Validation of Quad Tail-sitter VTOL UAV Model in Fixed Wing Mode

Tri Kuntoro Priyambodo, Abdul Majid, Zaied Saad Salem Shouran

Abstract


Vertical take-off and landing (VTOL) is a type of unmanned aerial vehicle (UAV) that is growing rapidly because its ability to take off and land anywhere in tight spaces. One type of VTOL UAV, the tail-sitter, has the best efficiency. However, besides the efficiency offered, some challenges must still be overcome, including the complexity of combining the ability to hover like a helicopter and fly horizontally like a fixed-wing aircraft. This research has two contributions: in the form of how the analytical model is generated and the tools used (specifically for the small VTOL quad tail-sitter UAV) and how to utilize off-the-shelf components for UAV empirical modeling. This research focuses on increasing the speed and accuracy of the UAV VTOL control design in fixed-wing mode. The first step is to carry out analysis and simulation. The model is analytically obtained using OpenVSP in longitudinal and lateral modes. The next step is to realize this analytical model for both the aircraft and the controls. The third step is to measure the flight characteristics of the aircraft. Based on the data recorded during flights, an empirical model is made using system identification technique. The final step is to vali-date the analytical model with the empirical model. The results show that the characteristics of the analytical mode fulfill the specified requirements and are close to the empirical model. Thus, it can be concluded that the analytical model can be implemented directly, and consequently, the VTOL UAV design and development process has been shortened.

Keywords


VTOL UAV; Quad Tail-sitter Control; Fixed-Wing Aerial Modeling; OpenVSP; System Identification; Analytical-Empirical Comparison.

Full Text:

PDF

References


D. M. Harfina, Z. Zaini, and W. J. Wulung, “Disinfectant spraying system with quadcopter type unmanned aerial vehicle technology as an effort to break the chain of the covid-19 virus,” J. Robot. Control, vol. 2, no. 6, pp. 502–507, 2021, doi: 10.18196/jrc.26129.

W. Rahmaniar and A. E. Rakhmania, “Online digital image stabilization for an unmanned aerial vehicle (UAV),” J. Robot. Control, vol. 2, no. 4, pp. 234–239, 2021, doi: 10.18196/jrc.2484.

A. Alcántara, J. Capitán, R. Cunha, and A. Ollero, “Optimal trajectory planning for cinematography with multiple Unmanned Aerial Vehicles,” Rob. Auton. Syst., vol. 140, p. 103778, 2021, doi: 10.1016/j.robot.2021.103778.

R. Bailon-Ruiz, A. Bit-Monnot, and S. Lacroix, “Real-time wildfire monitoring with a fleet of UAVs,” Rob. Auton. Syst., vol. 152, p. 104071, 2022, doi: 10.1016/j.robot.2022.104071.

D. Jo and Y. Kwon, “Development of Autonomous VTOL UAV for Wide Area Surveillance,” World J. Eng. Technol., vol. 7, no. 1, pp. 227-239, 2019, doi: 10.4236/wjet.2019.71015.

T. Y. Erkec and C. Hajiyev, “Relative Navigation in UAV Applications,” Int. J. Aviat. Sci. Technol., vol. 1, no. 2, pp. 52-65, 2020, doi: 10.23890/IJAST.vm01is02.0202.

H. N. Qureshi and A. Imran, “On the Tradeoffs between Coverage Radius, Altitude, and Beamwidth for Practical UAV Deployments,” IEEE Trans. Aerosp. Electron. Syst., vol. 55, no. 6, pp. 2805–2821, 2019, doi: 10.1109/TAES.2019.2893082.

Z. Xiong, Y. Xu, Z. Wang, X. Pian, and Y. Wang, “Preliminary Design Method and Prototype Testing of a Novel Rotors Retractable Hybrid VTOL UAV,” in IEEE Access, vol. 9, pp. 161141-161160, 2021, doi: 10.1109/ACCESS.2021.3131565.

