Ovarian Tumors Detection and Classification on Ultrasound Images Using One-stage Convolutional Neural Networks

Van-Hung Le, Thi-Loan Pham

Abstract


Currently, the advent of CNN (Convolutional Neural Network) has brought very convincing results to computer vision problems. One-stage CNNs are a suitable choice for research and development to have an overview of the current results of the process of detecting and classifying OTUM from ovarian ultrasound images. In this paper, we have performed a comprehensive study on one-stage CNNs for the problem of detecting and classifying OTUM on ovarian ultrasound images. The OTUM datasets we tested were two popular OTUM datasets: OTU and USOVA3D. The one-stage CNNs we tested and evaluated belong to the YOLO (You Only Look Once) family (YOLOv5, YOLOv7, YOLOv8 variations, and YOLO-NAS), and the SSD (Single Shot MultiBox Detector) family (VGG16-SSD, Mb1-SSD, Mb1-SSDLite, Sq-SSD-Lite, and Mb2-SSD-Lite). The results of detecting OTUM (with or without OTUM on ovarian ultrasound images) are high (with Mb1-SSD of Acc = 98.90%, P = 98.58%, R = 98.9% on “USOVA3D 2D f r1 80 20” set; with Mb2-SSD-Lite of Acc = 97.87%, P = 97.16%, R = 97.87% on “USOVA3D 2D f r2 80 20” set). The results of detecting and classifying OTUM into 8 classes are low (the highest is Acc = 92.04%, P = 74.81%, R = 92.04% on the OTU-2D dataset). Regarding computation time, CNNs of the YOLO family have faster computation times than networks of the SSD family. The above results show that the problem of classifying ovarian tumors on ultrasound images still contains many challenges that need to be resolved in the future.

Keywords


Ovarian Tumor Detection; Ovarian Tumors Classification; One-Stage CNNs; YOLO Family; SSD Family.

Full Text:

PDF

References


A. C. Society, “Key Statistics for Ovarian Cancer,” https://www.cancer. org/cancer/types/ovarian-cancer/about/key-statistics.html, 2023, [Online; accessed 19-September-2023].

A. Gupta, P. Jha, T. M. Baran, K. E. Maturen, K. Patel-Lippmann, H. M. Zafar, A. Kamaya, N. Antil, L. Barroilhet, and E. Sadowski, “Ovarian cancer detection in average-risk women: classic-versus nonclassic-appearing adnexal lesions at us,” Radiology, vol. 303, no. 3, pp. 603–610, 2022, doi: 10.1148/radiol.212338.

E. Meys, J. Kaijser, R. Kruitwagen, B. Slangen, B. Van Calster, B. Aertgeerts, J. Verbakel, D. Timmerman, and T. Van Gorp, “Subjective assessment versus ultrasound models to diagnose ovarian cancer: A systematic review and meta-analysis,” European Journal of Cancer, vol. 58, pp. 17– 29, 2016, doi: 10.1016/j.ejca.2016.01.007.

A. Voulodimos, N. Doulamis, A. Doulamis, E. Protopapadakis et al., “Deep learning for computer vision: A brief review,” Computational Intelligence and Neuroscience, vol. 2018, pp. 1–13, 2018, doi: 10.1155/2018/7068349.

A. Lohia, K. D. Kadam, R. R. Joshi, and A. M. Bongale, “Bibliometric analysis of one-stage and two-stage object detection,” Libr. Philos. Pract, vol. 4910, p. 34, 2021.

M. C. Garc´ıa, J. T. Mateo, P. L. Ben´ıtez, and J. G. Gutierrez, “On the ´ performance of one-stage and two-stage object detectors in autonomous vehicles using camera data,” Remote Sensing, vol. 13, no. 1, p. 89, 2020, doi: 10.3390/rs13010089.

T. Diwan, G. Anirudh, and J. V. Tembhurne, “Object detection using yolo: Challenges, architectural successors, datasets and applications,” multimedia Tools and Applications, vol. 82, no. 6, pp. 9243–9275, 2023, doi: 10.1007/s11042-022-13644-y.

W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg, “Ssd: Single shot multibox detector,” in Computer Vision–ECCV 2016, vol. 9905, pp. 21–37, 2016, doi: 10.1007/978-3-319-46448-0 2.

R. Girshick, J. Donahue, T. Darrell and J. Malik, “Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation,” 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp. 580- 587, 2014, doi: 10.1109/CVPR.2014.81.

R. Girshick, “Fast r-cnn,” in Proceedings of the IEEE international conference on computer vision, pp. 1440–1448, 2015.

S. Ren, K. He, R. Girshick and J. Sun, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks,” in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 39, no. 6, pp. 1137-1149, 2017, doi: 10.1109/TPAMI.2016.2577031.

