Thermal Stratification Characteristics of Storage Tanks on Solar Water Heater Inserted with Latent Heat Material

Muhammad Nadjib, Wahyudi Wahyudi, Tito Hadji Agung Santosa, Yaafi Hidayat

Abstract


As a latent heat medium, phase change material (PCM) can be applied to heat storage for solar water heaters (SWH). The method used to place PCM is to put it in a capsule. Thermal stratification is critical in generating SWH thermal efficiency. Installation of horizontal capsules in the tank has no known effect on thermal stratification. This paper aims to study the thermal stratification in active-type SWH incorporating PCM. A cylindrical capsule containing the PCM was placed inside the tank. The thermocouple was installed on both the water and PCM sides. The charging process was conducted indoors, and the water flow rate varied from 1, 2, and 3 LPM. Water temperature data for each variation was analyzed to evaluate the thermal stratification. Richardson number analysis proved that thermal stratification was formed in all water flow rates. It was found that a low water flow rate results in high thermal stratification.


Keywords


Capsule; heat storage; phase change material; solar water heater; thermal stratification

Full Text:

PDF

References


Abokersh, M. H., Osman, M., El-Baz, O., El-Morsi, M., & Sharaf, O. (2018). Review of the phase change material (PCM) usage for solar domestic water heating systems (SDWHS). International Journal of Energy Research, 42(2), 329–357. https://doi.org/10.1002/er.3765

Anisur, M. R., Mahfuz, M. H., Kibria, M. A., Saidur, R., Metselaar, I. H. S. C., & Mahlia, T. M. I. (2013). Curbing global warming with phase change materials for energy storage. Renewable and Sustainable Energy Reviews, 18, 23–30. https://doi.org/10.1016/j.rser.2012.10.014

Bauer, N., Hilaire, J., Brecha, R. J., Edmonds, J., Jiang, K., Kriegler, E., Rogner, H. H., & Sferra, F. (2016). Assessing global fossil fuel availability in a scenario framework. Energy, 111, 580–592. https://doi.org/10.1016/j.energy.2016.05.088

Brown, N. M., & Lai, F. C. (2011). Enhanced thermal stratification in a liquid storage tank with a porous manifold. Solar Energy, 85(7), 1409–1417. https://doi.org/10.1016/j.solener.2011.03.024

Castell, A., Medrano, M., Solé, C., & Cabeza, L. F. (2010). Dimensionless numbers used to characterize stratification in water tanks for discharging at low flow rates. Renewable Energy, 35(10), 2192–2199. https://doi.org/10.1016/j.renene.2010.03.020

Chandra, Y. P., & Matuska, T. (2019). Stratification analysis of domestic hot water storage tanks: A comprehensive review. Energy and Buildings, 187, 110–131. https://doi.org/10.1016/j.enbuild.2019.01.052

Chidambaram, L. A., Ramana, A. S., Kamaraj, G., & Velraj, R. (2011). Review of solar cooling methods and thermal storage options. Renewable and Sustainable Energy Reviews, 15(6), 3220–3228. https://doi.org/10.1016/j.rser.2011.04.018

Chopra, K., Pathak, A. K., Tyagi, V. V., Pandey, A. K., Anand, S., & Sari, A. (2020). Thermal performance of phase change material integrated heat pipe evacuated tube solar collector system: An experimental assessment. Energy Conversion and Management, 203, 112205. https://doi.org/10.1016/j.enconman.2019.112205

Dehghan, A. A., & Barzegar, A. (2011). Thermal performance behavior of a domestic hot water solar storage tank during consumption operation. Energy Conversion and Management, 52(1), 468–476. https://doi.org/10.1016/j.enconman.2010.06.075

Fang, Y., Niu, J., & Deng, S. (2018). Numerical analysis for maximizing effective energy storage capacity of thermal energy storage systems by enhancing heat transfer in PCM. Energy and Buildings, 160, 10–18. https://doi.org/10.1016/j.enbuild.2017.12.006

Fazilati, M. A., & Alemrajabi, A. A. (2013). Phase change material for enhancing solar water heater, an experimental approach. Energy Conversion and Management, 71, 138–145. https://doi.org/10.1016/j.enconman.2013.03.034

Fertahi, S. ed D., Jamil, A., & Benbassou, A. (2018). Review on Solar Thermal Stratified Storage Tanks (STSST): Insight on stratification studies and efficiency indicators. Solar Energy, 176, 126–145. https://doi.org/10.1016/j.solener.2018.10.028