Q. Xia, S. Liu, M. Guo, H. Wang, Q. Zhou, and X. Zhang, “Multi-UAV trajectory planning using gradient-based sequence minimal optimization,” Rob. Auton. Syst., vol. 137, p. 103728, 2021, doi: 10.1016/j.robot.2021.103728.

S. Garcia-Nieto, J. Velasco-Carrau, F. Paredes-Valles, J. V. Salcedo, and R. Simarro, “Motion Equations and Attitude Control in the Vertical Flight of a VTOL Bi-Rotor UAV,” Electronics, vol. 8, p. 208, 2019, doi: 10.3390/electronics8020208

L. Bauersfeld, L. Spannagl, G. Ducard, and C. Onder, “MPC Flight Control for a Tilt-Rotor VTOL Aircraft,” IEEE Trans. Aerosp. Electron. Syst., vol. 57, no. 4, pp. 2395–2409, 2021, doi: 10.1109/TAES.2021.3061819.

M. F. Bornebusch and T. A. Johansen, “Autonomous Recovery of a Fixed-Wing UAV Using a Line Suspended between Two Multirotor UAVs,” IEEE Trans. Aerosp. Electron. Syst., vol. 57, no. 1, pp. 90–104, 2021, doi: 10.1109/TAES.2020.3009509.

Y. Byun, J. Song, W. Song, and B. Kang, “Conceptual Study of a Smart Docking System for VTOL-UAV,” J. Aerosp. Eng., vol. 29, no. 2, 2016, doi:10.1061/(ASCE)AS.1943-5525.0000508.

Q. Chen, M. Tao, X. He, and L. Tao, “Fuzzy Adaptive Nonsingular Fixed-Time Attitude Tracking Control of Quadrotor UAVs,” IEEE Trans. Aerosp. Electron. Syst., vol. 57, no. 5, pp. 2864–2877, 2021, doi: 10.1109/TAES.2021.3067610.

M. R. Cohen and J. R. Forbes, “Navigation and Control of Unconventional VTOL UAVs in Forward-Flight with Explicit Wind Velocity Estimation,” IEEE Robot. Autom. Lett., vol. 5, no. 2, 2020, doi: 10.1109/LRA.2020.2966406.

Q. Chen, Y. Ye, Z. Hu, J. Na, and S. Wang, “Finite-Time Approximation-Free Attitude Control of Quadrotors: Theory and Experiments,” IEEE Trans. Aerosp. Electron. Syst., vol. 57, no. 3, pp. 1780–1792, 2021, doi: 10.1109/TAES.2021.3050647.

R. Gill and R. D’andrea, “An annular wing VTOL UAV: Flight dynamics and control,” Drones, vol. 4, no. 2, 2020, doi: 10.3390/drones4020014.

A. González-Sieira, D. Cores, M. Mucientes, and A. Bugarín, “Autonomous navigation for UAVs managing motion and sensing uncertainty,” Rob. Auton. Syst., vol. 126, p. 103455, 2020, doi: 10.1016/j.robot.2020.103455.

J. Han, L. Di, C. Coopmans, and Y. Chen, “Pitch loop control of a VTOL UAV using fractional order controller,” J. Intell. Robot. Syst. Theory Appl., vol. 73, no. 187-195, 2014, doi: 10.1007/s10846-013-9912-9.

H. Abrougui, S. Nejim, and H. Dallagi, “Roll Control of a Tail-Sitter VTOL UAV,” Int. J. Control. Energy Electr. Eng., vol. 7, 2019.

R. B. Anderson, J. A. Marshall, and A. L’Afflitto, “Constrained Robust Model Reference Adaptive Control of a Tilt-Rotor Quadcopter Pulling an Unmodeled Cart,” IEEE Trans. Aerosp. Electron. Syst., vol. 57, no. 1, pp. 39–54, 2021, doi: 10.1109/TAES.2020.3008575.

L. Pugi et al., “Preliminary Design and Simulation of an Hybrid-Parallel, Fixed-Wing UAV with Eight-Rotors VTOL System,” in 2022 IEEE International Conference on Environment and Electrical Engineering and 2022 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe), pp. 1-6, 2022, doi: 10.1109/EEEIC/ICPSEurope54979.2022.9854554.

