Enhancement of the Tracking Performance for Robot Manipulator by Using the Feed-forward Scheme and Reasonable Switching Mechanism
Abstract
Keywords
Full Text:
PDFReferences
K. Mittal, A. Jain, K. S. Vaisla, O. Castillo, and J. Kacprzyk, “A comprehensive review on type 2 fuzzy logic applications: Past, present and future,” Engineering Applications of Artificial Intelligence, vol. 95, p. 103916, 2020.
Y. Liu, C. M. Eckert, and C. Earl, “A review of fuzzy AHP methods for decision-making with subjective judgements,” Expert Systems with Applications, vol. 161, p. 113738, 2020.
C. Sun, H. Gao, W. He, and Y. Yu, “Fuzzy neural network control of a flexible robotic manipulator using assumed mode method,” IEEE Transactions on Neural Networks and Learning Systems, vol. 29, no. 11, 5214-5227, 2018.
H. Han, Y. Wei, X. Ye, and W. Liu, “Modeling and fuzzy decoupling control of an underwater vehicle-manipulator system,” IEEE Access, 8, pp. 18962-18983, 2020.
C. Jin, Y. Ren, and G. Zhang, “Interval-valued q-rung orthopair fuzzy FMEA application to improve risk evaluation process of tool changing manipulator,” Applied Soft Computing, vol. 104, p. 107192, 2021.
M. A. Sanchez, O. Castillo, and J. R. Castro, “Generalized type-2 fuzzy systems for controlling a mobile robot and a performance comparison with interval type-2 and type-1 fuzzy systems,” Expert Systems with Applications, vol. 42, no. 14, pp. 5904-5914, 2015.
S. Dian, Y. Hu, T. Zhao, and J. Han, “Adaptive backstepping control for flexible-joint manipulator using interval type-2 fuzzy neural network approximator,” Nonlinear Dynamics, vol. 97, no. 2, pp. 1567-1580, 2019.
P. J. Gaidhane, M. J. Nigam, A. Kumar, and P. M. Pradhan, “Design of interval type-2 fuzzy precompensated PID controller applied to two-DOF robotic manipulator with variable payload,” ISA transactions, vol. 89, pp. 169-185, 2019.
H. Qin, H. Yang, Y. Sun, and Y. Zhang, “Adaptive interval type-2 fuzzy fixed-time control for underwater walking robot with error constraints and actuator faults using prescribed performance terminal sliding-mode surfaces,” International Journal of Fuzzy Systems, vol. 23, no. 4, pp. 1137-1149, 2021.
X. Zou, T. Zhao, and S. Dian, “Finite-time adaptive interval type-2 fuzzy tracking control for Mecanum-wheel mobile robots,” in International Journal of Fuzzy Systems, vol. 24, no. 3, pp. 1570-1585, 2022.
R. Sharma, K. K. Deepak, P. Gaur, and D. Joshi, “An optimal interval type-2 fuzzy logic control based closed-loop drug administration to regulate the mean arterial blood pressure,” Computer methods and programs in biomedicine, vol. 185, p. 105167, 2020.
W. Tong, T. Zhao, Q. Duan, H. Zhang, and Y. Mao, “Non-singleton interval type-2 fuzzy PID control for high precision electro-optical tracking system,” ISA transactions, vol. 120, pp. 258-270, 2022.
H. Zhou, C. Zhang, S. Tan, Y. Dai, and J. A. Duan, “Design of the footprints of uncertainty for a class of typical interval type-2 fuzzy PI and PD controllers,” ISA transactions, vol. 108, pp. 1-9, 2021.
J. E. Moreno, M. A. Sanchez, O. Mendoza, A. Rodríguez-Díaz, O. Castillo, P. Melin, and J. R. Castro, “Design of an interval Type-2 fuzzy model with justifiable uncertainty,” in Information Sciences, vol. 513, pp. 206-221, 2020.
M. Van, M. Mavrovouniotis, and S. S. Ge, “An adaptive backstepping nonsingular fast terminal sliding mode control for robust fault tolerant control of robot manipulators,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 49, no. 7, pp. 1448-1458, 2018.
G. M. Méndez, P. N. Montes Dorantes, and M. A. Alcorta, “Dynamic adaptation of the PID’s gains via Interval type-1 non-singleton type-2 fuzzy logic systems whose parameters are adapted using the backpropagation learning algorithm,” Soft Computing, vol. 24, no. 1, pp. 17-40, 2020.
M. Oussama, C. Abdelghani, and C. Lakhdar, “Efficiency and robustness of type-2 fractional fuzzy PID design using salps swarm algorithm for a wind turbine control under uncertainty,” ISA transactions, 2021.
