Urinary Tract Infection Bacteria Classification: Artificial Intelligence-based Medical Application

Abdul Fadlil, Haris Imam Karim Fathurrahman, Yu-Hao Lin, Farhah Kamilah, Sunardi Sunardi

Abstract


Urinary tract infection (UTI) is a type of health disorder, an infection in the urinary glands mainly caused by bacteria. Currently, conventional early detection methods that have been established involve rapid dipstick strip test and urine culture analysis, which have suboptimal accuracy and effectiveness. Several retrospective studies regarding UTI bacteria classification have shown promising results, but still have limitations regarding prediction accuracy and technical simplicity. This study aims to implement a method based on artificial intelligence (AI) in classifying images of bacteria that causes UTIs. Eight artificial intelligence methods based on deep neural networks were used in the study; the models were evaluated and compared based on the prediction's effectiveness and accuracy. This study also seeks to create the easiest method of classifying bacteria causing UTIs using a computer-based application with the best obtained AI-based model. The best training results using an intelligent approach placed DenseNet201 as the method with the highest accuracy (83.99%). Then, the output model was used as a knowledge reference for the designed computer-based application. Real-time prediction results will appear in the application window.


Keywords


Artificial Intelligence; Computer-based Application; Prediction; Rinary Tract Infection.

Full Text:

PDF

References


K. A. Kline and A. L. Lewis, “Gram-Positive Uropathogens, Polymicrobial Urinary Tract Infection, and the Emerging Microbiota of the Urinary Tract,” Microbiol. Spectr., vol. 4, no. 2, Mar. 2016, doi: 10.1128/microbiolspec.UTI-0012-2012.

A. L. Flores-Mireles, J. N. Walker, M. Caparon, and S. J. Hultgren, “Urinary tract infections: epidemiology, mechanisms of infection and treatment options,” Nat. Rev. Microbiol., vol. 13, no. 5, pp. 269–284, May 2015, doi: 10.1038/nrmicro3432.

M. Karacı and A. Yaşar, "Urinary Stone Related Urinary Tract Infection Caused by Raoultella Ornithinolytica in a Child: a Case Report," Acta Clinica Croatica, vol. 59, no. 4, pp. 751-753, 2020.

M. V. G. Rivera, J. J. Heyl, and M. C. Oh, "Candida Auris Urinary Tract Infection in a Nursing Home Patient With Multicomorbidities," Cureus, vol. 12, no. 12, 2020.

K. Clarke et al., “Catheter-Associated Urinary Tract Infections in Adults: Diagnosis, Treatment, and Prevention,” J. Hosp. Med., vol. 15, no. 9, pp. 552–556, Sep. 2020, doi: 10.12788/jhm.3292.

S. Ehlers and S. A. Merrill. Staphylococcus Saprophyticus. Treasure Island (FL), 2022.

A. Jahansepas et al., “Occurrence of Enterococcus faecalis and Enterococcus faecium in Various Clinical Infections: Detection of Their Drug Resistance and Virulence Determinants,” Microb. Drug Resist., vol. 24, no. 1, pp. 76–82, Jan. 2018, doi: 10.1089/mdr.2017.0049.

X. Zhou, R. J. L. Willems, A. W. Friedrich, J. W. A. Rossen, and E. Bathoorn, “Enterococcus faecium: from microbiological insights to practical recommendations for infection control and diagnostics,” Antimicrob. Resist. Infect. Control, vol. 9, no. 1, p. 130, Dec. 2020, doi: 10.1186/s13756-020-00770-1.

N. Rahimi, F. Poursina, F. S. Ghaziasgar, S. Sepehrpor, and A. Hassanzadeh, “Presence of virulence factor genes (gelE and esp) and biofilm formation in clinical Enterococcus faecalis and Enterococcus faecium isolated from urinary tract infection in Isfahan, Iran,” Gene Reports, vol. 13, pp. 72–75, Dec. 2018, doi: 10.1016/j.genrep.2018.09.004.

I. Dimkić et al., “Antibacterial activity of herbal extracts towards uropathogenic Enterococcus isolates as a natural approach in control of urinary tract infections,” J. Herb. Med., vol. 28, p. 100445, Aug. 2021, doi: 10.1016/j.hermed.2021.100445.

