Enhanced Trajectory Tracking of 3D Overhead Crane Using Adaptive Sliding-Mode Control and Particle Swarm Optimization

Nezar M. Alyazidi, Abdalrahman M. Hassanine, Magdi S. Mahmoud, Alfian Ma'arif

Abstract


Cranes hold a prominent position as one of the most extensively employed systems across global industries. Given their critical role in various sectors, a comprehensive examination was necessary to enhance their operational efficiency, performance, and facilitate the control of transporting loads. Furthermore, due to the complexities involved in disassembling and reinstalling cranes, as well as the challenges associated with precisely determining system parameters, it became essential to implement adaptive control methods capable of efficiently managing the system with minimal resource requirements. This work proposes a trajectory tracking control using adaptive sliding-mode control (SMC) with particle swarm optimization (PSO) to control the position and rope length of a 3D overhead crane system with unknown parameters. The PSO is mainly used to identify the model and estimate the uncertain parameters. Then, sliding-mode control is adapted using the PSO algorithm to minimize the tracking error and ensure robustness against model uncertainties. A model of the systems is derived assuming changing rope length. The model is nonlinear of second order with five states, three actuated states: position x and y, and rope length l, and two unactuated states, which are the rope angles θx and θy. The system has uncertain parameters, which are the system’s masses Mx, My and Mz, and viscous damping coefficients Dx, Dy and Dy. A simulation study is established to illustrate the influence and robustness of the developed controller and it can enhance the tracking trajectory under different scenarios to test the scheme.

Keywords


3D Overhead Crane; Sliding Mode Control; Particle Swarm Optimization (PSO).

Full Text:

PDF

References


K. Alhazza, Z. Masoud, and N. Alotaibi, “A smooth wave-form shaped command with flexible maneuvering time: analysis and experiments,” Asian Journal of Control, vol. 18, no. 4, pp. 1376–1384, 2016, doi: 10.1002/asjc.1204.

N. M. Alyazidi, A. M., Hassanine, and M. S. Mahmoud, “An Online Adaptive Policy Iteration-Based Reinforcement Learning for a Class of a Nonlinear 3D Overhead Crane,” Applied Mathematics and Computation, vol. 447, pp. 127810, 2023, doi: 10.1016/j.amc.2022.127810.

Y. J. Hua, Y. K. Shine, “Adaptive coupling control for overhead crane systems,” 31st Annual Conference of IEEE Industrial Electronics Society, 2005. IECON 2005, 2005, doi: 10.1109/IECON.2005.1569188.

X. Ma, H. Bao, “An Anti-swing closed-loop control strategy for overhead cranes,” Applied Sciences, vol. 8, no. 9, pp. 1463, 2018, doi: 10.3390/app8091463.

O. Yakut, “Application of intelligent sliding mode control with moving sliding surface for overhead cranes,” Neural Computing and Applications, pp. 1369–1379, 2014, doi: 10.1007/s00521-013-1351-9.

H. Liu, W. Cheng, and Y. Li, “Dynamic responses of an overhead crane’s beam subjected to a moving trolley with a pendulum payload,” Shock and Vibration, vol. 2019, pp. 1-14, 2019, doi: 10.1155/2019/1291652.

R. Liu, S. Li, and S. Ding, “Nested saturation control for overhead crane systems,” Transactions of the Institute of Measurement and Control, vol. 34, no. 7, pp. 862-875, 2012, doi: 10.1177/0142331211423285.

T. A. Le, S. G. Lee, and S. C. Moon, “Partial feedback linearization and sliding mode techniques for 2D crane control,” Transactions of the Institute of Measurement and Control, vol. 36, no. 1, pp. 78–87, 2014, doi: 10.1177/014233121349236.

X. Shao, J. Zhang, and X. Zhang, “Takagi-Sugeno fuzzy modeling and PSO-based robust LQR anti-swing control for overhead crane,” Mathematical Problems in Engineering, vol. 2019, pp. 1–14, 2019, doi: 10.1155/2019/4596782.

H. L. Xuan, T. N. Van, A. L. Viet, N. V. T. Thuy and M. P. Xuan, “Adaptive backstepping hierarchical sliding mode control for uncertain 3D overhead crane systems,” 2017 International Conference on System Science and Engineering (ICSSE), pp. 438-443, 2017, doi: 10.1109/ICSSE.2017.8030913.

