Active Disturbance Rejection Control for Robot Manipulator

Carlos E. Martínez-Ochoa, Ivón O. Benítez-González, Ariel O. Cepero-Díaz, José R. Nuñez-Alvarez, Carlos G. Miguélez-Machado, Yolanda E. Llosas-Albuerne

Abstract


Active Disturbance Rejection Control (ADRC) is a control methodology used in chemical processes, aircraft, motors, and other systems. This paper compares the results of an ADRC controller to a Proportional Integral Derivative controller (PID), applied to two degrees of freedom robots. A Linear Extended State Observer (LESO) is used to reconstruct the state variables and unknown parameters needed to control the position of each link. The ADRC can achieve the tracking position and estimate the velocity of each link. The results of the simulation program are shown.

Keywords


ADCR; control; disturbance; observer; robot

Full Text:

PDF

References


J. Gong, W. Wei, G. Cai, Y. Liu, and X. Peng, “Kinematic Performance Analysis of a Controllable Mechanism Welding Robot with Joint Clearance,” MATEC Web of Conferences, vol. 327, pp. 03006. 2020, doi: 10.1051/matecconf/202032703006.

B. Altiner, A. Delibasxi, and B. Erol, “Modeling and control of flexible link manipulators for unmodeled dynamics effect. Journal Systems and Control Engineering,” Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, vol. 233, pp. 245-263, 2019, doi: 10.1177/0959651818791071.

A. AlAttar and P. Kormushev, “Kinematic-Model-Free Orientation Control for Robot Manipulation Using Locally Weighted Dual Quaternions,” Robotics, vol. 9, pp. 76, 2020, doi: 10.3390/robotics9040076.

K. Pasha, “A suggested simple design and inverse kinematics for a multi-degrees-of-freedom robot arm,” International Robotics & Automation Journal, vol. 7, pp. 103‒110, 2021, doi: 10.15406/iratj.2021.07.00234.

B. Chen and J. Huang, “Decreasing infinite-mode vibrations in single-link flexible manipulators by a continuous function,” Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, vol. 231, pp. 436-446, 2017, doi: 10.1177/0959651817708489.

X. Cheng, X. Tu, Y. Zhou, and R. Zhou, “Active Disturbance Rejection Control of Multi-Joint Industrial Robots Based on Dynamic Feedforward,” Electronics, vol. 8, pp. 591, 2019, doi: 10.3390/electronics8050591.

A. J. Humaidi, H. M. Badr, and A. R. Ajil, “Design of Active Disturbance Rejection Control for Single-Link Flexible Joint Robot Manipulator,” 2018 22nd International Conference on System Theory, Control and Computing (ICSTCC), pp. 452-457, 2018, doi: 10.1109/ICSTCC.2018.8540652.

X. Wenchao, R. Madoński, K. Łakomy, and Z. Gao, “Add-On Module of Active Disturbance Rejection for Set-Point Tracking of Motion Control Systems,” IEEE Transactions on Industry Applications, vol. 53, pp. 4028-4040, 2017, doi: 10.1109/TIA.2017.2677360.

J. Han, “From PID to Active Disturbance Rejection Control,” IEEE Transactions on Industrial Electronics, vol. 56, pp. 900-906, 2019, doi: 10.1109/TIE.2008.2011621.

G. Zhiqiang, “Active disturbance rejection control: a paradigm shift in feedback control system design," 2006 American Control Conference, vol. 7, 2006, doi: 10.1109/ACC.2006.1656579.

R. Fareh, M. Al-Shabi, M. Bettayeb, and J. Ghommam, “Robust Active Disturbance Rejection Control for Flexible Link Manipulator,” Robotica, vol. 38, no. 1, pp. 1-18, 2019, doi: 10.1017/S026357471900050X.

Y. Huang, W. Xue, G. Zhiqiang, H. Sira-Ramirez, D. Wu, and M. Sun, “Active disturbance rejection control: Methodology, practice and analysis,” Proceedings of the 33rd Chinese Control Conference, pp. 1-5, 2014, doi: 10.1109/ChiCC.2014.6896585.

