Design of Ventilator with Gas Mixing, Tidal Volume, and Humidifier Parameters

Hanifah Fajrin, Edi Susanto, Pamela Sandi Agus Kristianto, Fery Ferizal Herdiyana, Susilo Ari Wibowo

Abstract


On the ventilator, there are several important parameters, including gas mixing, which functions to mix oxygen with free air, the tidal volume serves to supply mixed air to the patient, respiratory rate is the frequency of breath given to the patient, and the humidifier functions to regulate the temperature of the air given to the patient. In this research, the author intends to design a ventilator device which uses a working system to open and close the valve to distribute air to the patient. This tool uses several sensors: oxygen sensor KE-25F3, flow sensor yf-s201, pressure sensor MPX 5700, and temperature sensor DS 12B20. The tidal volume (VT) has 3 setting values: 700 ml, 500 ml, and 300 ml. The test is carried out by opening and closing the valve. The respiratory rate has 2 settings of 15 and 20 breaths/minute. In addition, the humidifier has 3 setting modes 32, 35, and 40o C. From the test results, the highest error was obtained in the 300 ml tidal volume test, which was 7.20% and in the respiratory rate test, the highest error value was 0%. The test results with the oxygen concentration parameter obtained the largest error value of 0.1% at 100% oxygen concentration. In testing the temperature and humidity parameters, the largest average error was 2.40% at 40o C setting. So, it can be concluded that the tool is feasible to use because of the level of small error and still within the standard calibration tolerance of 15%.


Keywords


gas mixing;tidal volume;humidity;ventilator

Full Text:

PDF

References


M. OPROESCU, V. G. IANA, N. BIZON, D. -C. ANGHEL, A. SIRGHIE and O. C. NOVAC, "Mechanical ventilation device with adapted parameters to assist patients infected with the SARS-CoV-2 virus," 2020 12th International Conference on Electronics, Computers and Artificial Intelligence (ECAI), 2020, pp. 1-6, doi: 10.1109/ECAI50035.2020.9223128.

H. R. Fajrin, S. K. Afifah, and S. A. Wibowo, “Mixed Pressure Control Innovation of Oxygen and Air Pressure in Ventilator with Safety Valve,” J. Phys. Conf. Ser., vol. 1933, no. 1, 2021, doi: 10.1088/1742-6596/1933/1/012106.

N. Helwig, M. Sch, C. Bur, and A. Sch, “Gas mixing apparatus for automated gas sensor characterization,” Meas. Sci. Technol., vol. 25, no. 3, pp. 0–9, 2014, doi: 10.1088/0957-0233/25/5/055903.

G. Wallon, A. Bonnet, and C. Guérin, “Delivery of tidal volume from four anaesthesia ventilators during volume-controlled ventilation: A bench study,” Br. J. Anaesth., vol. 110, no. 6, pp. 1045–1051, 2013, doi: 10.1093/bja/aes594.

J. Collada-Carrasco et al., “The addition of a humidifier device to a circuit and its impact on home ventilator performance: a bench study,” Pulmonology, vol. 26, no. 6, pp. 363–369, 2020, doi: 10.1016/j.pulmoe.2019.11.004.

J. R. Fitz-Clarke, “Effect of tidal volume on gas exchange during rescue ventilation,” Respir. Physiol. Neurobiol., vol. 273, no. October 2019, p. 103335, 2020, doi: 10.1016/j.resp.2019.103335.

S. G. L. H. Nijbroek, L. Hol, D. Ivanov, M. J. Schultz, F. Paulus, and A. S. Neto, “Low tidal volume ventilation is associated with mortality in COVID-19 patients—Insights from the PRoVENT-COVID study,” J. Crit. Care, vol. 70, p. 154047, 2022, doi: 10.1016/j.jcrc.2022.154047.

B. Short et al., “Implementation of lung protective ventilation order to improve adherence to low tidal volume ventilation: A RE-AIM evaluation,” J. Crit. Care, vol. 63, pp. 167–174, 2021, doi: 10.1016/j.jcrc.2020.09.013.

M. E. Prekker et al., “Adoption of low tidal volume ventilation in the emergency department: A quality improvement intervention,” Am. J. Emerg. Med., vol. 38, no. 4, pp. 763–767, 2020, doi: 10.1016/j.ajem.2019.06.026.

J. Yang et al., “Intraoperative High Tidal Volume Ventilation and Postoperative Acute Respiratory Distress Syndrome in Liver Transplant,” Transplant. Proc., vol. 54, no. 3, pp. 719–725, 2022, doi: 10.1016/j.transproceed.2021.10.030.