A. M. Abdullahi, Z. Mohamed, H. Selamat, H. R. Pota, M. Z. Abidin, F. Ismail, and A. Haruna, “Adaptive output-based command shaping for sway control of a 3D overhead crane with payload hoisting and wind disturbance,” Mechanical Systems and Signal Processing, vol. 98, pp. 157–172, 2018, doi: 10.1016/j.ymssp.2017.04.034.

M. S. Mahmoud, N. M. Alyazidi, and A. M. Hassanine, “Modeling and Control of Underactuated Three-Dimensional Overhead Crane Systems,” International Journal of Robotics and Automation Technology, vol. 6, pp.80-85, 2019, doi: 10.31875/2409-9694.2019.06.10.

H. H. Lee, “Modeling and control of a three-dimensional overhead crane,” Journal of Dynamic Systems, Measurement, and Control, vol. 120, no. 4, pp. 471–476, 1998, doi: 10.1115/1.2801488.

X. Wang, J. Liu, Y. Zhang, B. Shi, D. Jiang, and H. Peng, “A unified symplectic pseudospectral method for motion planning and tracking control of 3D underactuated overhead cranes,” International Journal of Robust and Nonlinear Control, vol. 29, no. 7, pp. 2236–2253, 2019, doi: 10.1002/rnc.4488.

M. Zhang, X. Ma, X. Rong, R. Song, X. Tian, and Y. Li, “An enhanced coupling nonlinear tracking controller for underactuated 3d overhead crane systems,” Asian Journal of Control, vol. 20, no. 5, pp. 1839–1854, doi: 10.1002/asjc.1683.

M. Zhang, Y. Zhang, H. Chen and X. Cheng, “Model-independent PDSMC method with payload swing suppression for 3D overhead crane systems,” Mechanical Systems and Signal Processing, vol.129, pp. 381– 393, doi: 10.1016/j.ymssp.2019.04.046.

R. M. T. R. Ismail, M. A. Ahmad, M. S. Ramli, and F. R. M. Rashidi, “Nonlinear Dynamic Modelling and Analysis of a 3-D Overhead Gantry Crane System with Payload Variation,” 2009 Third UKSim European Symposium on Computer Modeling and Simulation, pp. 350-354, 2019, doi: 10.1109/EMS.2009.71.

A. Giua, M. Sanna, and C. Seatzu, “Observer-controller design for three dimensional overhead cranes using time-scaling,” Mathematical and Computer Modelling of Dynamical Systems, vol. 7, no. 1, pp. 77–107, 2001, doi: 10.1076/mcmd.7.1.77.3634.

X. Wu, and X. He, “Partial feedback linearization control for 3-D underactuated overhead crane systems,” ISA Transactions, vol. 65, pp. 361–370, 2016, doi: 10.1016/j.isatra.2016.06.015.

D. Chwa, “Sliding-Mode-Control-Based Robust Finite-Time Antisway Tracking Control of 3-D Overhead Cranes,” in IEEE Transactions on Industrial Electronics, vol. 64, no. 8, pp. 6775-6784, 2017, doi: 10.1109/TIE.2017.2701760.

S. K. Cho, and H. H. Lee, “A fuzzy-logic antiswing controller for threedimensional overhead cranes,” ISA Transactions, vol. 41, no. 2, pp. 235– 243, 2002, doi: 10.1016/s0019-0578(07)60083-4.

L. A. Tuan, G. -H. Kim and S. -G. Lee, “Partial Feedback Linearization Control of the three dimensional overhead crane,” 2012 IEEE International Conference on Automation Science and Engineering (CASE), pp. 1198-1203, 2012, doi: 10.1109/CoASE.2012.6386314.

N. B. Almutairi, and M. Zribi, “Sliding mode control of a three-dimensional overhead crane,” Journal of Vibration and Control Overhead Crane, vol. 15, no. 11, pp. 1679–1730, 2009, doi: 10.1177/1077546309105095.

G. A. Manson, “Time-optimal control of an overhead crane model,” Optimal Control Applications and Methods, vol. 3, no. 2, pp. 115–120, 2007, doi: 10.1002/oca.4660030202.