L. Sun, J. Dong, and K. Lee, “A Practical Multivariable Control Approach Based on Inverted Decoupling and Decentralized Active Disturbance Rejection Control,” American Chemical Society, vol. 55, no. 7, pp. 2008-2019, 2016, doi: 10.1021/acs.iecr.5b03738.

C. Wang, J. Huang, C. Wang, and R. Wu, “Dynamic Surface-Active Disturbance Rejection Control for Two-Wheeled Self-Balancing Robot,” ICRCA '18: Proceedings of the 3rd International Conference on Robotics, Control and Automation, pp. 82–87, 2018, doi: 10.1145/3265639.3265645.

H. Coral-Enriquez and S. Pulido-Guerrero, “Sway reduction in tower-cranes through discrete-time resonant active disturbance rejection control,” 2017, vol. 85, pp. 65-75, 2017, DOI: doi: 10.15446/dyna.v85n204.63245.

Z. Zhou, S. B. Elghali, M. Benbouzid, Y. Amirat, E. Elbouchikhi, and G. Feld, “Tidal stream turbine control: An active disturbance rejection control approach,” Ocean Engineering, vol. 202, pp. 107190, 2020, doi: 10.1016/j.oceaneng.2020.107190.

B. Sánchez-García, F. Reyes-Cortés, B. M. Al-Hadithi, and Olga Félix-Beltrán “Global Saturated Regulator with Variable Gains for Robot Manipulators”, Journal of Robotics and Control (JRC), vol. 2, no. 6, pp 571-581, 2021, doi: 10.18196/jrc.26139.

F. Reyes and R. Kelly, “Experimental evaluation of model-based controllers on a direct-drive robot arm”, Mechatronics, vol. 11, pp 267-282, 2001, doi: 10.1016/S0957-4158(00)00008-8.

R. Kelly, V. Santibañez Davila, and A. Loria, Control of Robot Manipulators in Joint Space, 2005 ed. Springer, London, 2005.

T. S. Lee, E. A. Alandoli, and V. Vijayakumar, “2-DOF robot modelling by SimMechanics and PD-FL integrated controller for position control and trajectory tracking,” F1000Research, vol. 10, pp. 1045, 2021, doi: 10.12688/f1000research.72912.2.

F. J. Torres, G. V. Guerrero, C. D. García, J. F. Gomez, M. Adam, and R. F. Escobar, “Master-Slave Synchronization of Robot Manipulators Driven by Induction Motors,” IEEE Latin America Transactions, vol. 14, pp. 3986-3991, 2016, doi: 10.1109/TLA.2016.7785923.

N. M. Ghaleb, and A. Ayman, “Modeling and Control of 2-DOF Robot Arm,” International Journal of Emerging Engineering Research and Technology, vol. 6, no. 11, pp. 24-31, 2018.

C. S Jeong, J. S. Kim, and S. I. Han, “Tracking Error Constrained Super-twisting Sliding Mode Control for Robotic Systems,” Int. J. Control Autom. Syst, vol. 16, pp. 804–814, 2018, doi: 10.1007/s12555-017-0134-y.

M. Baccouch and S. A. Dodds, “Two-Link Robot Manipulator: Simulation and Control Design,” International Journal of Robotic Engineering, vol. 5, pp. 2-17, 2020, doi: 10.35840/2631-5106/4128.

H. Hussein Mohammed Al-Almoodi, N. Zainul Azlan, I. Shahdad, and N. Kamarudzaman “Continuous Passive Motion Machine for Elbow Rehabilitation,” International Journal of Robotics and Control Systems, vol. 1, no. 3, pp 402-415, 2021, doi: 10.31763/ijrcs.v1i3.446 .

F. G. Salas, J. Orrante-Sakanassi, R. Juarez-del-Toro, and R. P Parada, “A stable proportional–proportional integral tracking controller with self-organizing fuzzy-tuned gains for parallel robots,” International Journal of Advanced Robotic Systems, vol. 16, no. 1, pp 1–16, 2019, doi: 10.1177/1729881418819956.