K. M. Min, F. Y. Chia, and B. H. Kim, “Design and CFD analysis of a low-altitude VTOL UAV,” Int. J. Mech. Prod. Eng. Res. Dev., vol. 9, no. 2, 2018, doi: 10.24247/ijmperdapr201954.

K. M. Min, F. Y. Chia, and B. H. Kim, “Development of VTOL UAV with module for direction finding,” Int. J. Mech. Prod. Eng. Res. Dev., vol. 9, no. 3, 2019.

V. Nekoukar and N. Mahdian Dehkordi, “Robust path tracking of a quadrotor using adaptive fuzzy terminal sliding mode control,” Control Eng. Pract., vol. 110, p. 104763, 2021, doi: 10.1016/j.conengprac.2021.104763.

A. Prach and E. Kayacan, “An MPC-based position controller for a tilt-rotor tricopter VTOL UAV,” Optim. Control Appl. Methods, vol. 39, no. 1, pp. 343–356, 2018, doi: 10.1002/oca.2350.

C. Sastre, J. Wubben, C. T. Calafate, J. C. Cano, and P. Manzoni, “Safe and Efficient Take-Off of VTOL UAV Swarms,” Electronics, vol. 11, p. 1128, 2022, doi: 10.3390/electronics11071128.

Z. Cheng, H. Pei, and S. Li, “Neural-Networks Control for Hover to High-Speed-Level-Flight Transition of Ducted Fan UAV With Provable Stability,” in IEEE Access, vol. 8, pp. 100135-100151, 2020, doi: 10.1109/ACCESS.2020.2997877.

S. Q. Sohail, F. Akram, N. Hussain, and A. Shahzad, “Design and Transition of a Quad Rotor Tail-sitter VTOL UAV with Experimental Verification,” International Bhurban Conference on Applied Sciences and Technologies (IBCAST), pp. 244-251, 2021, doi: 10.1109/IBCAST51254.2021.9393187.

L. Wu, C. Li, Q. Ding, C. Wang, L. Zhu, and X. Tan, “VTOL Control of Tailsitter UAV Under Crosswind Disturbances,” in Chinese Control and Decision Conference (CCDC), pp. 2776-2781, 2020, doi: 10.1109/CCDC49329.2020.9164116.

B. Li, J. Sun, W. Zhou, C. -Y. Wen, K. H. Low, and C. -K. Chen, “Transition Optimization for a VTOL Tail-Sitter UAV,” in IEEE/ASME Transactions on Mechatronics, vol. 25, no. 5, pp. 2534-2545, 2020, doi: 10.1109/TMECH.2020.2983255.

K. McIntosh, J. -P. Reddinger, and S. Mishra, “A Switching-Free Control Architecture for Transition Maneuvers of a Quadrotor Biplane Tailsitter,” American Control Conference (ACC), pp. 4011-4016, 2022, doi: 10.23919/ACC53348.2022.9867242

Y. Mansor, Z. Sahwee, and M. H. M. Asri, “Development of Multiple Configuration Flying Wing UAV,” in International Conference on Computer and Drone Applications (IConDA), pp. 9-12, 2019, doi: 10.1109/IConDA47345.2019.9034911.

R. Aarenstrup, Managing Model Based Design, Natick: The MathWorks, Inc, 2015.

Y. Ke, K. Wang, and B. M. Chen, “Design and Implementation of a Hybrid UAV With Model-Based Flight Capabilities,” IEEE/ASME Transactions on Mechatronics, vol. 23, no. 3, pp. 1114-1125, 2018, doi: 10.1109/TMECH.2018.2820222.

D. Rohr, M. Studiger, T. Stastny, N. R. J. Lawrance, and R. Siegwart, “Nonlinear Model Predictive Velocity Control of a VTOL Tiltwing UAV,” in IEEE Robotics and Automation Letters, vol. 6, no. 3, pp. 5776-5783, 2021, doi: 10.1109/LRA.2021.3084888.