W. C. Su, C. F. Juang, and C. M. Hsu, “Multi-objective Evolutionary Interpretable Type-2 Fuzzy Systems with Structure and Parameter Learning for Hexapod Robot Control,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021.
H. Yang, J. Qi, Y. Miao, H. Sun, and J. Li, “A new robot navigation algorithm based on a double-layer ant algorithm and trajectory optimization,” IEEE Transactions on Industrial Electronics, vol. 66, no. 11, pp. 8557-8566, 2018.
M. M. Zirkohi, “Adaptive interval type-2 fuzzy recurrent RBFNN control design using ellipsoidal membership functions with application to MEMS gyroscope,” ISA transactions, vol. 119, pp. 25-40, 2022.
B. Singh, R. Kumar, and V. P. Singh, “Reinforcement learning in robotic applications: a comprehensive survey,” Artificial Intelligence Review, pp. 1-46, 2021.
Y. Liu, and Q. Zhu, “Adaptive fuzzy finite-time control for nonstrict-feedback nonlinear systems,” IEEE Transactions on Cybernetics, 2021.
J. Wang, W. Luo, J. Liu, and L. Wu, “Adaptive type-2 FNN-based dynamic sliding mode control of DC–DC boost converters,” IEEE transactions on systems, man, and cybernetics: systems, vol. 51, no. 4, pp. 2246-2257, 2019.
A. H. Mazinan, “Interval type-II Takagi–Sugeno fuzzy-based strategy in control of autonomous systems,” SN Applied Sciences, vol. 1, no. 11, pp. 1-9, 2019.
M. S. AbouOmar, Y. Su, H. Zhang, B. Shi, and L. Wan, “Observer-based interval type-2 fuzzy PID controller for PEMFC air feeding system using novel hybrid neural network algorithm-differential evolution optimizer,” Alexandria Engineering Journal, 2022.
S. Xie, Y. Xie, F. Li, Z. Jiang, and W. Gui, “Hybrid fuzzy control for the goethite process in zinc production plant combining type-1 and type-2 fuzzy logics,” Neurocomputing, vol. 366, pp. 170-177, 2019.
M. G. Nampoothiri, B. Vinayakumar, Y. Sunny, and R. Antony, “Recent developments in terrain identification, classification, parameter estimation for the navigation of autonomous robots,” SN Applied Sciences, vol. 3, no. 4, pp. 1-14, 2021.
R. Sharma and A. Kumar, “Optimal Interval Type-2 Fuzzy Logic Control Based Closed-Loop Regulation of Mean Arterial Blood Pressure Using the Controlled Drug Administration,” IEEE Sensors Journal, vol. 22, no. 7, pp. 7195-7207, 2022.
D. Sain, M. Praharaj, and M. M. Bosukonda, “A simple modelling strategy for integer order and fractional order interval type-2 fuzzy PID controllers with their simulation and real-time implementation,” Expert Systems with Applications, vol. 202, p. 117196, 2022.
S. Hou, Y. Chu, and J. Fei, “Adaptive type-2 fuzzy neural network inherited terminal sliding mode control for power quality improvement,” IEEE Transactions on Industrial Informatics, vol. 17, no. 11, pp. 7564-7574, 2021.
D. Xuan and J. Bae, “A Precise Neural-Disturbance Learning Controller of Constrained Robotic Manipulators,” IEEE Access, vol. 9, pp. 50381-50390, 2021.
J. Liu, T. Zhao, and S. Dian, “General type-2 fuzzy sliding mode control for motion balance adjusting of powerline inspection robot,” Soft Computing, vol. 25, no. 2, pp. 1033-1047, 2021.
L. Charron, M. Boumehraz, and A. Kouzou, “Mobile robot path planning based on optimized fuzzy logic controllers,” New Developments and Advances in Robot Control, 2019, pp. 255-283.
A. Al-Mahturi, F. Santoso, M. A. Garratt, and S. G. Anavatti, “A robust self-adaptive interval type-2 TS fuzzy logic for controlling multi-input-multi-output nonlinear uncertain dynamical systems,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020.
M. B. Milovanović, D. S. Antić, M. T. Milojković, and M. D. Spasić, “Adaptive control of nonlinear MIMO system with orthogonal endocrine intelligent controller,” IEEE Transactions on Cybernetics, 2020.
M. H. Chang and Y. C. Wu, “Speed control of electric vehicle by using type-2 fuzzy neural network,” International Journal of Machine Learning and Cybernetics, vol. 13, no. 6, pp. 1647-1660, 2022.