O. Boehm et al., “Low-tidal-volume prevent ventilation induced inflammation in a mouse model of sepsis,” Life Sci., vol. 240, no. November 2019, p. 117081, 2020, doi: 10.1016/j.lfs.2019.117081.

E. J. Carlton et al., “Relationships between home ventilation rates and respiratory health in the Colorado Home Energy Efficiency and Respiratory Health (CHEER) study,” Environ. Res., vol. 169, no. November 2018, pp. 297–307, 2019, doi: 10.1016/j.envres.2018.11.019.

C. Cable, M. Kashiouris, A. Gross, and B. Wiese, “Utility of the Respiratory Rate-Oxygenation (Rox) Index in Predicting Respiratory Failure Requiring Mechanical Ventilation in Acute Care Medicine,” Chest, vol. 158, no. 4, p. A576, 2020, doi: 10.1016/j.chest.2020.08.544.

J. A. Dawson, G. M. Schmölzer, and J. Wyllie, “Monitoring heart rate in the delivery room,” Semin. Fetal Neonatal Med., vol. 23, no. 5, pp. 327–332, 2018, doi: 10.1016/j.siny.2018.07.001.

J. Oliveira, C. Zagalo, and P. Cavaco-Silva, “Prevention of ventilator-associated pneumonia,” Rev. Port. Pneumol., vol. 20, no. 3, pp. 152–161, 2014, doi: 10.1016/j.rppneu.2014.01.002.

B. Soni and A. K. Nayak, “Effect of inspiration cycle and ventilation rate on heat exchange in human respiratory airways,” J. Therm. Biol., vol. 84, no. June, pp. 357–367, 2019, doi: 10.1016/j.jtherbio.2019.07.026.

F. Lellouche, M. Delorme, and L. Brochard, “Impact of Respiratory Rate and Dead Space in the Current Era of Lung Protective Mechanical Ventilation,” Chest, vol. 158, no. 1, pp. 45–47, 2020, doi: 10.1016/j.chest.2020.02.033.

S. H. Burstein, Y. Lin, W. Wu, and Q. Ge, “Ventilator-associated bacterial pneumonia in Coronavirus 2019 disease, a retrospective monocentric cohort study,” Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases, 2020. doi: 10.1016/j.jiac.2021.01.011.

O. Contal et al., “Impact of Different Backup Respiratory Rates on the Efficacy of Noninvasive Positive Pressure Ventilation in Obesity Hypoventilation Syndrome: A Randomized Trial,” Chest, vol. 143, no. 1, pp. 37–46, 2013, doi: https://doi.org/10.1378/chest.11-2848.

E. J. S. Lima, “Respiratory rate as a predictor of weaning failure from mechanical ventilation,” Brazilian J. Anesthesiol., vol. 63, no. 1, pp. 1–6, 2013, doi: 10.1016/j.bjane.2012.04.001.

D. K. Lee, H. K. Kim, K. Lee, Y. H. Choi, S. H. Lim, and H. Kim, “Optimal Respiratory Rate for Low-Tidal Volume and Two-Lung Ventilation in Thoracoscopic Bleb Resection,” J. Cardiothorac. Vasc. Anesth., vol. 29, no. 4, pp. 972–976, 2015, doi: 10.1053/j.jvca.2014.06.029.

K. Imanishi and K. Yasuo, “Application of noninvasive positive pressure ventilation to respiratory complications of severe tetanus: a case report,” Int. J. Infect. Dis., vol. 119, pp. 160–162, 2022, doi: 10.1016/j.ijid.2022.04.003.

A. Latif, H. A. Widodo, R. A. Atmoko, T. N. Phong, and E. T. Helmy, “Temperature and humidity controlling system for baby incubator,” J. Robot. Control, vol. 2, no. 3, pp. 190–193, 2021, doi: 10.18196/jrc.2376.

W. Robson, I. Ernawati, and C. Nugrahaeni, “Design of multisensor automatic fan control system using sugeno fuzzy method,” J. Robot. Control, vol. 2, no. 4, pp. 302–306, 2021, doi: 10.18196/jrc.2496.

J. Chang et al., “Masi: A mechanical ventilator based on a manual resuscitator with telemedicine capabilities for patients with ARDS during the COVID-19 crisis,” HardwareX, p. e00187, 2021, doi: 10.1016/j.ohx.2021.e00187.

