Thermal Stratification Characteristics of Storage Tanks on Solar Water Heater Inserted with Latent Heat Material
Abstract
As a latent heat medium, phase change material (PCM) can be applied to heat storage for solar water heaters (SWH). The method used to place PCM is to put it in a capsule. Thermal stratification is critical in generating SWH thermal efficiency. Installation of horizontal capsules in the tank has no known effect on thermal stratification. This paper aims to study the thermal stratification in active-type SWH incorporating PCM. A cylindrical capsule containing the PCM was placed inside the tank. The thermocouple was installed on both the water and PCM sides. The charging process was conducted indoors, and the water flow rate varied from 1, 2, and 3 LPM. Water temperature data for each variation was analyzed to evaluate the thermal stratification. Richardson number analysis proved that thermal stratification was formed in all water flow rates. It was found that a low water flow rate results in high thermal stratification.
Keywords
Full Text:
PDFReferences
Abokersh, M. H., Osman, M., El-Baz, O., El-Morsi, M., & Sharaf, O. (2018). Review of the phase change material (PCM) usage for solar domestic water heating systems (SDWHS). International Journal of Energy Research, 42(2), 329–357. https://doi.org/10.1002/er.3765
Anisur, M. R., Mahfuz, M. H., Kibria, M. A., Saidur, R., Metselaar, I. H. S. C., & Mahlia, T. M. I. (2013). Curbing global warming with phase change materials for energy storage. Renewable and Sustainable Energy Reviews, 18, 23–30. https://doi.org/10.1016/j.rser.2012.10.014
Bauer, N., Hilaire, J., Brecha, R. J., Edmonds, J., Jiang, K., Kriegler, E., Rogner, H. H., & Sferra, F. (2016). Assessing global fossil fuel availability in a scenario framework. Energy, 111, 580–592. https://doi.org/10.1016/j.energy.2016.05.088
Brown, N. M., & Lai, F. C. (2011). Enhanced thermal stratification in a liquid storage tank with a porous manifold. Solar Energy, 85(7), 1409–1417. https://doi.org/10.1016/j.solener.2011.03.024
Castell, A., Medrano, M., Solé, C., & Cabeza, L. F. (2010). Dimensionless numbers used to characterize stratification in water tanks for discharging at low flow rates. Renewable Energy, 35(10), 2192–2199. https://doi.org/10.1016/j.renene.2010.03.020
Chandra, Y. P., & Matuska, T. (2019). Stratification analysis of domestic hot water storage tanks: A comprehensive review. Energy and Buildings, 187, 110–131. https://doi.org/10.1016/j.enbuild.2019.01.052
Chidambaram, L. A., Ramana, A. S., Kamaraj, G., & Velraj, R. (2011). Review of solar cooling methods and thermal storage options. Renewable and Sustainable Energy Reviews, 15(6), 3220–3228. https://doi.org/10.1016/j.rser.2011.04.018
Chopra, K., Pathak, A. K., Tyagi, V. V., Pandey, A. K., Anand, S., & Sari, A. (2020). Thermal performance of phase change material integrated heat pipe evacuated tube solar collector system: An experimental assessment. Energy Conversion and Management, 203, 112205. https://doi.org/10.1016/j.enconman.2019.112205
Dehghan, A. A., & Barzegar, A. (2011). Thermal performance behavior of a domestic hot water solar storage tank during consumption operation. Energy Conversion and Management, 52(1), 468–476. https://doi.org/10.1016/j.enconman.2010.06.075
Fang, Y., Niu, J., & Deng, S. (2018). Numerical analysis for maximizing effective energy storage capacity of thermal energy storage systems by enhancing heat transfer in PCM. Energy and Buildings, 160, 10–18. https://doi.org/10.1016/j.enbuild.2017.12.006
Fazilati, M. A., & Alemrajabi, A. A. (2013). Phase change material for enhancing solar water heater, an experimental approach. Energy Conversion and Management, 71, 138–145. https://doi.org/10.1016/j.enconman.2013.03.034
Fertahi, S. ed D., Jamil, A., & Benbassou, A. (2018). Review on Solar Thermal Stratified Storage Tanks (STSST): Insight on stratification studies and efficiency indicators. Solar Energy, 176, 126–145. https://doi.org/10.1016/j.solener.2018.10.028
