusuma, M. H., Antariksawan, A. R., & Putra, N. (2018). Analisis kekuatan mekanik water cooling tank pada fasilitas uji untai PASSIF-02 menggunakan CATIA. Jurnal Ilmiah Teknik Mesin POROS, 16(1), 79-85. http://doi.org/10.24912/poros.v16i1.6296

Haryanto, D., Rosidi, A., Kusnugroho, G. B. H., Giarno, G., Witoko, J. P. (2020). Analisis kekuatan mekanik desain bejana molecular sieve. Sigma Epsilon, 24(1), 44-53. http://doi.org/10.17146/sigma.2020.24.1.5821

IAEA, (2009), Passive safety system and natural circulation in water cooled nuclear power plants, IAEA-TECDOC-1624.

Juarsa, M., Antariksawan, A. R., Kusuma, M. H., Haryanto, D., & Putra, N. (2018). Estimation of natural circulation flow based on temperature in the FASSIP-02 large-scale test loop facility, IOP Conf. Ser. Earth Environ. Sci., 105(1). http://doi.org/10.1088/1755-1315/105/1/012091.

Juarsa, M., Antariksawan, A. R., Kusuma, M. H., Haryanto, D., & Putra, N. (2019). Preliminary investigation on natural circulation flow using CFD and calculation base on experimental data pre-FASSIP-02. Journal of Physics: Conference Series, 1198(2), [022073]. http://doi.org/10.1088/1742-6596/1198/2/022073.

Juarsa, M., Haryanto, D., Rosidi, A., Kusnugroho, G. B. H., & Giarno, G. (2011). Studi eksperimental laju aliran massa air berdasarkan perubahan sudut kemiringan untai pada kasus sirklasi alamiah menggunakan untai sirklasi alamiah (USSA-FT01). Jurnal Material dan Energi Indonesia, Jurusan Fisika FMIPA, Universitas Padjajaran, 1, 22-30.

Kusuma, M. H., Putra, N., Ismawanti, S., & Widodo, S. (2017). Simulation of wickless-heat pipe as passive cooling system in nuclear spent fuel pool using RELAP5/MOD3.2. International Journal on Advanced Science, Engineering and Information Technology, 7(3), 836-842. https://doi.org/10.18517/ijaseit.7.3.2144

Menteri Ketenagakerjaan Republik Indonesia. (2016). Keselamatan dan kesehatan kerja bejana tekan dan tangki timbun, Peraturan Menteri Ketenagakerjaan Republik Indonesia Nomor 37 Tahun 20.

Moleaer. (2021). https://www.moleaer.com/nanobubbles, accessed on July 24th,

Pinem, M. D., (2009). CATIA si jago desain tiga dimensi. LinguaKata.

Sun, D. C., Li, Y., Xi, Z., Zan, Y. F., Li, P. Z., & Zhuo, W. B. (2017). Experimental evaluation of safety performance of emergency passive residual heat removal system in HPR1000. Nuclear Engineering and Design, 318, 54-60. https://doi.org/10.1016/j.nucengdes.2017.04.003

Tjahjono, H. (2017). Comprehensive prediction of thermosyphon characteristics in reactor passive cooling system simulation loop FASSIP-01. Atom Indonesia, 43(3), 157-166.

https://doi.org/10.17146/aij.2017.777

Wang, M., Tian, W., Qiu, S., Su, G., & Zhang, G. (2013). An evaluation of designed passive core makeup tank (CMT) for China pressurized reactor (CPR1000). Annals of Nuclear Energy, 56, 81-86. https://doi.org/10.1016/j.anucene.2013.01.010

Wang, Y. (2013). Preliminary study for the passive containment cooling system analysis of the advanced PWR. Energy Procedia, 39, 240–247. https://doi.org/10.1016/j.egypro.2013.07.210




DOI: https://doi.org/10.18196/st.v25i1.13470

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Dedy Haryanto, *, Giarno, Adhika Enggar Pamungkas, Ainur Rosidi, Gregorius Bambang Heru Kusnugroho, Mulya Juarsa

Editorial Office :

SEMESTA TEKNIKA

Faculty of Engineering, Universitas Muhammadiyah Yogyakarta.

Jln. Brawijaya Tamantirto Kasihan Bantul 55183 Indonesia

Telp:(62)274-387656, Fax.:(62)274-387656

Email: semesta_teknika@umy.ac.id, semestateknika@umy.university

Website: http://http://journal.umy.ac.id/index.php/st

Creative Commons License

Semesta Teknika is licensed under a Creative Commons Attribution 4.0 International License.