P. Corke, Robotics, Vision and Control, 2nd Edition, Springer International Publishing AG, 2017.

G. Goodwin, S. Graebe, and M. Salgado, Control System Design, Pearson Education, 2001.

K. Ogata, Ingeniería de Control Moderna. Pearson Education, S.A, Inc. 2010, 5th Edition.

A. O’Dwyer, Handbook of PI and PID Controller Tuning Rules, Imperial College Press, 2009. 3th Edition.

R. Beltrán Aguedo, A. Lussón Cervantes, J. R. Nuñez Alvarez, and Y. Llosas Albuerne, “Speed control in DC and AC drives,” International Journal of Power Electronics and Drive Systems (IJPEDS), vol. 14, pp. 2006-2017, 2021, doi: 10.11591/ijpeds.v12.i4.pp2006-2017.

D. Xue, Y. Chen, and D. Atherton, Linear Feedback Control Analysis and Design with MatLab, Society for Industrial and Applied Mathematics, 1st Edition, 2007, pp. 370.

M. Przybyła, M. Kordasz, R. Madoński, P. Herman, and P. Sauer, “Active Disturbance Rejection Control of a 2DOF manipulator with significant modeling uncertainty,” Bulletin of The Polish Academy of Sciences-technical Sciences, vol. 60, pp. 509-520, 2012, doi: 10.2478/v10175-012-0064-z.

D. Milanés-Hermosilla, R. Trujillo Codorniú, R. López-Baracaldo, R. Sagaró-Zamora, D. Delisle-Rodriguez, J. J. Villarejo-Mayor, and J. R. Núñez-Álvarez, “Monte Carlo Dropout for Uncertainty Estimation and Motor Imagery Classification,” Sensors, vol. 21, pp. 7241, 2021, doi: 10.3390/s21217241.

A. Prasad, B.;Sharma, and J Vanualailai, “A new stabilizing solution for motion planning and control of multiple robots,” Robotica, vol. 34, pp. 1071-1089, 2014, doi: 10.1017/S0263574714002070.

W. Qing L. Tao N. Zhuo H. Shoulin R. Xuhui, Z. Dan, and W. Lei, “A generalized control scheme for system uncertainty estimation and cancellation,” Automation in Mechatronic and Robotic Systems, vol. 43, pp. 2921-2933, 2021, doi: 10.1177/01423312211010509.

G. Li, L. Pan, Q. Hua, L. Sun, and K. Y. Lee, “Water Pump Control: A Hybrid Data-Driven and Model-Assisted Active Disturbance Rejection Approach,” Water, vol. 11, pp. 1066, 2019, doi: 10.3390/w11051066.

Y. Fan, J. Shao, G. Sun, and X. Sha, “Active Disturbance Rejection Control Design Using the Optimization Algorithm for a Hydraulic Quadruped Robot,” Computational Intelligence and Neuroscience, vol. 2021, pp. 1-22, 2021, doi: 10.1155/2021/6683584.

D. Milanes Hermosilla, R. Trujillo Codorniu, R. Lopez Baracaldo, R. Sagaro Zamora, D. Delisle Rodriguez, Y. Llosas Albuerne, and J. R. N. Alvarez, “Shallow Convolutional Network Excel for Classifying Motor Imagery EEG in BCI Applications,” IEEE Access, vol. 9, pp. 98275–98286, 2021, doi: 10.1109/ACCESS.2021.3091399.

M. Stankovic, R. Madonski, S. Shao, and D. Miklu, “On dealing with harmonic uncertainties in the class of active disturbance rejection controllers,” International Journal of Control, vol. 94, pp. 2795-2810, 2020, doi: 10.1080/00207179.2020.1736639.

X. Zhou, Y. Cui, and Y. Ma, “Fuzzy Linear Active Disturbance Rejection Control of Injection Hybrid Active Power Filter for Medium and High Voltage Distribution Network,” IEEE Access, vol. 9, pp. 8421-8432, 2021, doi: 10.1109/ACCESS.2021.3049832.

P. Teppa-Garran and G. García, “Optimal Tuning of PI/PID/PID Controllers in Active Disturbance Rejection Control,” Control Engineering and Applied Informatics, vol. 15, pp 26-36, 2013.

Z. Gao, “Scaling and Bandwidth-Parameterization Based Controller Tuning,” Proceedings of the 2003 American Control Conference, 2003, pp. 4989-4996, doi: 10.1109/ACC.2003.1242516.