R. A. Festa et al., “A test combining multiplex-PCR with pooled antibiotic susceptibility testing has high correlation with expanded urine culture for detection of live bacteria in urine samples of suspected UTI patients,” Diagn. Microbiol. Infect. Dis., vol. 107, no. 2, p. 116015, Oct. 2023, doi: 10.1016/j.diagmicrobio.2023.116015.

E. Álvarez-Artero et al., “Urinary tract infection caused by Enterococcus spp.: Risk factors and mortality. An observational study,” Rev. Clínica Española (English Ed., vol. 221, no. 7, pp. 375–383, Aug. 2021, doi: 10.1016/j.rceng.2020.09.004.

A. Gricajeva and L. Kalėdienė, “Investigation of amino acids related to Staphylococcus saprophyticus AG1 EstAG1 carboxylesterase catalytic function revealed a new family of bacterial lipolytic enzymes,” Int. J. Biol. Macromol., vol. 235, p. 123791, Apr. 2023, doi: 10.1016/j.ijbiomac.2023.123791.

F. Ghasemian, S. Esmaeilnezhad, and M. J. Mehdipour Moghaddam, “Staphylococcus saprophyticus and Escherichia coli: Tracking from sperm fertility potential to assisted reproductive outcomes,” Clin. Exp. Reprod. Med., vol. 48, no. 2, pp. 142–149, Jun. 2021, doi: 10.5653/cerm.2020.04203.

M. Chen, S. Wu, W. Zhao, Y. Zhou, and G. Wang, "Application of deep learning to auto-delineation of target volumes and organs at risk in radiotherapy," Cancer/Radiotherapie, vol. 26, no. 3, pp. 494-501, 2022.

Z. Liu et al., “Development and validation of a deep learning algorithm for auto-delineation of clinical target volume and organs at risk in cervical cancer radiotherapy,” Radiother. Oncol., vol. 153, pp. 172–179, Dec. 2020, doi: 10.1016/j.radonc.2020.09.060.

S. Elguindi et al., “Deep learning-based auto-segmentation of targets and organs-at-risk for magnetic resonance imaging only planning of prostate radiotherapy,” Phys. Imaging Radiat. Oncol., vol. 12, pp. 80–86, Oct. 2019, doi: 10.1016/j.phro.2019.11.006.

H.-A. Tzou, S.-F. Lin, and P.-S. Chen, “Paroxysmal atrial fibrillation prediction based on morphological variant P-wave analysis with wideband ECG and deep learning,” Comput. Methods Programs Biomed., vol. 211, p. 106396, Nov. 2021, doi: 10.1016/j.cmpb.2021.106396.

A. S. Sakr, P. Pławiak, R. Tadeusiewicz, and M. Hammad, “Cancelable ECG biometric based on combination of deep transfer learning with DNA and amino acid approaches for human authentication,” Inf. Sci., vol. 585, pp. 127–143, Mar. 2022, doi: 10.1016/j.ins.2021.11.066.

W. L. Mao, H. I. K. Fathurrahman, Y. Lee, and T. W. Chang, “EEG dataset classification using CNN method,” in Journal of physics: conference series, vol. 1456, no. 1, p. 12017, 2020.

M. Roy Chowdhury, R. Madanu, M. F. Abbod, S.-Z. Fan, and J.-S. Shieh, “Deep learning via ECG and PPG signals for prediction of depth of anesthesia,” Biomed. Signal Process. Control, vol. 68, p. 102663, Jul. 2021, doi: 10.1016/j.bspc.2021.102663.

X. Yao et al., “Artificial intelligence–enabled electrocardiograms for identification of patients with low ejection fraction: a pragmatic, randomized clinical trial,” Nat. Med., vol. 27, no. 5, pp. 815–819, May 2021, doi: 10.1038/s41591-021-01335-4.

Y.-H. Lee et al., “Improving detection of obstructive coronary artery disease with an artificial intelligence-enabled electrocardiogram algorithm,” Atherosclerosis, vol. 381, p. 117238, Sep. 2023, doi: 10.1016/j.atherosclerosis.2023.117238.