J. Dai, Y. Li, K. He, and J. Sun, “R-fcn: Object detection via region-based fully convolutional networks,” Advances in neural information processing systems, vol. 29, 2016.

K. He, G. Gkioxari, P. Dollar, and R. Girshick, “Mask r-cnn,” in ´ Proceedings of the IEEE international conference on computer vision, pp. 2961–2969, 2017.

M. G. Naftali, J. S. Sulistyawan, and K. Julian, “Comparison of object detection algorithms for street-level objects,” Computer Vision and Pattern Recognition, 2022, doi: 10.48550/arXiv.2208.11315.

L. Tan, T. Huangfu, L. Wu, and W. Chen, “Comparison of yolo v3, faster r-cnn, and ssd for real-time pill identification,” Research Square, 2021, doi: 10.21203/rs.3.rs-668895/v1.

J. Redmon and A. Farhadi, “YOLOv3: An Incremental Improvement,” ArXiv, 2018.

Q. Zhao, S. Lyu, W. Bai, L. Cai, B. Liu, M. Wu, X. Sang, M. Yang, and L. Chen, “A multi-modality ovarian tumor ultrasound image dataset for unsupervised cross-domain semantic segmentation,” Computer Vision and Pattern Recognition, 2022, doi: 10.48550/arXiv.2207.06799.

B. Potocnik, J. Munda, M. Relji ˇ c, K. Raki ˇ c, J. Knez, V. Vlaisavljevi ´ c,´ G. Sedej, B. Cigale, A. Holobar, and D. Zazula, “Public database for validation of follicle detection algorithms on 3d ultrasound images of ovaries,” Computer Methods and Programs in Biomedicine, vol. 196, p. 105621, 2020, doi: 10.1016/j.cmpb.2020.105621.

T.-L. Pham, V.-H. Le, T.-H. Tran, and D. H. Vu, “Comprehensive study on semantic segmentation of ovarian tumors from ultrasound images,” in Conference on Information Technology and its Applications, pp. 262–273, 2023.

K. He, X. Zhang, S. Ren and J. Sun, “Deep Residual Learning for Image Recognition,” 2016 IEEE Conference on Computer Vision and Pattern Recognition, pp. 770-778, 2016, doi: 10.1109/CVPR.2016.90.

O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmentation,” in Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, vol. 9351, pp. 234–241, 2015, doi: 10.1007/978-3-319-24574- 4 28.

H. Zhao, J. Shi, X. Qi, X. Wang and J. Jia, “Pyramid Scene Parsing Network,” 2017 IEEE Conference on Computer Vision and Pattern Recognition, pp. 6230-6239, 2017, doi: 10.1109/CVPR.2017.660.

J. Fu et al., “Dual Attention Network for Scene Segmentation,” 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3141-3149, 2019, doi: 10.1109/CVPR.2019.00326.

Z. Momenimovahed, A. Tiznobaik, S. Taheri, and H. Salehiniya, “Ovarian cancer in the world: Epidemiology and risk factors,” International Journal of Women’s Health, vol. 11, pp. 287–299, 2019, doi: 10.2147/IJWH.S197604.

J. M. Puaschunder, “The Potential for Artificial Intelligence in Healthcare,” SSRN Electronic Journal, vol. 6, no. 2, pp. 94–98, 2020, doi: 10.2139/ssrn.3525037.

J. Bajwa, U. Munir, A. Nori, and B. Williams, “Artificial intelligence in healthcare: transforming the practice of medicine,” Future Healthcare Journal, vol. 8, no. 2, 2021, doi: 10.7861/fhj.2021-0095.

V. Sudha and T. R. Ganeshbabu, “A convolutional neural network classifier VGG-19 architecture for lesion detection and grading in diabetic retinopathy based on deep learning,” Computers, Materials and Continua, vol. 66, no. 1, pp. 827–842, 2021, doi: 10.32604/cmc.2020.012008.

A. Karagoz, D. Alis, M. E. Seker, G. Zeybel, M. Yergin, I. Oksuz, and E. Karaarslan, “Anatomically guided self-adapting deep neural network for clinically significant prostate cancer detection on bi-parametric MRI: a multi-center study,” Insights into Imaging, vol. 14, no. 1, 2023, doi: 10.1186/s13244-023-01439-0.

S. Jin, G. Liu, and Q. Bai, “Deep Learning in COVID-19 Diagnosis, Prognosis and Treatment Selection,” Mathematics, vol. 11, no. 6, pp. 1– 17, 2023, doi: 10.3390/math11061279.

