Classification of Brain Image Tumor using EfficientNet B1-B2 Deep Learning
Abstract
In this study, a new neural network model (EfficientNet B1-B2) was sought for the detection of brain tumors in magnetic resonance imaging (MRI) images. The primary objective was to achieve high accuracy rates so as to classify the images. The deep learning techniques meticulously processed and increased the data augmentation as much as possible for the EfficientNet B1-B2 models. Our experimental results show an accuracy of 98% in the B1 version in Table II. This provides a potentially optimistic view of the application of artificial intelligence technology to disease diagnosis based on medical image analysis. Nonetheless, we must remind ourselves that the dataset we used has limitations in terms of the challenges it can pose. Although the number of potential variations of actual medical images constitutes a major challenge, it is not the only one. Most medical datasets are unbalanced, contain highly variable noise, have a slow internal structure, and are often small in size. Hence, our end goal is to help stimulate not only the field of brain tumor detection and treatment but also the development of more sophisticated classification models in the health context.
Keywords
Full Text:
PDFReferences
Adir, O., Poley, M., Chen, G., Froim, S., Krinsky, N., Shklover, J., Shainsky-Roitman, J., Lammers, T., & Schroeder, A. (2020). Integrating artificial intelligence and nanotechnology for precision cancer medicine. Advanced Materials, 32(13), 1901989. https://doi.org/https://doi.org/10.1002/adma.201901989
Arif, M., Jims, A., F., A., Geman, O., Craciun, M.-D., & Leuciuc, F. (2022). Application of genetic algorithm and U-Net in brain tumor segmentation and classification: A deep learning approach. Computational Intelligence and Neuroscience, 2022, 5625757. https://doi.org/10.1155/2022/5625757
Chakrabarty, N. (2019). Brain MRI images for brain tumor detection. Kaggle.Com. https://www.kaggle.com/datasets/navoneel/brain-mri-images-for-brain-tumor-detection
Dang, K., Vo, T., Ngo, L., & Ha, H. (2022). A deep learning framework integrating MRI image preprocessing methods for brain tumor segmentation and classification. IBRO Neuroscience Reports, 13, 523–532. https://doi.org/https://doi.org/10.1016/j.ibneur.2022.10.014
Demir, F., Akbulut, Y., Taşcı, B., & Demir, K. (2023). Improving brain tumor classification performance with an effective approach based on new deep learning model named 3ACL from 3D MRI data. Biomedical Signal Processing and Control, 81, 104424. https://doi.org/https://doi.org/10.1016/j.bspc.2022.104424
Emam, M. M., Samee, N. A., Jamjoom, M. M., & Houssein, E. H. (2023). Optimized deep learning architecture for brain tumor classification using improved Hunger Games Search Algorithm. Computers in Biology and Medicine, 160, 106966. https://doi.org/https://doi.org/10.1016/j.compbiomed.2023.106966
Farajzadeh, N., Sadeghzadeh, N., & Hashemzadeh, M. (2023). Brain tumor segmentation and classification on MRI via deep hybrid representation learning. Expert Systems with Applications, 224, 119963. https://doi.org/https://doi.org/10.1016/j.eswa.2023.119963
Farhat, H., Sakr, G. E., & Kilany, R. (2020). Deep learning applications in pulmonary medical imaging: recent updates and insights on COVID-19. Machine Vision and Applications, 31(6), 53. https://doi.org/10.1007/s00138-020-01101-5
Filatov, D., & Yar, G. N. A. H. (2022). Brain tumor diagnosis and classification via pre-trained convolutional neural networks. 0–5. http://arxiv.org/abs/2208.00768