E. Hennings et al., “Assessment of the atrial fibrillation burden in Holter electrocardiogram recordings using artificial intelligence,” Cardiovascular Digital Health Journal, vol. 4, no. 2, pp. 41–47, Apr. 2023, doi: 10.1016/j.cvdhj.2023.01.003.

R. Abdalla-Aslan, T. Yeshua, D. Kabla, I. Leichter, and C. Nadler, “An artificial intelligence system using machine-learning for automatic detection and classification of dental restorations in panoramic radiography,” Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology, vol. 130, no. 5, pp. 593–602, Nov. 2020, doi: 10.1016/j.oooo.2020.05.012.

S. Mertens, J. Krois, A. G. Cantu, L. T. Arsiwala, and F. Schwendicke, "Artificial intelligence for caries detection: Randomized trial," Journal of dentistry, vol. 115, p. 103849, 2021.

R. Patcas, D. A. J. Bernini, A. Volokitin, E. Agustsson, R. Rothe, and R. Timofte, “Applying artificial intelligence to assess the impact of orthognathic treatment on facial attractiveness and estimated age,” International Journal of Oral and Maxillofacial Surgery, vol. 48, no. 1, pp. 77–83, Jan. 2019, doi: 10.1016/j.ijom.2018.07.010.

T. Anan et al., “Effects of an Artificial Intelligence–Assisted Health Program on Workers With Neck/Shoulder Pain/Stiffness and Low Back Pain: Randomized Controlled Trial,” JMIR mHealth and uHealth, vol. 9, no. 9, p. e27535, Sep. 2021, doi: 10.2196/27535.

Y. Luo et al., “Artificial Intelligence-Assisted Colonoscopy for Detection of Colon Polyps: a Prospective, Randomized Cohort Study,” Journal of Gastrointestinal Surgery, vol. 25, no. 8, pp. 2011–2018, Aug. 2021, doi: 10.1007/s11605-020-04802-4.

L. Xu et al., “Artificial intelligence‐assisted colonoscopy: A prospective, multicenter, randomized controlled trial of polyp detection,” Cancer Med., vol. 10, no. 20, pp. 7184–7193, Oct. 2021, doi: 10.1002/cam4.4261.

A. Luna et al., “Artificial intelligence application versus physical therapist for squat evaluation: a randomized controlled trial,” Sci. Rep., vol. 11, no. 1, p. 18109, Dec. 2021, doi: 10.1038/s41598-021-97343-y.

D. K. Eng et al., “Artificial Intelligence Algorithm Improves Radiologist Performance in Skeletal Age Assessment: A Prospective Multicenter Randomized Controlled Trial,” Radiology, vol. 301, no. 3, pp. 692–699, Dec. 2021, doi: 10.1148/radiol.2021204021.

N. C. Jacobson and M. D. Nemesure, “Using Artificial Intelligence to Predict Change in Depression and Anxiety Symptoms in a Digital Intervention: Evidence from a Transdiagnostic Randomized Controlled Trial,” Psychiatry Res., vol. 295, p. 113618, Jan. 2021, doi: 10.1016/j.psychres.2020.113618.

M. Soellner and J. Koenigstorfer, “Compliance with medical recommendations depending on the use of artificial intelligence as a diagnostic method,” BMC Med. Inform. Decis. Mak., vol. 21, no. 1, p. 236, Dec. 2021, doi: 10.1186/s12911-021-01596-6.

Y. Harada, S. Katsukura, R. Kawamura, and T. Shimizu, “Efficacy of Artificial-Intelligence-Driven Differential-Diagnosis List on the Diagnostic Accuracy of Physicians: An Open-Label Randomized Controlled Study,” Int. J. Environ. Res. Public Health, vol. 18, no. 4, p. 2086, Feb. 2021, doi: 10.3390/ijerph18042086.

H. I. K. Fathurrahman, R. D. Puriyanto, F. Kamilah, and A. Azhari, “Rapid Test of Pneumonia Cells: An Alternative Simple Application,” J. Electr. Electron. Eng., vol. 15, no. 2, pp. 110–117, 2022.

M. R. Kocher et al., “Tumor burden of lung metastases at initial staging in breast cancer patients detected by artificial intelligence as a prognostic tool for precision medicine,” Heliyon, vol. 8, no. 2, p. e08962, Feb. 2022, doi: 10.1016/j.heliyon.2022.e08962.