M. Mokoatle, V. Marivate, D. Mapiye, R. Bornman, and V. M. Hayes, “A review and comparative study of cancer detection using machine learning: SBERT and SimCSE application,” BMC Bioinformatics, vol. 24, no. 1, pp. 1–25, 2023, doi: 10.1186/s12859-023-05235-x.

A. Ibrahim, H. K. Mohamed, A. Maher, and B. Zhang, “A Survey on Human Cancer Categorization Based on Deep Learning,” Frontiers in Artificial Intelligence, vol. 5, 2022, doi: 10.3389/frai.2022.884749.

S. H. Hosseini, R. Monsefi, and S. Shadroo, “Deep learning applications for lung cancer diagnosis: A systematic review,” Multimedia Tools and Applications, 2023, doi: 10.1007/s11042-023-16046-w.

M. A. Thanoon, M. A. Zulkifley, M. A. A. Mohd Zainuri, and S. R. Abdani, “A Review of Deep Learning Techniques for Lung Cancer Van-Hung Le, Ovarian Tumors Detection and Classification on Ultrasound Images Using One-stage Convolutional Neural Networks Journal of Robotics and Control (JRC) ISSN: 2715-5072 580 Screening and Diagnosis Based on CT Images,” Diagnostics, vol. 13, no. 16, pp. 1–27, 2023, doi: 10.3390/diagnostics13162617.

S. Wankhade and V. S., “A novel hybrid deep learning method for early detection of lung cancer using neural networks,” Healthcare Analytics, vol. 3, no. May, p. 100195, 2023, doi: 10.1016/j.health.2023.100195.

V. Rajasekar, M. P. Vaishnnave, S. Premkumar, V. Sarveshwaran, and V. Rangaraaj, “Lung cancer disease prediction with CT scan and histopathological images feature analysis using deep learning techniques,” Results in Engineering, vol. 18, 2022, p. 101111, 2023, doi: 10.1016/j.rineng.2023.101111.

L. Wang, “Deep Learning Techniques to Diagnose Lung Cancer,” Cancers, vol. 14, no. 22, pp. 1–24, 2022, doi: 10.3390/cancers14225569.

T. I. Mohamed, O. N. Oyelade, and A. E. Ezugwu, utomatic detection and classification of lung cancer CT scans based on deep learning and ebola optimization search algorithm, Plos One, vol. 18, no. 8, 2023, doi: 10.1371/journal.pone.0285796.

N. Kalaivani, N. Manimaran, S. Sophia, and D. D. Devi, “Deep Learning Based Lung Cancer Detection and Classification,” IOP Conference Series: Materials Science and Engineering, vol. 994, no. 1, 2020, doi: 10.1088/1757-899X/994/1/012026.

A. Shimazaki, D. Ueda, A. Choppin, A. Yamamoto, T. Honjo, Y. Shimahara, and Y. Miki, “Deep learning-based algorithm for lung cancer detection on chest radiographs using the segmentation method,” Scientific Reports, vol. 12, no. 1, pp. 1–10, 2022, doi: 10.1038/s41598-021-04667-w.

J. Vineeth, S. Hemanth, C. V. Rao, N. Pavankumar, H. Jayanna and C. Janardhan, “Skin cancer detection using deep learning,” 2022 Fourth International Conference on Cognitive Computing and Information Processing (CCIP), pp. 1-6, 2022, doi: 10.1109/CCIP57447.2022.10058685.

M. Hajiarbabi, “Skin cancer detection using multi-scale deep learning and transfer learning,” Journal of Medical Artificial Intelligence, vol. 6, pp. 1–9, 2023, doi: 10.21037/jmai-23-67.

D. A. Ragab, M. Sharkas, S. Marshall, and J. Ren, “Breast cancer detection using deep convolutional neural networks and support vector machines,” PeerJ, vol. 2019, no. 1, pp. 1–23, 2019, doi: 10.7717/peerj.6201.

I. Buyung, A. Q. Munir, and P. Wanda, “Effective Breast Cancer Detection using Novel Deep Learning Algorithm,” JITK (Jurnal Ilmu Pengetahuan dan Teknologi Komputer), vol. 8, no. 2, pp. 98–104, 2023, doi: 10.33480/jitk.v8i2.4077.

M. Kord Tamandani, “Breast Cancer Detection Using Deep Multilayer Neural Networks,” Journal of Epigenetics, vol. 3, no. 1, pp. 27–34, 2022, doi: 10.5220/0007386206550660.