S. J. Carlson and C. Papachristos, “The MiniHawk-VTOL: Design, Modeling, and Experiments of a Rapidly-prototyped Tiltrotor UAV,” International Conference on Unmanned Aircraft Systems (ICUAS), pp. 777-786, 2021, doi: 10.1109/ICUAS51884.2021.9476731.

N. B. F. Silva, J. V. C. Fontes, and K. R. L. J. C. Branco, “Control validation with software-in-the-loop for a fixed-wing vertical takeoff and landing unmanned aerial vehicle with multiple flight stages,” IEEE Symposium on Computers and Communications (ISCC), pp. 1222-1227, 2019, doi: 10.1109/ISCC47284.2019.8969571.

C. Gellida-Coutiño, V. D. -D. La Cruz, A. Sanchez-Orta, O. Garcia-Salazar, and P. Castillo, “The tailsitter autogiro UAV: modeling, design, and CFD simulation,” International Conference on Unmanned Aircraft Systems (ICUAS), pp. 516-525, 2022, doi: 10.1109/ICUAS54217.2022.9836091.

Z. Zaludin, C. Chia, and E. Abdullah, “Non-Linear Analytical Mathematical Modelling of a Hybrid Fixed-Wing Unmanned Aerial Vehicle in Pusher Configuration,” in IEEE International Conference on Automatic Control & Intelligent Systems (I2CACIS), pp. 1-6, 2021, doi: 10.1109/I2CACIS52118.2021.9495891.

Napolitano, Aircraft Dynamics From Modeling to Simulation, New Jersey: John Wiley & Sons, 2012.

R. Chiappinelli and M. Nahon, “Modeling and Control of a Tailsitter UAV,” in International Conference on Unmanned Aircraft Systems (ICUAS), pp. 400-409, 2018, doi: 10.1109/ICUAS.2018.8453301.

T. K. Priyambodo, A. Dharmawan, O. A. Dhewa, and N. A. S. Putro, “Design of Flight Control System for Flying Wing UAV Based on Pitch and Roll Rotation,” Int. J. of Eng. Res. and Management (IJERM), vol. 3, pp 51-54, 2016.

X. Lyu, H. Gu, Y. Wang, Z. Li, S. Shen, and F. Zhang, “Design and implementation of a quadrotor tail-sitter VTOL UAV.” in IEEE International Conference on Robotics and Automation (ICRA), pp. 3924-3930, 2017, doi: 10.1109/ICRA.2017.7989452.

A. Oosedo, S. Abiko, A. Konno, T. Koizumi, T. Furui, and M. Uchiyama, “Development of a quad rotor tail-sitter VTOL UAV without control surfaces and experimental verification,” in IEEE International Conference on Robotics and Automation, pp. 317-322, 2013, doi: 10.1109/ICRA.2013.6630594.

T. K. Priyambodo and A. Majid, “Modeling and Simulation of the UX-6 Fixed-Wing Unmanned Aerial Vehicle,” J Control Autom Electr Syst., vol. 32, pp. 1344–1355, 2021, doi: 0.1007/s40313-021-00754-5.

R. A. McDonald, “Advanced modeling in OpenVSP,” in Proceedings of 16th AIAA Aviation Technology, Integration, and Operations Conference Exposition, pp. 1-6, 2016, doi: 10.2514/6.2016-3282.

K. S. Lelkov, D. V. Ulyanov, D. A. Surkov, and A. N. Ushakov, “Development of the mathematical model for the tilt-rotor aircraft,” in 19th International Conference “Aviation and Cosmonautics, pp. 1-9, 2020, doi: 10.1088/1742-6596/1925/1/012041.

I. Staack, R.C. Munjulury, T. Melin, A. Abdalla, and P. Krus, “Conceptual Design Model Management Demonstrated on a 4th Generation Fighter,” in Proceedings of 29th International Council of the Aeronautical Science, pp. 1-9, 2014.