I. Sechopoulos, J. Teuwen, and R. Mann, “Artificial intelligence for breast cancer detection in mammography and digital breast tomosynthesis: State of the art,” Semin. Cancer Biol., vol. 72, pp. 214–225, Jul. 2021, doi: 10.1016/j.semcancer.2020.06.002.

I. Sechopoulos and R. M. Mann, “Stand-alone artificial intelligence - The future of breast cancer screening?,” The Breast, vol. 49, pp. 254–260, Feb. 2020, doi: 10.1016/j.breast.2019.12.014.

S. Kaymak, A. Helwan, and D. Uzun, “Breast cancer image classification using artificial neural networks,” Procedia Comput. Sci., vol. 120, pp. 126–131, 2017, doi: 10.1016/j.procs.2017.11.219.

L. Zhang, Z. Jia, X. Leng, and F. Ma, “Artificial Intelligence Algorithm-Based Ultrasound Image Segmentation Technology in the Diagnosis of Breast Cancer Axillary Lymph Node Metastasis,” J. Healthc. Eng., vol. 2021, pp. 1–8, Jul. 2021, doi: 10.1155/2021/8830260.

H. Ueyama et al., “Application of artificial intelligence using a convolutional neural network for diagnosis of early gastric cancer based on magnifying endoscopy with narrow‐band imaging,” J. Gastroenterol. Hepatol., vol. 36, no. 2, pp. 482–489, Feb. 2021, doi: 10.1111/jgh.15190.

J. Lu et al., “Research on the development and application of a detection platform for colorectal cancer tumor sprouting pathological characteristics based on artificial intelligence,” Intelligent Medicine, vol. 2, no. 2, pp. 82-87, 2022, doi: 10.1016/j.imed.2021.08.003.

W. Tao et al., “Artificial tumor microenvironment regulated by first hemorrhage for enhanced tumor targeting and then occlusion for synergistic bioactivation of hypoxia-sensitive platesomes,” Acta Pharmaceutica Sinica B, vol. 12, no. 3, pp. 1487-1499, 2021, doi: 10.1016/j.apsb.2021.08.010.

M. K. Islam, M. S. Ali, M. S. Miah, M. M. Rahman, M. S. Alam, and M. A. Hossain, “Brain tumor detection in MR image using superpixels, principal component analysis and template based K-means clustering algorithm,” Mach. Learn. with Appl., vol. 5, p. 100044, Sep. 2021, doi: 10.1016/j.mlwa.2021.100044.

A. Antoniades et al., “Detection of interictal discharges with convolutional neural networks using discrete ordered multichannel intracranial EEG,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 25, no. 12, pp. 2285–2294, 2017, doi: 10.1109/TNSRE.2017.2755770.

M. La Rocca, R. Garner, and D. Duncan, “Machine learning model to characterize seizure development in traumatic brain injury patients,” IFAC-PapersOnLine, vol. 53, no. 2, pp. 2231–2236, 2020, doi: 10.1016/j.ifacol.2020.12.009.

R. B. Duckrow, E. Ceolini, H. P. Zaveri, C. Brooks, and A. Ghosh, “Artificial neural network trained on smartphone behavior can trace epileptiform activity in epilepsy,” iScience, vol. 24, no. 6, p. 102538, Jun. 2021, doi: 10.1016/j.isci.2021.102538.

S. Sinha, U. Srivastava, V. Dhiman, P. S. Akhilan, and S. Mishra, “Performance assessment of Deep Learning procedures on Malaria dataset,” J. Robot. Control, vol. 2, no. 1, pp. 12–18, Jan. 2021, doi: 10.18196/JRC.2145.

P. K. Das, B. Nayak, and S. Meher, “A lightweight deep learning system for automatic detection of blood cancer,” Measurement, vol. 191, p. 110762, Mar. 2022, doi: 10.1016/j.measurement.2022.110762.

A. K. Maurya et al., “Development of artificial neural networks software for arsenic adsorption from an aqueous environment,” Environ. Res., vol. 203, p. 111846, Jan. 2022, doi: 10.1016/j.envres.2021.111846.