T.-H. Kim, X. Min, D. Baker, W. Lee, and W. S. Kim, “3D architectured air sensing tubes for a portable mechanical ventilator,” Flex. Print. Electron., vol. 6, no. 3, p. 35010, 2021, doi: 10.1088/2058-8585/ac1fd6.

U. Dampage and M. Ariyasinghe, “Novel nebulizer design with adaptive flow regulation,” J. Natl. Sci. Found. Sri Lanka, vol. 50, no. 1, pp. 101–109, 2022, doi: 10.4038/jnsfsr.v50i1.10310.

R. Szlosarek, R. Teichert, A. Wetzel, A. Fichtner, F. Reuter, and M. Kröger, “Design and construction of a simplified, gas-driven, pressure-controlled emergency ventilator,” African J. Emerg. Med., no. September, 2020, doi: 10.1016/j.afjem.2020.09.018.

Y. Khodadadeh, F. Nili, F. Nayeri, and Y. Wickramasinghe, “Comparative clinical evaluation of a prototype non-electric transport incubator and an electrical infant incubator in a neonatal unit,” Med. Biol. Eng. Comput., vol. 39, no. 5, pp. 594–600, 2001, doi: 10.1007/BF02345152.

C. Sukigara, Y. Mino, A. Yasuda, A. Morimoto, A. Buranapratheprat, and J. Ishizaka, “Measurement of oxygen concentrations and oxygen consumption rates using an optical oxygen sensor, and its application in hypoxia-related research in highly eutrophic coastal regions,” Cont. Shelf Res., vol. 229, no. July 2020, p. 104551, 2021, doi: 10.1016/j.csr.2021.104551.

X. Sun et al., “A dense diffusion barrier limiting current oxygen sensor for detecting full concentration range,” Sensors Actuators, B Chem., vol. 305, no. June 2019, p. 127521, 2020, doi: 10.1016/j.snb.2019.127521.

M. Z. Dini, A. Rakhmatsyah, and A. A. Wardana, “Detection of Oxygen Levels (SpO2) and Heart Rate Using a Pulse Oximeter for Classification of Hypoxemia Based on Fuzzy Logic,” J. Ilm. Tek. Elektro Komput. dan Inform., vol. 8, no. 1, pp. 17–26, Apr. 2022, doi: 10.26555/JITEKI.V8I1.22139.

R. D’Amato, M. A. Caponero, E. Schena, P. Saccomandi, and C. Massaroni, “Fabrication and preliminary assessment of a fiber optic-based relative humidity sensor for application in mechanical ventilation,” 2017 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), 2017, pp. 1–6, doi: 10.1109/I2MTC.2017.7969841.

A. Bodini, M. Serpelloni, E. Sardini, N. Latronico, M. R. Tommasi, and M. Filippini, “Low-power wireless system for temperature and humidity monitoring in artificial ventilation,” in 2016 IEEE International Symposium on Medical Measurements and Applications (MeMeA), 2016, pp. 1–6, doi: 10.1109/MeMeA.2016.7533801.

M. W. Hariyanto, A. H. Hendrawan, and Ritzkal, “Monitoring the environmental temperature using arduino and telegram,” J. Robot. Control, vol. 1, no. 3, pp. 96–101, 2020, doi: 10.18196/jrc.1321.

R. Perkasa, R. Wahyuni, R. Melyanti, Herianto, and Y. Irawan, “Light control using human body temperature based on arduino uno and PIR (Passive Infrared Receiver) sensor,” J. Robot. Control, vol. 2, no. 4, pp. 307–310, 2021, doi: 10.18196/jrc.2497.

C. Hornberger et al., “A prototype device for standardized calibration of pulse oximeters II,” J. Clin. Monit. Comput., vol. 17, no. 3–4, pp. 203–209, 2002, doi: 10.1023/A:1020795307742.

Y. Irawan, Muhardi, R. Ordila, and R. Diandra, “Automatic floor cleaning robot using arduino and ultrasonic sensor,” J. Robot. Control, vol. 2, no. 4, pp. 240–243, 2021, doi: 10.18196/jrc.2485.

H. Zomorodi and E. Nazari, “Design and Simulation of Synchronous Buck Converter in Comparison with Regular Buck Converter,” International Journal of Robotics and Control Systems, vol. 2, no. 1, pp. 79–86, Feb. 2022.