S. I. Azid, K. Kumar, M. Cirrincione, and A. Fagiolini, “Wind gust estimation for precise quasi-hovering control of quadrotor aircraft,” Control Eng. Pract., vol. 116, p. 104930, 2021, doi: 10.1016/j.conengprac.2021.104930.

G. Frontera, I. Campana, A. M. Bernardos, and J. A. Besada, “Formal Intent-Based Trajectory Description Languages for Quadrotor Aircraft,” IEEE Trans. Aerosp. Electron. Syst., vol. 55, no. 6, pp. 3330–3346, 2019, doi: 10.1109/TAES.2019.2907396.

N. T. Hegde, V. I. George, C. G. Nayak, and K. Kumar, “Design, dynamic modelling and control of tilt-rotor UAVs: a review,” International Journal of Intelligent Unmanned Systems, vol. 8, no. 3, pp. 143–161, 2020, doi: /10.1108/IJIUS-01-2019-0001.

Y. Hu, K. Shen, K. A. Neusypin, A. V. Proletarsky, and M. S. Selezneva, “Hierarchic Controllability Analysis in High-Dynamic Guidance for Autonomous Vehicle Landing,” IEEE Trans. Aerosp. Electron. Syst., vol. 58, no. 3, pp. 1545–1557, 2022, doi: 10.1109/TAES.2021.3122918.

R. Ji, J. Ma, and S. Sam Ge, “Modeling and Control of a Tilting Quadcopter,” IEEE Trans. Aerosp. Electron. Syst., vol. 56, no. 4, pp. 2823–2834, 2020, doi: 10.1109/TAES.2019.2955525.

A. Rasheed, “Grey box identification approach for longitudinal and lateral dynamics of UAV,” International Conference on Open Source Systems & Technologies (ICOSST), pp. 10-14, 2017, doi:10.1109/ICOSST.2017.8278998.

L. Wu, H. Li, Y. Li, and C. Li, “Position Tracking Control of Tailsitter VTOL UAV With Bounded Thrust-Vectoring Propulsion System,” in IEEE Access, vol. 7, pp. 137054-137064, 2019, doi: 10.1109/ACCESS.2019.2942526.

M. B. Tischler, Aircraft and Rotorcraft System Identification, Engineering Methods with Flight Test Example, Virginia: American Institute of Aeronautics and Astronautics, 2006.

O. Mechali, L. Xu, Y. Huang, M. Shi, and X. Xie, “Observer-based fixed-time continuous nonsingular terminal sliding mode control of quadrotor aircraft under uncertainties and disturbances for robust trajectory tracking: Theory and experiment,” Control Eng. Pract., vol. 111, p. 104806, 2021.

A. L. Silva and D. A. Santos, “Fast Nonsingular Terminal Sliding Mode Flight Control for Multirotor Aerial Vehicles,” IEEE Trans. Aerosp. Electron. Syst., vol. 56, no. 6, pp. 4288–4299, 2020, doi: 10.1109/TAES.2020.2988836.

T. Souanef, “L1 Adaptive Path-Following of Small Fixed-Wing Unmanned Aerial Vehicles in Wind,” IEEE Trans. Aerosp. Electron. Syst., vol. 58, no. 4, pp. 3708–3716, 2022, doi: 10.1109/TAES.2022.3153758.

M. Tao, Q. Chen, X. He, and S. Xie, “Fixed-Time Filtered Adaptive Parameter Estimation and Attitude Control for Quadrotor UAVs,” IEEE Trans. Aerosp. Electron. Syst., vol. 58, no. 5, pp. 4135–4146, 2022, doi: 10.1109/TAES.2022.3159770.

J. Yang, Z. Cai, J. Zhao, Z. Wang, Y. Ding, and Y. Wang, “INDI-based aggressive quadrotor flight control with position and attitude constraints,” Rob. Auton. Syst., vol. 159, p. 104292, 2023, doi: 10.1016/j.robot.2022.104292.