H. H. Lee, “A New motion-planning scheme for overhead cranes with high-speed hoisting,” Journal of Dynamic Systems, Measurement, and Control, vol. 126, no. 2, pp. 359–364, 2004, doi: 10.1115/1.1767855.

B. Kimiaghalam, A. Homaifar, M. Bikdash and G. Dozier, “Genetic algorithms solution for unconstrained optimal crane control,” Proceedings of the 1999 Congress on Evolutionary Computation-CEC99, vol. 3, pp. 2124-2130, 1999, doi: 10.1109/CEC.1999.785537.

H. H. Lee, Y. Liang, and D. Segura, “A sliding-mode antiswing trajectory control for overhead cranes with high-speed load hoisting,” Journal of Dynamic Systems Measurement, and Control, vol. 128, no. 4, pp. 842– 845, 2006, doi: 10.1115/1.2364010.

J. J. Da Cruz, F. Leonardi, “Minimum-time anti-swing motion planning of cranes using linear programming,” Optimal Control Applications and Methods, vol. 32, no. 2, pp. 191–201, 2012, doi: 10.1002/oca.2016.

A. Khalid, J. Huey, W. Singhose, J. Lawrence, and D. Frakes, “Human operator performance testing using an input-shaped bridge crane,” Journal of Dynamic Systems, Measurement, and Control, vol. 128, no. 4, pp. 835– 841, 2006, doi: 10.1115/1.2361321.

K. L. Sorensen, W. Singhose, and S. Dickerson, “A controller enabling precise positioning and sway reduction in bridge and gantry cranes,” Control Engineering Practice, vol. 15, no. 17, pp. 825–837, 2007, doi: 10.1016/j.conengprac.2006.03.005.

M. F. Daqaq, and Z. N. Masoud, “Nonlinear input-shaping controller for quay-side container cranes,” Nonlinear Dynamics, vol. 45, no. 2, pp. 149– 170, 2006, doi: 10.1007/s11071-006-2425-3.

M. J. Maghsoudi, Z. Mohamed, S. Sudin, S. Buyamin, H. Jaafar, and S. Ahmad, “An Improved input shaping design for an efficient sway control of a nonlinear 3D overhead crane with friction,” Mechanical Systems and Signal Processing, vol. 92, pp. 364–378, 2017, doi: 10.1016/j.ymssp.2017.01.036.

D. Qian, and J. Yi, “Hierarchical sliding mode control for underactuated cranes,” Analysis and Simulation. Berlin: Springer, 2015, doi: 10.1007/978-3-662-48417-3.

H. H. Lee, “Modeling and control of 2-Dimensional overhead crane,” Proceedings of the ASME dynamic systems and Control Division, vol. 45, no. 2, pp. 535–542, 1997, doi: 10.1115/IMECE1997-0439.

L. A. Tuan, S. G. Lee, D. H. Ko, and L. C. Nho, “Combined control with sliding mode and partial feedback linearization for 3D overhead cranes,” International Journal of Robust and Nonlinear Control, vol. 24, no. 18, pp. 3372–3386, 2013, doi: 10.1002/rnc.3061.

B. D’. Andrea-Novel, and J. M. Coron, “Exponential stabilization of an overhead crane with flexible cable via a back-stepping approach,” Automatica, vol. 36, no. 4, pp. 587–593, 2000, doi: 10.1016/S0005- 1098(99)00182-X.

C. -C. Tsai, H. L. Wu and K. -H. Chuang, “Backstepping aggregated sliding-mode motion control for automatic 3D overhead cranes,” 2012 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), pp. 849-854, 2012, doi: 10.1109/AIM.2012.6265973.

C. -C. Tsai, H. L. Wu and K. -H. Chuang, “Intelligent sliding-mode motion control using fuzzy wavelet networks for automatic 3D overhead cranes,” 2012 Proceedings of SICE Annual Conference (SICE), pp. 1256- 1261, 2012.

J. H. Yang and K. S. Yang, “Adaptive control for 3-D overhead crane systems,” 2006 American Control Conference, 2006, doi: 10.1109/ACC.2006.1656486.

A. H. Vo, Q. T. Truong, H. Q. T. Ngo, and Q. C. Nguyen, “Nonlinear tracking control of a 3-D overhead crane with friction and payload compensations,” Journal of Mechatronics, Electrical Power, and Vehicular Technology, vol. 7, no. 1, pp. 27–34, 2016, doi: 10.14203/j.mev.2016.v7.27-34.