M. Borrello, “Adaptive Control of a Proportional Flow Valve for Critical Care Ventilators,” in Proceedings of the American Control Conference, 2018, vol. 2018-June, pp. 104–109, doi: 10.23919/ACC.2018.8431425.

A. Latif, A. Z. Arfianto, J. E. Poetro, T. N. Phong, and E. T. Helmy, “Temperature monitoring system for baby incubator based on visual basic,” J. Robot. Control, vol. 2, no. 1, pp. 47–50, 2021, doi: 10.18196/jrc.2151.

H. R. Fajrin, M. R. Ilahi, B. S. Handoko, and I. P. Sari, “Body temperature monitoring based on telemedicine,” J. Phys. Conf. Ser., vol. 1381, no. 1, 2019, doi: 10.1088/1742-6596/1381/1/012014.

K. Khotimah, M. I. Sudrajat, and S. W. Hidayat, “Infant Incubator Temperature Controlling and Monitoring System by Mobile Phone Based on Arduino,” 2019 2nd Int. Semin. Res. Inf. Technol. Intell. Syst. ISRITI 2019, pp. 494–498, 2019, doi: 10.1109/ISRITI48646.2019.9034646.

H. R. Fajrin, K. Muhammad and W. Kusuma Wardana, “Monitoring of Incubator Parameters Using Android Applications,” 2021 1st International Conference on Electronic and Electrical Engineering and Intelligent System (ICE3IS), 2021, pp. 154-159, doi: 10.1109/ICE3IS54102.2021.9649740.

R. Wahyuni, J. T. Sentana, Muhardi, and Y. Irawan, “Water level control monitoring based on arduino uno R3 ATMega 238p using Lm016l LCD at STMIK Hang Tuah Pekanbaru,” J. Robot. Control, vol. 2, no. 4, pp. 265–269, 2021, doi: 10.18196/jrc.2489.

J. L. Fierro and H. B. Panitch, “Transitioning from an ICU ventilator to a portable home ventilator,” Semin. Fetal Neonatal Med., vol. 24, no. 5, p. 101041, 2019, doi: https://doi.org/10.1016/j.siny.2019.101041.

A. Sanpanich et al., “A ventilation parameters waveform study by using a simple ICU ventilator circuit,” in BMEiCON 2018 - 11th Biomedical Engineering International Conference, 2019, pp. 1–4, doi: 10.1109/BMEiCON.2018.8609976.

V. K. Sarker, M. A. Rahman, and M. A. Matin, “Design and Development of Microcontroller Based Digital Bangla Clock,” Int. J. Comput. Theory Eng., no. April, pp. 935–937, 2012, doi: 10.7763/ijcte.2012.v4.610.

N. Joglekar, A. Zayegh, R. Veljanovski, and J. Mitra, “A design and implementation of a reconfigurable filter for an optical blood Oxygen analyzer,” Model. Meas. Control C, vol. 73, no. 1–2, pp. 1–18, 2012, doi: 10.1109/ICBBE.2009.5162167.

N. H. Wijaya, Nurokhim, and B. Untara, “Centralization of Medical Gas Pressure Monitoring Based on ATMega328,” 2020 1st International Conference on Information Technology, Advanced Mechanical and Electrical Engineering (ICITAMEE), 2020, pp. 204–208, doi: 10.1109/ICITAMEE50454.2020.9398487.

K. A. Kulkarni, D. P. Londhe, N. M. Kulkarni, A. D. Shaligram, and M. S. Zambare, “Development of an Embedded System for Monitoring CO2 and O2 Levels,” Speed J. Res. Electron., vol. I, no. 1, pp. 50–55, 2014.

W. Haines, P. Momenroodaki, E. Berry, M. Fromandi, and Z. Popovic, “Wireless system for continuous monitoring of core body temperature,” IEEE MTT-S Int. Microw. Symp. Dig., pp. 541–543, 2017, doi: 10.1109/MWSYM.2017.8058620.




DOI: https://doi.org/10.18196/jrc.v3i3.14510

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Hanifah Fajrin

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 


Journal of Robotics and Control (JRC)

P-ISSN: 2715-5056 || E-ISSN: 2715-5072
Organized by Peneliti Teknologi Teknik Indonesia
Published by Universitas Muhammadiyah Yogyakarta in collaboration with Peneliti Teknologi Teknik Indonesia, Indonesia and the Department of Electrical Engineering
Website: http://journal.umy.ac.id/index.php/jrc
Email: jrcofumy@gmail.com


Kuliah Teknik Elektro Terbaik