B. L. Stevens and F. L. Lewis, Aircraft Control and Simulation, 2nd ed., New Jersey: John Wiley & Sons, Inc, 2003.

R. C. Nelson, Flight Stability and Automatic Control, 2nd ed., Colombus: McGraw-Hill Int, 1998.

M. S. Roeser and N. Fezans, “Method for designing multi-input system identification signals using a compact time-frequency representation,” CEAS Aeronautical Journal, vol. 12, pp. 291–306, 2021, doi: 10.1007/s13272-021-00499-6.

M. S. Smith and T. R. Moes, “Real-time Stability and Control Derivative Extraction from F15 Flight Data,” in Proceedings of AIAA Atmospheric Flight Mechanics Conference, pp. 1-31, 2003, doi: 10.2514/6.2003-5701.

C. Ben Jabeur and H. Seddik, “Optimized Neural Networks-PID Controller with Wind Rejection Strategy for a Quad-Rotor,” J. Robot. Control, vol. 3, no. 1, pp. 62–72, 2022, doi: 10.18196/jrc.v3i1.11660.

K. Kim, S. Kim, J. Suk, J. Ahn, N. Kim, and B-S. Kim, Flight test of flying-wing type unmanned aerial vehicle with partial wing-loss. Journal of Aerospace Engineering, vol. 233, no. 5, pp. 1611-1628, 2018, doi:10.1177/0954410018758497.

M. Liu, G. K. Egan, and F. Santoso, “Modeling, Autopilot Design, and Field Tuning of a UAV With Minimum Control Surfaces,” in IEEE Transactions on Control Systems Technology, vol. 23, no. 6, pp. 2353-2360, 2015, doi: 10.1109/TCST.2015.2398316.

B. Li, W. Gong, Y. Yang, B. Xiao, and D. Ran, “Appointed Fixed Time Observer-Based Sliding Mode Control for a Quadrotor UAV under External Disturbances,” IEEE Trans. Aerosp. Electron. Syst., vol. 58, no. 1, pp. 290–303, 2022, doi: 10.1109/TAES.2021.3101562.

Y. Zou and K. Xia, “Robust fault-tolerant control for underactuated takeoff and landing UAVs,” IEEE Trans. Aerosp. Electron. Syst., vol. 56, no. 5, pp. 3545–3555, 2020, doi: 10.1109/TAES.2020.2975446.

W. Zhou, S. Chen, C. -W. Chang, C. -Y. Wen, C. -K. Chen, and B. Li, “System Identification and Control for a Tail-Sitter Unmanned Aerial Vehicle in the Cruise Flight,” in IEEE Access, vol. 8, pp. 218348-218359, 2020, doi: 10.1109/ACCESS.2020.3042316.

W. Xu and F. Zhang, “Learning Pugachev's Cobra Maneuver for Tail-Sitter UAVs Using Acceleration Model,” in IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 3452-3459, 2020, doi: 10.1109/LRA.2020.2976323.

A. Mansour, A. M. Kamel, and E. Safwat, “System Identification and Modeling of an Actuation System for Small Aerial Vehicle,” in 13th International Conference on Electrical Engineering (ICEENG), pp. 5-8, 2022, doi: 10.1109/ICEENG49683.2022.9782039.

S. Sakulthong, S. Tantrairatn, and W. Saengphet, “Frequency Response System Identification and Flight Controller Tuning for Quadcopter UAV,” in Third International Conference on Engineering Science and Innovative Technology (ESIT), pp. 1-6, 2018, doi: 10.1109/ESIT.2018.8665114.

D. Reinhardt, K. Gryte, and T. Arne Johansen, “Modeling of the Skywalker X8 Fixed-Wing UAV: Flight Tests and System Identification,” in International Conference on Unmanned Aircraft Systems (ICUAS), pp. 506-515, 2022, doi: 10.1109/ICUAS54217.2022.9836104.