Fukahori, R., Nomura, T., Zhu, C., Sheng, N., Okinaka, N., & Akiyama, T. (2016). Macro-encapsulation of metallic phase change material using cylindrical-type ceramic containers for high-temperature thermal energy storage. Applied Energy, 170, 324–328. https://doi.org/10.1016/j.apenergy.2016.02.106

Huang, H., Wang, Z., Zhang, H., Dou, B., Huang, X., Liang, H., & Goula, M. A. (2019). An experimental investigation on thermal stratification characteristics with PCMs in solar water tank. Solar Energy, 177, 8–21. https://doi.org/10.1016/j.solener.2018.11.004

Jamar, A., Majid, Z. A. A., Azmi, W. H., Norhafana, M., & Razak, A. A. (2016). A review of water heating system for solar energy applications. International Communications in Heat and Mass Transfer, 76, 178–187. https://doi.org/10.1016/j.icheatmasstransfer.2016.05.028

Kabir, E., Kumar, P., Kumar, S., Adelodun, A. A., & Kim, K. H. (2018). Solar energy: Potential and future prospects. Renewable and Sustainable Energy Reviews, 82, 894–900. https://doi.org/10.1016/j.rser.2017.09.094

Kanimozhi, B., & Bapu, B. R. R. (2012). Experimental study of thermal energy storage in solar system using PCM. Advanced Materials Research, 433–440, 1027–1032. https://doi.org/10.4028/www.scientific.net/AMR.433-440.1027

Khare, S., Dell’Amico, M., Knight, C., & McGarry, S. (2013). Selection of materials for high temperature sensible energy storage. Solar Energy Materials and Solar Cells, 115, 114–122. https://doi.org/10.1016/j.solmat.2013.03.009

Koželj, R., Mlakar, U., Zavrl, E., Stritih, U., & Stropnik, R. (2021). An experimental and numerical analysis of an improved thermal storage tank with encapsulated PCM for use in retrofitted buildings for heating. Energy and Buildings, 248. https://doi.org/10.1016/j.enbuild.2021.111196

Kumar, G. S., Nagarajan, D., Chidambaram, L. A., Kumaresan, V., Ding, Y., & Velraj, R. (2016). Role of PCM addition on stratification behaviour in a thermal storage tank – An experimental study. Energy, 115, 1168–1178. https://doi.org/10.1016/j.energy.2016.09.014

Kushwaha, P. K., Sharma, N. K., Kumar, A., & Meena, C. S. (2023). Recent Advancements in Augmentation of Solar Water Heaters Using Nanocomposites with PCM: Past, Present, and Future. Buildings, 13(1), 79. https://doi.org/10.3390/buildings13010079

Majumdar, R., & Saha, S. K. (2019). Effect of varying extent of PCM capsule filling on thermal stratification performance of a storage tank. Energy, 178, 1–20. https://doi.org/10.1016/j.energy.2019.04.101

Murali, G., Mayilsamy, K., & Arjunan, T. V. (2015). An experimental study of PCM-incorporated thermosyphon solar water heating system. International Journal of Green Energy, 12(9), 978–986. https://doi.org/10.1080/15435075.2014.888663

Nadjib, M., Suhanan, & Waluyo, J. (2020). Experimental investigation of thermal behavior in an active type solar water heater based on phase change material using solar simulator. AIP Conference Proceedings, 2296(1), 20040. https://doi.org/10.1063/5.0030475

Nadjib, M., Wahyudi, W., Anggara, F., & Irawan, Y. H. (2022). Effectiveness of capsules installation containing paraffin wax in a solar water heater. Sinergi, 26(2), 229. https://doi.org/10.22441/sinergi.2022.2.012

Naveenkumar, R., Ravichandran, M., Mohanavel, V., Karthick, A., Aswin, L. S. R. L., Priyanka, S. S. H., Kumar, S. K., & Kumar, S. P. (2022). Review on phase change materials for solar energy storage applications. Environmental Science and Pollution Research, 29(7), 9491–9532. https://doi.org/10.1007/s11356-021-17152-8

Nazir, H., Batool, M., Bolivar Osorio, F. J., Isaza-Ruiz, M., Xu, X., Vignarooban, K., Phelan, P., Inamuddin, & Kannan, A. M. (2019). Recent developments in phase change materials for energy storage applications: A review. International Journal of Heat and Mass Transfer, 129, 491–523. https://doi.org/10.1016/j.ijheatmasstransfer.2018.09.126

Ostadzadeh, E., Elshorbagy, A., Tuninetti, M., Laio, F., & Abdelkader, A. (2023). Who will dominate the global fossil fuel trade? Economic Systems Research, 35(3), 354–375. https://doi.org/10.1080/09535314.2023.2174002

Patel, A., & Namjoshi, S. (2018). Phase Change Material Based Solar Water Heater. International Journal of Engineering and Science Invention, 5(8), 31–34.