Fukahori, R., Nomura, T., Zhu, C., Sheng, N., Okinaka, N., & Akiyama, T. (2016). Macro-encapsulation of metallic phase change material using cylindrical-type ceramic containers for high-temperature thermal energy storage. Applied Energy, 170, 324–328. https://doi.org/10.1016/j.apenergy.2016.02.106
Huang, H., Wang, Z., Zhang, H., Dou, B., Huang, X., Liang, H., & Goula, M. A. (2019). An experimental investigation on thermal stratification characteristics with PCMs in solar water tank. Solar Energy, 177, 8–21. https://doi.org/10.1016/j.solener.2018.11.004
Jamar, A., Majid, Z. A. A., Azmi, W. H., Norhafana, M., & Razak, A. A. (2016). A review of water heating system for solar energy applications. International Communications in Heat and Mass Transfer, 76, 178–187. https://doi.org/10.1016/j.icheatmasstransfer.2016.05.028
Kabir, E., Kumar, P., Kumar, S., Adelodun, A. A., & Kim, K. H. (2018). Solar energy: Potential and future prospects. Renewable and Sustainable Energy Reviews, 82, 894–900. https://doi.org/10.1016/j.rser.2017.09.094
Kanimozhi, B., & Bapu, B. R. R. (2012). Experimental study of thermal energy storage in solar system using PCM. Advanced Materials Research, 433–440, 1027–1032. https://doi.org/10.4028/www.scientific.net/AMR.433-440.1027
Khare, S., Dell’Amico, M., Knight, C., & McGarry, S. (2013). Selection of materials for high temperature sensible energy storage. Solar Energy Materials and Solar Cells, 115, 114–122. https://doi.org/10.1016/j.solmat.2013.03.009
Koželj, R., Mlakar, U., Zavrl, E., Stritih, U., & Stropnik, R. (2021). An experimental and numerical analysis of an improved thermal storage tank with encapsulated PCM for use in retrofitted buildings for heating. Energy and Buildings, 248. https://doi.org/10.1016/j.enbuild.2021.111196
Kumar, G. S., Nagarajan, D., Chidambaram, L. A., Kumaresan, V., Ding, Y., & Velraj, R. (2016). Role of PCM addition on stratification behaviour in a thermal storage tank – An experimental study. Energy, 115, 1168–1178. https://doi.org/10.1016/j.energy.2016.09.014
Kushwaha, P. K., Sharma, N. K., Kumar, A., & Meena, C. S. (2023). Recent Advancements in Augmentation of Solar Water Heaters Using Nanocomposites with PCM: Past, Present, and Future. Buildings, 13(1), 79. https://doi.org/10.3390/buildings13010079
Majumdar, R., & Saha, S. K. (2019). Effect of varying extent of PCM capsule filling on thermal stratification performance of a storage tank. Energy, 178, 1–20. https://doi.org/10.1016/j.energy.2019.04.101
Murali, G., Mayilsamy, K., & Arjunan, T. V. (2015). An experimental study of PCM-incorporated thermosyphon solar water heating system. International Journal of Green Energy, 12(9), 978–986. https://doi.org/10.1080/15435075.2014.888663
Nadjib, M., Suhanan, & Waluyo, J. (2020). Experimental investigation of thermal behavior in an active type solar water heater based on phase change material using solar simulator. AIP Conference Proceedings, 2296(1), 20040. https://doi.org/10.1063/5.0030475
Nadjib, M., Wahyudi, W., Anggara, F., & Irawan, Y. H. (2022). Effectiveness of capsules installation containing paraffin wax in a solar water heater. Sinergi, 26(2), 229. https://doi.org/10.22441/sinergi.2022.2.012
Naveenkumar, R., Ravichandran, M., Mohanavel, V., Karthick, A., Aswin, L. S. R. L., Priyanka, S. S. H., Kumar, S. K., & Kumar, S. P. (2022). Review on phase change materials for solar energy storage applications. Environmental Science and Pollution Research, 29(7), 9491–9532. https://doi.org/10.1007/s11356-021-17152-8
Nazir, H., Batool, M., Bolivar Osorio, F. J., Isaza-Ruiz, M., Xu, X., Vignarooban, K., Phelan, P., Inamuddin, & Kannan, A. M. (2019). Recent developments in phase change materials for energy storage applications: A review. International Journal of Heat and Mass Transfer, 129, 491–523. https://doi.org/10.1016/j.ijheatmasstransfer.2018.09.126
Ostadzadeh, E., Elshorbagy, A., Tuninetti, M., Laio, F., & Abdelkader, A. (2023). Who will dominate the global fossil fuel trade? Economic Systems Research, 35(3), 354–375. https://doi.org/10.1080/09535314.2023.2174002
Patel, A., & Namjoshi, S. (2018). Phase Change Material Based Solar Water Heater. International Journal of Engineering and Science Invention, 5(8), 31–34.