G. Herbst, “A Simulative Study on Active Disturbance Rejection Control (ADRC) as a Control Tool for Practitioners,” Electronics, vol. 2, pp. 246–279, 2013.

S. Zhao, L. Sun, D. Li and Z. Gao, “Tracking and Disturbance Rejection in Non-minimum Phase Systems,” Proceedings of the 33rd Chinese Control Conference, 2014, pp. 3834-3839, doi: 10.1109/ChiCC.2014.6895578.

L. Sun, D. Li, Z. Gao, Z. Yang, and S. Zhao, “Combined feedforward and model-assisted active disturbance rejection control for non-minimum phase system”, ISA Transactions, vol. 64, pp 24-33, 2016, doi: 10.1016/j.isatra.2016.04.020.

L. Sun, , G. Li, Q.S. Hua, and Y. Jin, “A hybrid paradigm combining model-based and data-driven methods for fuel cell stack cooling control,” Renewable Energy, vol. 174, Part 1, pp 1642-1652, 2019, doi: 10.1016/j.renene. 2019.09.048.

G. Yu. M. Kulikov, and V. Kulikova, “Overall hyperbolic-singular-value-decomposition-based square-root solutions in Kalman filters with deterministically sampled mean and covariance for state estimation in continuous-discrete nonlinear stochastic systems,” European Journal of Control, vol. 66, pp. 100648, 2022, doi: 10.1016/j.ejcon.2022.100648.

S. D. Perkasa, P. Megantoro, and H. A. Winarno, “Implementation of a Camera Sensor Pixy 2 CMUcam5 to A Two Wheeled Robot to Follow Colored Object,” Journal of Robotics and Control (JRC), vol. 2, no. 6, pp. 496-501, doi: 10.18196/jrc.26128.

B. T. AlKhlidi, A. Abdulsadda, and A. Al Bakri, “Optimal Robotic Path Planning Using Intlligents Search Algorithms,” Journal of Robotics and Control (JRC), vol. 2, no. 6, pp. 519-526, 2021, doi: 10.18196/jrc.26132

K. Gao, J. Song, X. Wang, and H. Li, "Fractional-order proportional-integral-derivative linear active disturbance rejection control design and parameter optimization for hypersonic vehicles with actuator faults," Tsinghua Science and Technology, vol. 26, no. 1, pp. 9-23, 2021, doi: 10.26599/TST.2019.9010041.

K. J. Ästrom and T. Hägglund, PID controllers theory, design, and tuning, 2nd Edition, 1995.

I. O. Benitez González, R. Rivas Perez, V. Feliu Batlle, and F. Castillo Garcia, “Temperature Control Based on a Modified Smith Predictor for Injectable Drug Formulations,” IEEE Latin America Transactions, vol. 13, no. 4, pp. 1041-1047, 2015, doi: 10.1109/TLA.2015.7106355.

L. Peña-Pupo, H. Martínez-García, E. García-Vílchez, E. Y. Fariñas-Wong, and J. R. Núñez-Álvarez, “Combined Method of Flow-Reduced Dump Load for Frequency Control of an Autonomous Micro-Hydropower in AC Microgrids,” Energies, vol. 14, no. 23, pp. 8059, 2021, doi: 10.3390/en14238059

A. W. Shardt, Statistics for Chemical and Process Engineers, Springer International, 2015.




DOI: https://doi.org/10.18196/jrc.v3i5.14791

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Carlos E. Martínez-Ochoa, Ivón E. Benítez-González, Ariel O. Cepero-Díaz, José R. Nuñez-Alvarez, Carlos G. Miguélez-Machado, Yolanda E. Llosas-Albuerne

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 


Journal of Robotics and Control (JRC)

P-ISSN: 2715-5056 || E-ISSN: 2715-5072
Organized by Peneliti Teknologi Teknik Indonesia
Published by Universitas Muhammadiyah Yogyakarta in collaboration with Peneliti Teknologi Teknik Indonesia, Indonesia and the Department of Electrical Engineering
Website: http://journal.umy.ac.id/index.php/jrc
Email: jrcofumy@gmail.com


Kuliah Teknik Elektro Terbaik