C. He, M. Mahfouf, and L. A. Torres-Salomao, “An adaptive general type-2 fuzzy logic approach for psychophysiological state modeling in real-time human–machine interfaces,” IEEE Transactions on Human-Machine Systems, vol. 51, no. 1, pp. 1-11, 2020.
G. Enthrakandi Narasimhan, and J. Bettyjane, “Implementation and study of a novel approach to control adaptive cooperative robot using fuzzy rules,” International Journal of Information Technology, vol. 13, no. 6, pp. 2287-2294, 2021.
T. L. Le, N. V. Quynh, N. K. Long, and S. K. Hong, “Multilayer interval type-2 fuzzy controller design for quadcopter unmanned aerial vehicles using Jaya algorithm,” IEEE Access, vol. 8, pp. 181246-181257, 2020.
P. M. Kebria, A. Khosravi, S. Nahavandi, D. Wu, and F. Bello, “Adaptive type-2 fuzzy neural-network control for teleoperation systems with delay and uncertainties,” IEEE Transactions on Fuzzy Systems, vol. 28, no. 10, pp. 2543-2554, 2019.
D. Sun, Q. Liao, T. Stoyanov, A. Kiselev, and A. Loutfi, “Bilateral telerobotic system using type-2 fuzzy neural network based moving horizon estimation force observer for enhancement of environmental force compliance and human perception,” Automatica, vol. 106, pp. 358-373, 2019.
Z. Wang, H. K. Lam, B. Xiao, Z. Chen, B. Liang, and T. Zhang, “Event-triggered prescribed-time fuzzy control for space teleoperation systems subject to multiple constraints and uncertainties,” IEEE Transactions on Fuzzy Systems, vol. 29, no. 9, pp. 2785-2797, 2020.
Q. Liao, and D. Sun, “Sparse and Decoupling Control Strategies Based on Takagi–Sugeno Fuzzy Models,” IEEE transactions on cybernetics, vol. 51 no. 2, pp. 947-960, 2019.
S. Paul, A. Arunachalam, D. Khodadad, H. Andreasson, and O. Rubanenko, “Fuzzy tuned pid controller for envisioned agricultural manipulator,” International Journal of Automation and Computing, vol. 18, no. 4, pp. 568-580, 2021.
D. Sun, Q. Liao, and A. Loutfi, “Type-2 Fuzzy Model-Based Movement Primitives for Imitation Learning,” IEEE Transactions on Robotics, 2022.
A. Rubio-Solis, U. Martinez-Hernandez, L. Nava-Balanzar, L. G. Garcia-Valdovinos, N. A. Rodriguez-Olivares, J. P. Orozco-Muñiz, and T. Salgado-Jimenez, “Online Interval Type-2 Fuzzy Extreme Learning Machine applied to 3D path following for Remotely Operated Underwater Vehicles,” Applied Soft Computing, vol, 115, p. 108054, 2022.
X. Lu, Y. Zhao, and M. Liu, “Self-learning interval type-2 fuzzy neural network controllers for trajectory control of a Delta parallel robot,” Neurocomputing, vol. 283, pp. 107-119, 2018.
F. Baghbani, M. R. Akbarzadeh-T, and A. Akbarzadeh, “Indirect adaptive robust mixed H2/H∞ general type-2 fuzzy control of uncertain nonlinear systems,” Applied Soft Computing, vol. 72, pp. 392-418, 2018.
J. Z. Shi, “A fractional order general type-2 fuzzy PID controller design algorithm,” IEEE Access, vol. 8, pp. 52151-52172, 2020.
T. Zhao, Y. Chen, S. Dian, R. Guo, and S. Li, “General type-2 fuzzy gain scheduling PID controller with application to powerline inspection robots,” International Journal of Fuzzy Systems, vol. 22, no. 1, pp. 181-200, 2020.
I. Reguii, I. Hassani, and C. Rekik, “Mobile Robot Navigation Using Planning Algorithm and Sliding Mode Control in a Cluttered Environment,” Journal of Robotics and Control (JRC), vol. 3, no. 2, pp. 166-175, 2022.
DOI: https://doi.org/10.18196/jrc.v3i3.14585
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Ha Quang Thinh Ngo, Minh Hoang Nguyen
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Journal of Robotics and Control (JRC)
P-ISSN: 2715-5056 || E-ISSN: 2715-5072
Organized by Peneliti Teknologi Teknik Indonesia
Published by Universitas Muhammadiyah Yogyakarta in collaboration with Peneliti Teknologi Teknik Indonesia, Indonesia and the Department of Electrical Engineering
Website: http://journal.umy.ac.id/index.php/jrc
Email: jrcofumy@gmail.com