D. Rose. (2015). Rotation Quaternion, and How to Use Them [online]: https://danceswithcode.net/engineeringnotes/quaternions/quaternions.html

J. Zhou, X. Lyu, X. Cai, Z. Li, S. Shen, and F. Zhang, “Frequency domain model identification and loop-shaping controller design for quadrotor tail-sitter VTOL UAVs,” in International Conference on Unmanned Aircraft Systems (ICUAS), pp. 1142-1149, 2018, doi: 10.1109/ICUAS.2018.8453475

F. R. Triputra, B. R. Trilaksono, R. A. Sasongko, and M. Dahsyat, “Longitudinal dynamic system modeling of a fixed-wing UAV towards autonomous flight control system development: A case study of BPPT Wulung UAV platform 2012,” in International Conference on System Engineering and Technology (ICSET), pp. 1-6, 2012, doi: 10.1109/ICSEngT.2012.6339294.

A. Majid, R. Sumiharto, and S. B. Wibowo, “Identifikasi Model Dari Pesawat Udara Tanpa Awak Sayap Tetap Jenis Bixler,” Indonesian Journal of Electronics Instrumentation System (IJEIS), vol. 5, pp. 43–54, 2015, doi: 10.22146/ijeis.7152.

K. T. Borup, T. I. Fossen, and T. A. Johansen, “A machine learning approach for estimating air data parameters of small fixed-wing UAVs using distributed pressure sensors,” IEEE Trans. Aerosp. Electron. Syst., vol. 56, no. 3, pp. 2157–2173, 2020, doi: 10.1109/TAES.2019.2945383.

J. Tupy and I. Zelinka, “Evolutionary Algorithms in Aircraft Trim Optimization,” 2008 19th International Workshop on Database and Expert Systems Applications, pp. 524-530, 2008, doi: 10.1109/DEXA.2008.98.

C. Jouannet, P. Berry, T. Melin, K. Amadori, D. Lundström, and I. Staack, “Subscale flight testing used in conceptual design,” Aircraft Engineering and Aerospace Technology, vol. 84, pp. 192-199, 2021, doi: 10.1108/00022661211222058.

L. Wu, H. Li, Y. Li, and C. Li, “Position Tracking Control of Tailsitter VTOL UAV With Bounded Thrust-Vectoring Propulsion System,” in IEEE Access, vol. 7, pp. 137054-137064, 2019, doi: 10.1109/ACCESS.2019.2942526.

Y. Bouzid, H. Siguerdidjane, and Y. Bestaoui, “Generic dynamic modeling for multirotor VTOL UAVs and robust Sliding Mode based Model-Free Control for 3D navigation,” in International Conference on Unmanned Aircraft Systems (ICUAS), pp. 970-979, 2018, doi: 10.1109/ICUAS.2018.8453293.

M. R. Cohen and J. R. Forbes, “Navigation and Control of Unconventional VTOL UAVs in Forward-Flight with Explicit Wind Velocity Estimation,” in IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 1151-1158, 2020, doi: 10.1109/LRA.2020.2966406.

L. M. Sánchez-Rivera, R. Lozano, and A. Arias-Montano, “Pitching moment analysis and adjustment for tilt-wing UAV in VTOL mode,” International Conference on Unmanned Aircraft Systems (ICUAS), pp. 1445-1450, 2019, doi: 10.1109/ICUAS.2019.8797952.

G. D. Santos, A. Kossoski, J. Balthazar, and A. M. Tusset, “SDRE and LQR Controls Comparison Applied in High-Performance Aircraft in a Longitudinal Flight,” International Journal of Robotics and Control Systems, vol. 1, no. 2, pp. 131-144, 2021, doi: 10.31763/ijrcs.v1i2.329.

A. N. De Lucena, B. M. F. Da Silva, and L. M. G. Gonçalves, “Double Hybrid Tailsitter Unmanned Aerial Vehicle with Vertical Takeoff and Landing,” in IEEE Access, vol. 10, pp. 32938-32953, 2022, doi: 10.1109/ACCESS.2022.3161490.