Goutham, V., Sameerunnisa, A., Babu, S., & Prakash, T. B. (2022). Brain tumor classification using EfficientNet-B0 model. 2022 2nd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE), 2503–2509. https://doi.org/10.1109/ICACITE53722.2022.9823526
Huml, M., Silye, R., Zauner, G., Hutterer, S., & Schilcher, K. (2023). Brain tumor classification using AFM in combination with data mining techniques. BioMed Research International, 2, 176519. https://doi.org/10.1155/2013/176519
Isunuri, B. V., & Kakarla, J. (2023). EfficientNet and multi-path convolution with multi-head attention network for brain tumor grade classification. Computers and Electrical Engineering, 108, 108700. https://doi.org/https://doi.org/10.1016/j.compeleceng.2023.108700
Kanchanamala, P., K.G., R., & Ananth, M. B. J. (2023). Optimization-enabled hybrid deep learning for brain tumor detection and classification from MRI. Biomedical Signal Processing and Control, 84, 104955. https://doi.org/https://doi.org/10.1016/j.bspc.2023.104955
Khairandish, M. O., Sharma, M., Jain, V., Chatterjee, J. M., & Jhanjhi, N. Z. (2022). A hybrid CNN-SVM threshold segmentation approach for tumor detection and classification of MRI brain images. IRBM, 43(4), 290–299. https://doi.org/https://doi.org/10.1016/j.irbm.2021.06.003
Lakshmi Veeranki, P. S., Banavath, G. L., & Devi, P. R. (2023). Detection and classification of brain tumors using convolutional neural network. 7th International Conference on Trends in Electronics and Informatics, ICOEI 2023 - Proceedings, 780–786. https://doi.org/10.1109/ICOEI56765.2023.10125652
Mehnatkesh, H., Jalali, S. M. J., Khosravi, A., & Nahavandi, S. (2023). An intelligent driven deep residual learning framework for brain tumor classification using MRI images. Expert Systems with Applications, 213, 119087. https://doi.org/https://doi.org/10.1016/j.eswa.2022.119087
Nayak, D. R., Padhy, N., Mallick, P. K., Zymbler, M., & Kumar, S. (2022). Brain tumor classification using Dense Efficient-Net. Axioms, 11(1). https://doi.org/10.3390/axioms11010034
Panayides, A. S., Amini, A., Filipovic, N. D., Sharma, A., Tsaftaris, S. A., Young, A., Foran, D., Do, N., Golemati, S., Kurc, T., Huang, K., Nikita, K. S., Veasey, B. P., Zervakis, M., Saltz, J. H., & Pattichis, C. S. (2020). AI in medical imaging informatics: Current challenges and future directions. IEEE Journal of Biomedical and Health Informatics, 24(7), 1837–1857. https://doi.org/10.1109/JBHI.2020.2991043
Pradeep, K. R., Gangadharan, S. M. P., Hatamleh, W. A., Tarazi, H., Shukla, P. K., & Tiwari, B. (2022). Improved machine learning method for intracranial tumor detection with accelerated particle swarm optimization. Journal of Healthcare Engineering, 2022, 1128217. https://doi.org/10.1155/2022/1128217
Rao, C. S., & Karunakara, K. (2022). Efficient detection and classification of brain tumor using Kernel based SVM for MRI. Multimedia Tools and Applications, 81(5), 7393–7417. https://doi.org/10.1007/s11042-021-11821-z
Ren, W., Hasanzade Bashkandi, A., Afshar Jahanshahi, J., Qasim Mohammad AlHamad, A., Javaheri, D., & Mohammadi, M. (2023). Brain tumor diagnosis using a step-by-step methodology based on courtship learning-based water strider algorithm. Biomedical Signal Processing and Control, 83, 104614. https://doi.org/https://doi.org/10.1016/j.bspc.2023.104614