Pinel, P., Cruickshank, C. A., Beausoleil-Morrison, I., & Wills, A. (2011). A review of available methods for seasonal storage of solar thermal energy in residential applications. Renewable and Sustainable Energy Reviews, 15(7), 3341–3359. https://doi.org/10.1016/j.rser.2011.04.013

Rubitherm Technologies GmbH. (2020). Technisches Datenblatt RT55. www.rubitherm.com

Salunkhe, P. B., & Shembekar, P. S. (2012). A review on effect of phase change material encapsulation on the thermal performance of a system. Renewable and Sustainable Energy Reviews, 16(8), 5603–5616. https://doi.org/10.1016/j.rser.2012.05.037

Shabtay, Y. L., & Black, J. R. H. (2014). Compact hot water storage systems combining copper tube with high conductivity graphite and phase change materials. Energy Procedia, 48, 423–430. https://doi.org/10.1016/j.egypro.2014.02.049

Shahsavari, A., & Akbari, M. (2018). Potential of solar energy in developing countries for reducing energy-related emissions. Renewable and Sustainable Energy Reviews, 90, 275–291. https://doi.org/10.1016/j.rser.2018.03.065

Singh, S., Anand, A., Shukla, A., & Sharma, A. (2020). Technical, financial, and environmental feasibility of solar water heater for residential, commercial, and industrial application: A theoretical approach. Materials Science for Energy Technologies, 3, 648–671. https://doi.org/10.1016/j.mset.2020.07.001

Sobhansarbandi, S., Martinez, P. M., Papadimitratos, A., Zakhidov, A., & Hassanipour, F. (2017). Solar thermal collector with multifunctional absorber layers. American Society of Mechanical Engineers, Power Division (Publication) POWER, 2, 342–350. https://doi.org/10.1115/POWER-ICOPE2017-3545

Uctug, F. G., & Azapagic, A. (2018). Life cycle environmental impacts of domestic solar water heaters in Turkey: The effect of different climatic regions. Science of the Total Environment, 622–623, 1202–1216. https://doi.org/10.1016/j.scitotenv.2017.12.057

Wang, Z., Zhang, H., Dou, B., Zhang, G., Wu, W., & Zhou, L. (2020). An experimental study for the enhancement of stratification in heat-storage tank by equalizer and PCM module. Journal of Energy Storage, 27, 101010. https://doi.org/10.1016/j.est.2019.101010

World Energy Council. (2013). World Energy Resources: 2013 survey. In World Energy Council (p. 11). http://www.worldenergy.org

Wu, W., Dai, S., Liu, Z., Dou, Y., Hua, J., Li, M., Wang, X., & Wang, X. (2018). Experimental study on the performance of a novel solar water heating system with and without PCM. Solar Energy, 171, 604–612. https://doi.org/10.1016/j.solener.2018.07.005

Xiao, X., & Zhang, P. (2015). Numerical and experimental study of heat transfer characteristics of a shell-tube latent heat storage system: Part I - Charging process. Energy, 79(C), 337–350. https://doi.org/10.1016/j.energy.2014.11.020




DOI: https://doi.org/10.18196/st.v27i1.21753

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Muhammad Nadjib, Wahyudi Wahyudi, Tito Hadji Agung Santosa, Yaafi Hidayat

Editorial Office :

SEMESTA TEKNIKA

Faculty of Engineering, Universitas Muhammadiyah Yogyakarta.

Jln. Brawijaya Tamantirto Kasihan Bantul 55183 Indonesia

Telp:(62)274-387656, Fax.:(62)274-387656

Email: semesta_teknika@umy.ac.id, semestateknika@umy.university

Website: http://http://journal.umy.ac.id/index.php/st

Creative Commons License

Semesta Teknika is licensed under a Creative Commons Attribution 4.0 International License.