W. Premerlani, J. Ingersoll, S. Edwards, M. Darnell, and S. Ali, “Multi-Axis Control for Small UAS VTOL Autopilot,” in AIAA/IEEE 39th Digital Avionics Systems Conference (DASC), pp. 1-10, 2020, doi: 10.1109/DASC50938.2020.9256535.

J. Sun, B. Li, C. -Y. Wen, and C. -K. Chen, “Model-Aided Wind Estimation Method for a Tail-Sitter Aircraft,” in IEEE Transactions on Aerospace and Electronic Systems, vol. 56, no. 2, pp. 1262-1278, 2020, doi: 10.1109/TAES.2019.2929379.

M. Maaruf, M. S. Mahmoud, and A. Ma'arif, “A Survey of Control Methods for Quadrotor UAV,” International Journal of Robotics and Control Systems, vol. 2, no. 4, pp. 652-665, 2022, https://doi.org/10.31763/ijrcs.v2i4.743.

I. Ahmad, M. Liaquat, F. M. Malik, H. Ullah, and U. Ali, “Variants of the Sliding Mode Control in Presence of External Disturbance for Quadrotor,” in IEEE Access, vol. 8, pp. 227810-227824, 2020, doi: 10.1109/ACCESS.2020.3041678.

Y. Yang, J. Zhu, X. Zhang, and X. Wang, “Active Disturbance Rejection Control of a Flying-Wing Tailsitter in Hover Flight,” in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 6390-6396, 2018, doi: 10.1109/IROS.2018.8594470.

S. M. Nogar and C. M. Kroninger, “Development of a Hybrid Micro Air Vehicle Capable of Controlled Transition,” in IEEE Robotics and Automation Letters, vol. 3, no. 3, pp. 2269-2276, 2018, doi: 10.1109/LRA.2018.2800797.

I. Iriarte, I. Iglesias, J. Lasa, H. Calvo-Soraluze, and B. Sierra, “Enhancing VTOL Multirotor Performance with a Passive Rotor Tilting Mechanism,” in IEEE Access, vol. 9, pp. 64368-64380, 2021, doi: 10.1109/ACCESS.2021.3075113.

S. Fuhrer, S. Verling, T. Stastny, and R. Siegwart, “Fault-tolerant Flight Control of a VTOL Tailsitter UAV,” International Conference on Robotics and Automation (ICRA), pp. 4134-4140, 2019, doi: 10.1109/ICRA.2019.8793467.

G. Ortiz-Torres et al., “Fault Estimation and Fault Tolerant Control Strategies Applied to VTOL Aerial Vehicles with Soft and Aggressive Actuator Faults,” in IEEE Access, vol. 8, pp. 10649-10661, 2020, doi: 10.1109/ACCESS.2019.2963693.

B. Wang, D. Zhu, L. Han, H. Gao, Z. Gao, and Y. Zhang, “Adaptive Fault-Tolerant Control of a Hybrid Canard Rotor/Wing UAV Under Transition Flight Subject to Actuator Faults and Model Uncertainties,” in IEEE Transactions on Aerospace and Electronic Systems, pp. 1-16, 2023, doi: 10.1109/TAES.2023.3243580.

Y. Hou, W. Huang, H. Zhou, F. Gu, Y. Chang, and Y. He, “Analysis on Wind Resistance Index of Multi-rotor UAV,” in Chinese Control and Decision Conference (CCDC), pp. 3693-3696, 2019, doi: 10.1109/CCDC.2019.8832752.




DOI: https://doi.org/10.18196/jrc.v4i2.17253

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Tri Kuntoro PRIYAMBODO, Abdul Majid, Zaied Zaad Salem Shouran

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 


Journal of Robotics and Control (JRC)

P-ISSN: 2715-5056 || E-ISSN: 2715-5072
Organized by Peneliti Teknologi Teknik Indonesia
Published by Universitas Muhammadiyah Yogyakarta in collaboration with Peneliti Teknologi Teknik Indonesia, Indonesia and the Department of Electrical Engineering
Website: http://journal.umy.ac.id/index.php/jrc
Email: jrcofumy@gmail.com


Kuliah Teknik Elektro Terbaik