Pinel, P., Cruickshank, C. A., Beausoleil-Morrison, I., & Wills, A. (2011). A review of available methods for seasonal storage of solar thermal energy in residential applications. Renewable and Sustainable Energy Reviews, 15(7), 3341–3359. https://doi.org/10.1016/j.rser.2011.04.013
Rubitherm Technologies GmbH. (2020). Technisches Datenblatt RT55. www.rubitherm.com
Salunkhe, P. B., & Shembekar, P. S. (2012). A review on effect of phase change material encapsulation on the thermal performance of a system. Renewable and Sustainable Energy Reviews, 16(8), 5603–5616. https://doi.org/10.1016/j.rser.2012.05.037
Shabtay, Y. L., & Black, J. R. H. (2014). Compact hot water storage systems combining copper tube with high conductivity graphite and phase change materials. Energy Procedia, 48, 423–430. https://doi.org/10.1016/j.egypro.2014.02.049
Shahsavari, A., & Akbari, M. (2018). Potential of solar energy in developing countries for reducing energy-related emissions. Renewable and Sustainable Energy Reviews, 90, 275–291. https://doi.org/10.1016/j.rser.2018.03.065
Singh, S., Anand, A., Shukla, A., & Sharma, A. (2020). Technical, financial, and environmental feasibility of solar water heater for residential, commercial, and industrial application: A theoretical approach. Materials Science for Energy Technologies, 3, 648–671. https://doi.org/10.1016/j.mset.2020.07.001
Sobhansarbandi, S., Martinez, P. M., Papadimitratos, A., Zakhidov, A., & Hassanipour, F. (2017). Solar thermal collector with multifunctional absorber layers. American Society of Mechanical Engineers, Power Division (Publication) POWER, 2, 342–350. https://doi.org/10.1115/POWER-ICOPE2017-3545
Uctug, F. G., & Azapagic, A. (2018). Life cycle environmental impacts of domestic solar water heaters in Turkey: The effect of different climatic regions. Science of the Total Environment, 622–623, 1202–1216. https://doi.org/10.1016/j.scitotenv.2017.12.057
Wang, Z., Zhang, H., Dou, B., Zhang, G., Wu, W., & Zhou, L. (2020). An experimental study for the enhancement of stratification in heat-storage tank by equalizer and PCM module. Journal of Energy Storage, 27, 101010. https://doi.org/10.1016/j.est.2019.101010
World Energy Council. (2013). World Energy Resources: 2013 survey. In World Energy Council (p. 11). http://www.worldenergy.org
Wu, W., Dai, S., Liu, Z., Dou, Y., Hua, J., Li, M., Wang, X., & Wang, X. (2018). Experimental study on the performance of a novel solar water heating system with and without PCM. Solar Energy, 171, 604–612. https://doi.org/10.1016/j.solener.2018.07.005
Xiao, X., & Zhang, P. (2015). Numerical and experimental study of heat transfer characteristics of a shell-tube latent heat storage system: Part I - Charging process. Energy, 79(C), 337–350. https://doi.org/10.1016/j.energy.2014.11.020
DOI: https://doi.org/10.18196/st.v27i1.21753
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Muhammad Nadjib, Wahyudi Wahyudi, Tito Hadji Agung Santosa, Yaafi Hidayat
Editorial Office :
SEMESTA TEKNIKA
Faculty of Engineering, Universitas Muhammadiyah Yogyakarta.
Jln. Brawijaya Tamantirto Kasihan Bantul 55183 Indonesia
Telp:(62)274-387656, Fax.:(62)274-387656
Email: semesta_teknika@umy.ac.id, semestateknika@umy.university
Website: http://http://journal.umy.ac.id/index.php/st
Semesta Teknika is licensed under a Creative Commons Attribution 4.0 International License.