Rinesh, S., Maheswari, K., Arthi, B., Sherubha, P., Vijay, A., Sridhar, S., Rajendran, T., & Waji, Y. A. (2022). Investigations on brain tumor classification using hybrid machine learning algorithms. Journal of Healthcare Engineering, 2022, 2761847. https://doi.org/10.1155/2022/2761847
Sachdeva, J., Kumar, V., Gupta, I., Khandelwal, N., & Ahuja, C. K. (2016). A package-SFERCB-“Segmentation, feature extraction, reduction and classification analysis by both SVM and ANN for brain tumors.” Applied Soft Computing, 47, 151–167. https://doi.org/https://doi.org/10.1016/j.asoc.2016.05.020
Schmidt, C. K., Medina-Sánchez, M., Edmondson, R. J., & Schmidt, O. G. (2020). Engineering microrobots for targeted cancer therapies from a medical perspective. Nature Communications, 11(1), 5618. https://doi.org/10.1038/s41467-020-19322-7
Shah, H. A., Saeed, F., Yun, S., Park, J.-H., Paul, A., & Kang, J.-M. (2022). A robust approach for brain tumor detection in magnetic resonance images using Finetuned EfficientNet. IEEE Access, 10, 65426–65438. https://doi.org/10.1109/ACCESS.2022.3184113
Srinivas, C., K. S., N. P., Zakariah, M., Alothaibi, Y. A., Shaukat, K., Partibane, B., & Awal, H. (2022). Deep transfer learning Approaches in Performance Analysis of Brain Tumor Classification Using MRI Images. Journal of Healthcare Engineering, 2022, 3264367. https://doi.org/10.1155/2022/3264367
Tabatabaei, S., Rezaee, K., & Zhu, M. (2023). Attention transformer mechanism and fusion-based deep learning architecture for MRI brain tumor classification system. Biomedical Signal Processing and Control, 86, 105119. https://doi.org/https://doi.org/10.1016/j.bspc.2023.105119
Tripathy, S., Singh, R., & Ray, M. (2023). Automation of brain tumor identification using EfficientNet on magnetic resonance images. Procedia Computer Science, 218, 1551–1560. https://doi.org/https://doi.org/10.1016/j.procs.2023.01.133
Vankdothu, R., & Hameed, M. A. (2022). Brain tumor segmentation of MR images using SVM and fuzzy classifier in machine learning. Measurement: Sensors, 24, 100440. https://doi.org/https://doi.org/10.1016/j.measen.2022.100440
Zahid, U., Ashraf, I., Khan, M. A., Alhaisoni, M., Yahya, K. M., Hussein, H. S., & Alshazly, H. (2022). BrainNet: Optimal deep learning feature fusion for brain tumor classification. Computational Intelligence and Neuroscience, 2022, 1465173. https://doi.org/10.1155/2022/1465173
Zhaputri, A., Hayaty, M., & Laksito, A. D. (2021). Classification of brain tumor MRI images using efficient network. ICOIACT 2021 - 4th International Conference on Information and Communications Technology: The Role of AI in Health and Social Revolution in Turbulence Era, August, 108–113. https://doi.org/10.1109/ICOIACT53268.2021.9563922
Zulfiqar, F., Ijaz Bajwa, U., & Mehmood, Y. (2023). Multi-class classification of brain tumor types from MR images using EfficientNets. Biomedical Signal Processing and Control, 84, 104777. https://doi.org/https://doi.org/10.1016/j.bspc.2023.104777
DOI: https://doi.org/10.18196/st.v27i1.19691
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Widi Hastomo, Adhitio Satyo Bayangkari Karno, Ellya Sestri, Vany Terisia, Diana Yusuf, Shevty Arbekti Arman, Dodi Arif
Editorial Office :
SEMESTA TEKNIKA
Faculty of Engineering, Universitas Muhammadiyah Yogyakarta.
Jln. Brawijaya Tamantirto Kasihan Bantul 55183 Indonesia
Telp:(62)274-387656, Fax.:(62)274-387656
Email: semesta_teknika@umy.ac.id, semestateknika@umy.university
Website: http://http://journal.umy.ac.id/index.php/st
Semesta Teknika is licensed under a Creative Commons Attribution 4.0 International License.