S. L. Jurj, F. Opritoiu, and M. Vladutiu, “Deep learning-based computer vision application with multiple built-in data science-oriented capabilities,” in Proceedings of the 21st EANN (Engineering Applications of Neural Networks) 2020 Conference: Proceedings of the EANN 2020, vol. 21, pp. 47-69, 2020.

M. S. Alkatheiri, “Artificial intelligence assisted improved human-computer interactions for computer systems,” Comput. Electr. Eng., vol. 101, p. 107950, Jul. 2022, doi: 10.1016/j.compeleceng.2022.107950.

H. I. K. Fathurrahman, A. Ma’arif, and L.-Y. Chin, “The Development of Real-Time Mobile Garbage Detection Using Deep Learning,” J. Ilm. Tek. Elektro Komput. dan Inform., vol. 7, no. 3, p. 472, Jan. 2022, doi: 10.26555/jiteki.v7i3.22295.

S. J. Sujit, E. Bonfante, A. Aein, I. Coronado, R. Riascos-Castaneda, and L. Giancardo, “Deep learning enabled brain shunt valve identification using mobile phones,” Comput. Methods Programs Biomed., vol. 210, p. 106356, Oct. 2021, doi: 10.1016/j.cmpb.2021.106356.

L. C. Ngugi, M. Abdelwahab, and M. Abo-Zahhad, “Tomato leaf segmentation algorithms for mobile phone applications using deep learning,” Comput. Electron. Agric., vol. 178, p. 105788, Nov. 2020, doi: 10.1016/j.compag.2020.105788.

Q. Wang, W. Jiao, and Y. Zhang, “Deep learning-empowered digital twin for visualized weld joint growth monitoring and penetration control,” J. Manuf. Syst., vol. 57, pp. 429–439, Oct. 2020, doi: 10.1016/j.jmsy.2020.10.002.

N. Ismail and O. A. Malik, “Real-time visual inspection system for grading fruits using computer vision and deep learning techniques,” Inf. Process. Agric., Feb. 2021, doi: 10.1016/j.inpa.2021.01.005.

A. K. Ali and M. M. Mahmoud, “Methodologies and Applications of Artificial Intelligence in Systems Engineering,” Int. J. Robot. Control Syst., vol. 2, no. 1, pp. 201–229, Mar. 2022, doi: 10.31763/IJRCS.V2I1.532.

J. Füller, K. Hutter, J. Wahl, V. Bilgram, and Z. Tekic, “How AI revolutionizes innovation management – Perceptions and implementation preferences of AI-based innovators,” Technol. Forecast. Soc. Change, vol. 178, p. 121598, 2022, doi: 10.1016/j.techfore.2022.121598.

K. Barnova et al., “Implementation of artificial intelligence and machine learning-based methods in brain–computer interaction,” Comput. Biol. Med., vol. 163, p. 107135, Sep. 2023, doi: 10.1016/j.compbiomed.2023.107135.

W. -L. Mao, W. -C. Chen, H. I. K. Fathurrahman, and Y. -H. Lin, “Deep learning networks for real-time regional domestic waste detection,” J. Clean. Prod., vol. 344, p. 131096, Apr. 2022, doi: 10.1016/j.jclepro.2022.131096.

Z. Chen, J. Yang, L. Chen, and H. Jiao, “Garbage classification system based on improved ShuffleNet v2,” Resour. Conserv. Recycl., vol. 178, p. 106090, Mar. 2022, doi: 10.1016/j.resconrec.2021.106090.

C. Wang, J. Qin, C. Qu, X. Ran, C. Liu, and B. Chen, “A smart municipal waste management system based on deep-learning and Internet of Things,” Waste Manag., vol. 135, pp. 20–29, 2021, doi: 10.1016/j.wasman.2021.08.028.

M. Saadatmorad, R.-A. Jafari-Talookolaei, M.-H. Pashaei, and S. Khatir, “Damage detection on rectangular laminated composite plates using wavelet based convolutional neural network technique,” Compos. Struct., vol. 278, p. 114656, Dec. 2021, doi: 10.1016/j.compstruct.2021.114656.

N. Omar, A. Sengur, and S. G. S. Al-Ali, “Cascaded deep learning-based efficient approach for license plate detection and recognition,” Expert Syst. Appl., vol. 149, p. 113280, Jul. 2020, doi: 10.1016/j.eswa.2020.113280.