L. V. Anh, L. X. Hai, V. Duc Thuan, P. Van Trieu, L. A. Tuan and H. M. Cuong, “Designing an Adaptive Controller for 3D Overhead Cranes Using Hierarchical Sliding Mode and Neural Network,” 2018 International Conference on System Science and Engineering (ICSSE), pp. 1-6, 2018, doi: 10.1109/ICSSE.2018.8520162.

M. -S. Park, D. Chwa and M. Eom, “Adaptive Sliding-Mode Antisway Control of Uncertain Overhead Cranes With High-Speed Hoisting Motion,” in IEEE Transactions on Fuzzy Systems, vol. 22, no. 5, pp. 1262- 1271, 2014, doi: 10.1109/TFUZZ.2013.2290139.

N. Grassin, T. Retz, B. Caron, H. Bourles, H. et al, “Robust control of a traveling crane,” Proceedings of the 1st European control conference, Grenoble, France, pp. 2196–2201, 1991.

A. Khatamianfar, A.V. Savkin, “Real-time robust and optimized control of a 3D overhead crane system,” Sensors, vol. 19, no. 15, 2019, p. 3429, doi: 10.3390/s19153429.

T. W. Yang and W. J. O’Connor, “Wave Based Robust Control of a Crane System,” 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2724-2729, 2006, doi: 10.1109/IROS.2006.281997.

J.M. Deng, V.M. Becerra, “Application of constrained predictive control on a 3D crane system,” Proceedings of IEEE conference on robotics, automation and mechatronics, Singapore, vol. 1, pp. 583–587, 2004, doi: Conference on Robotics, Automation and Mechatronics, 2004., Singapore, 2004, pp. 583-587 vol.1, doi: 10.1109/RAMECH.2004.1438985.

H. S. Ram´ırez, “On the sliding mode control of nonlinear systems,” Systems & Control Letters, vol. 19, no. 4, pp. 303–312, 1992, doi: 10.1016/0167-6911(92)90069-5.

A. M. H. Basher, “Swing-free transport using variable structure model reference control,” Proceedings. IEEE SoutheastCon 2001, pp. 85-92, 2001, doi: 10.1109/SECON.2001.923092.

Kuo-Kai Shyu and Cheng-Lung Jen and Li-Jen Shang, ”Design of slidingmode controller for anti-swing control of overhead cranes” 31st Annual Conference of IEEE Industrial Electronics Society, 2005.

G. Bartolini, N. Orani, A. Pisano and E. Usai, “Load swing damping in overhead cranes by sliding mode technique,” Proceedings of the 39th IEEE Conference on Decision and Control, vol. 2, pp. 1697-1702, 2000, doi: 10.1109/CDC.2000.912106.

T. T. Hartley, G. O. Beale and G. Cook, “Multirate Input Sampling for Real-Time Runge-Kutta Simulation,” in IEEE Transactions on Industrial Electronics, vol. IE-34, no. 3, pp. 387-390, 1987, doi: 10.1109/TIE.1987.350989.

J. C. Butcher, “The Numerical Analysis of Ordinary Differential Equations: Runge-Kutta and General Linear Methods,” JSTOR, vol. 51, no. 183, pp. 377–178, 1987, doi: 10.2307/2008600.

K. Gustafsson, “Control-theoretic techniques for stepsize selection in explicit runge-kutta methods,” ACM Trans. Mathematical Software, vol. 17, no. 4, pp. 533-554, 1991, doi: 10.1145/210232.210242.

Y. Yang, L. Li and S. X. Ding, “A Control-Theoretic Study on Runge?Kutta Methods With Application to Real-Time Fault-Tolerant Control of Nonlinear Systems,” in IEEE Transactions on Industrial Electronics, vol. 62, no. 6, pp. 3914-3922, 2015, doi: 10.1109/TIE.2014.2386297.

V. A. Le, H. X. Le, L. Nguyen, and M. X. Phan, “An efficient adaptive hierarchical sliding mode control strategy using neural networks for 3D overhead cranes,” International Journal of Automation and Computing, vol. 16, pp. 614–627, 2019, doi: 10.1007/s11633-019-1174-y.