I. Slimani, A. Zaarane, W. Al Okaishi, I. Atouf, and A. Hamdoun, “An automated license plate detection and recognition system based on wavelet decomposition and CNN,” Array, vol. 8, p. 100040, Dec. 2020, doi: 10.1016/j.array.2020.100040.

A. I. Middya, B. Nag, and S. Roy, “Deep learning based multimodal emotion recognition using model-level fusion of audio-visual modalities,” Knowledge-Based Syst., p. 108580, Mar. 2022, doi: 10.1016/j.knosys.2022.108580.

A. Topic and M. Russo, “Emotion recognition based on EEG feature maps through deep learning network,” Eng. Sci. Technol. an Int. J., vol. 24, no. 6, pp. 1442–1454, Dec. 2021, doi: 10.1016/j.jestch.2021.03.012.

H. Liu, J. Zhang, Q. Liu, and J. Cao, “Minimum spanning tree based graph neural network for emotion classification using EEG,” Neural Networks, vol. 145, pp. 308–318, Jan. 2022, doi: 10.1016/j.neunet.2021.10.023.

B. Zieliński, A. Plichta, K. Misztal, P. Spurek, M. Brzychczy-Włoch, and D. Ochońska, “Deep learning approach to bacterial colony classification,” PLoS One, vol. 12, no. 9, p. e0184554, Sep. 2017, doi: 10.1371/journal.pone.0184554.

K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” arXiv Prepr. arXiv1409.1556, 2014.

C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the inception architecture for computer vision,” in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2818–2826, 2016.

A. G. Howard et al., “Mobilenets: Efficient convolutional neural networks for mobile vision applications,” arXiv Prepr. arXiv1704.04861, 2017.

G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, "Densely Connected Convolutional Networks," 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2261-2269, 2017, doi: 10.1109/CVPR.2017.243.

M. D. Fauzi, F. Dharma Adhinata, N. G. Ramadhan, N. Annisa, and F. Tanjung, “A Hybrid DenseNet201-SVM for Robust Weed and Potato Plant Classification,” J. Ilm. Tek. Elektro Komput. dan Inform., vol. 8, no. 2, pp. 298–306, 2022, doi: 10.26555/jiteki.v8i2.23886.

R. A. Aral, Ş. R. Keskin, M. Kaya, and M. Hacıömeroğlu, "Classification of TrashNet Dataset Based on Deep Learning Models," 2018 IEEE International Conference on Big Data (Big Data), pp. 2058-2062, 2018, doi: 10.1109/BigData.2018.8622212.

S. Albahli, N. Ayub, and M. Shiraz, “Coronavirus disease (COVID-19) detection using X-ray images and enhanced DenseNet,” Appl. Soft Comput., vol. 110, p. 107645, 2021, doi: 10.1016/j.asoc.2021.107645.

P. Xiong et al., “Localization of myocardial infarction with multi-lead ECG based on DenseNet,” Comput. Methods Programs Biomed., vol. 203, p. 106024, May 2021, doi: 10.1016/j.cmpb.2021.106024.

M. K. Bohmrah and H. Kaur, “Classification of Covid-19 patients using efficient fine-tuned deep learning DenseNet model,” Glob. Transitions Proc., vol. 2, no. 2, pp. 476–483, 2021, doi: https://doi.org/10.1016/j.gltp.2021.08.003.

A. Howard et al., "Searching for MobileNetV3," 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 1314-1324, 2019, doi: 10.1109/ICCV.2019.00140.




DOI: https://doi.org/10.18196/jrc.v4i5.18879

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Abdul Fadlil, Haris Imam Karim Fathurrahman, Yu-Hao Lin, Farhah Kamilah, Sunardi

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 


Journal of Robotics and Control (JRC)

P-ISSN: 2715-5056 || E-ISSN: 2715-5072
Organized by Peneliti Teknologi Teknik Indonesia
Published by Universitas Muhammadiyah Yogyakarta in collaboration with Peneliti Teknologi Teknik Indonesia, Indonesia and the Department of Electrical Engineering
Website: http://journal.umy.ac.id/index.php/jrc
Email: jrcofumy@gmail.com


Kuliah Teknik Elektro Terbaik