Rainer Palm, “Robust control by fuzzy sliding mode,” Automatica, vol. 30, no. 9, pp. 1429–1437, doi: 10.1016/0005-1098(94)90008-6.

B. -J. Choi and S. W. Kwak and B. K. Kim, “Design of a single-input fuzzy logic controller and its properties,” Fuzzy Sets Syst, vol. 106, no. 3, pp. 299–308, 1999, doi: 10.1016/S0165-0114(97)00283-2.

D. Liu, J. Yi, D. Zhao and W. Wang, “Swing-free transporting of two-dimensional overhead crane using sliding mode fuzzy control,” in Proceedings of the 2004 American Control Conference, vol. 2 pp. 1764- 1769, 2004, doi: 10.23919/ACC.2004.1386835.

D. Liu, J. Yi, D. Zhao, and W. Wang, “Adaptive sliding mode fuzzy control for a two-dimensional overhead crane,” Mechatronics, vol. 15, no. 5, pp. 505–522, 2005, doi: 10.1016/j.mechatronics.2004.11.004.

L. -H. Lee, C. -H. Huang, S. -C. Ku, Z. -H. Yang and C. -Y. Chang, “Efficient Visual Feedback Method to Control a Three-Dimensional Overhead Crane,” in IEEE Transactions on Industrial Electronics, vol. 61, no. 8, pp. 4073-4083, 2014, doi: 10.1109/TIE.2013.2286565.

C. Y. Chang, and T. C. Chiang, “Overhead cranes fuzzy control design with deadzone compensation” Neural Computing and Applications, vol. 18, pp. 749–757, 2009, doi: 10.1007/s00521-009-0264-0.

M. -S. Park, D. Chwa and S. -K. Hong, “Antisway Tracking Control of Overhead Cranes With System Uncertainty and Actuator Nonlinearity Using an Adaptive Fuzzy Sliding-Mode Control,” in IEEE Transactions on Industrial Electronics, vol. 55, no. 11, pp. 3972-3984, 2008, doi: 10.1109/TIE.2008.2004385.

M. Maghsoudi, L. Ramli, S. Sudin, Z. Mohamed, A. Husain, H. Wahid, “Improved unity magnitude input shaping scheme for sway control of an underactuated 3D overhead crane with hoisting” Mechanical Systems and Signal Processing, vol. 123, pp. 466-482, 2019, doi: 10.1016/j.ymssp.2018.12.056.

D. Liu, J. Yi and M. Tan, “Proposal of GA-based two-stage fuzzy control of overhead crane,” 2002 IEEE Region 10 Conference on Computers, Communications, Control and Power Engineering, vol. 3, pp. 1721-1724, 2002, doi: 10.1109/TENCON.2002.1182666.

J. Kennedy and R. Eberhart, “Particle swarm optimization,” Proceedings of ICNN’95 - International Conference on Neural Networks, vol. 4, pp. 1942-1948, 1995, doi: 10.1109/ICNN.1995.488968.

M. E. H. Pedersen, and A. J. Chipperfield, “Simplifying particle swarm optimization,” Applied Soft Computing, vol. 10, no. 2, pp. 618–628, 2010, doi: 10.1016/j.asoc.2009.08.029.

H. A. Hashim, and M. A. Abido, “Fuzzy controller design using evolutionary techniques for twin rotor MIMO system: a comparative study,” Computational Intelligence and Neuroscience, vol. 2015, pp. 1–11, 2015, doi: 10.1155/2015/704301.




DOI: https://doi.org/10.18196/jrc.v5i1.18746

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Nezar Mohammed Alyazidi, Abdalrahman M. Hassanine, MagdiSadek Mahmoud, Alfian Ma'arif

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 


Journal of Robotics and Control (JRC)

P-ISSN: 2715-5056 || E-ISSN: 2715-5072
Organized by Peneliti Teknologi Teknik Indonesia
Published by Universitas Muhammadiyah Yogyakarta in collaboration with Peneliti Teknologi Teknik Indonesia, Indonesia and the Department of Electrical Engineering
Website: http://journal.umy.ac.id/index.php/jrc
Email: jrcofumy@gmail.com


Kuliah Teknik Elektro Terbaik