B. S. Abunasser, M. R. J. AL-Hiealy, I. S. Zaqout, and S. S. Abu-Naser, “Convolution Neural Network for Breast Cancer Detection and Classification Using Deep Learning,” Asian Pacific Journal of Cancer Prevention, vol. 24, no. 2, pp. 531–544, 2023, doi: 10.31557/APJCP.2023.24.2.531.

M. Wu, G. Cui, S. Lv, L. Chen, Z. Tian, M. Yang, and W. Bai, “Deep convolutional neural networks for multiple histologic types of ovarian tumors classification in ultrasound images,” Frontiers in Oncology, vol. 13, p. 1154200, 2023, doi: 10.3389/fonc.2023.1154200.

M. T. Hira, M. A. Razzaque, and M. Sarker, “Ovarian Cancer Data Analysis using Deep Learning: A Systematic Review from the Perspectives of Key Features of Data Analysis and AI Assurance,” ArXiv, 2023, doi: 10.48550/arXiv.2311.11932.

M. Akazawa and K. Hashimoto, “Artificial intelligence in ovarian cancer diagnosis,” Anticancer Research, vol. 40, no. 8, pp. 4795–4800, 2020, doi: 10.21873/anticanres.14482.

B. Ziyambe, A. Yahya, T. Mushiri, M. U. Tariq, Q. Abbas, M. Babar, M. Albathan, M. Asim, A. Hussain, and S. Jabbar, “A Deep Learning Framework for the Prediction and Diagnosis of Ovarian Cancer in Preand Post-Menopausal Women,” Diagnostics, vol. 13, no. 10, pp. 1–15, 2023, doi: 10.3390/diagnostics13101703.

H. Wang, C. Liu, Z. Zhao, C. Zhang, X. Wang, H. Li, H. Wu, X. Liu, C. Li, L. Qi, and W. Ma, “Application of Deep Convolutional Neural Networks for Discriminating Benign, Borderline, and Malignant Serous Ovarian Tumors From Ultrasound Images,” Frontiers in Oncology, vol. 11, no. 20, pp. 1–9, 2021, doi: 10.3389/fonc.2021.770683.

H. Heartlin Maria, A. Maria Jossy, and S. Malarvizhi, “A Machine Learning approach for classification of ovarian tumours,” Journal of Physics: Conference Series, vol. 2335, no. 1, 2022, doi: 10.1088/1742- 6596/2335/1/012018.

D. Sengupta, S. N. Ali, A. Bhattacharya, J. Mustafi, A. Mukhopadhyay, and K. Sengupta, “A deep hybrid learning pipeline for accurate diagnosis of ovarian cancer based on nuclear morphology,” PLoS ONE, vol. 17, no. 1, pp. 1–20, 2022, doi: 10.1371/journal.pone.0261181.

D. Schwartz, T. W. Sawyer, N. Thurston, J. Barton, and G. Ditzler, “Ovarian cancer detection using optical coherence tomography and convolutional neural networks,” Neural Computing and Applications, vol. 34, no. 11, pp. 8977–8987, 2022, doi: 10.1007/s00521-022-06920-3.

L. Y. Guo, A. H. Wu, Y. X. Wang, L. P. Zhang, H. Chai, and X. F. Liang, “Deep learning-based ovarian cancer subtypes identification using multi-omics data,” BioData Mining, vol. 13, no. 1, pp. 1–12, 2020, doi: 10.1186/s13040-020-00222-x.

Y. T. Jan, P. S. Tsai, W. H. Huang, L. Y. Chou, S. C. Huang, J. Z. Wang, P. H. Lu, D. C. Lin, C. S. Yen, J. P. Teng, G. S. Mok, C. T. Shih, and T. H. Wu, “Machine learning combined with radiomics and deep learning features extracted from CT images: a novel AI model to distinguish benign from malignant ovarian tumors,” Insights into Imaging, vol. 14, no. 1, 2023, doi: 10.1186/s13244-023-01412-x.

Y. Jung, T. Kim, M. R. Han, S. Kim, G. Kim, S. Lee, and Y. J. Choi, “Ovarian tumor diagnosis using deep convolutional neural networks and a denoising convolutional autoencoder,” Scientific Reports, vol. 12, no. 1, pp. 1–10, 2022, doi: 10.1038/s41598-022-20653-2.

S.-T. Hsu, Y.-J. Su, C.-H. Hung, M.-J. Chen, C.-H. Lu, and C.-E. Kuo, “Automatic ovarian tumors recognition system based on ensemble convolutional neural network with ultrasound imaging,” BMC Medical Informatics and Decision Making, vol. 22, no. 1, p. 298, 2022, doi: 10.1186/s12911-022-02047-6.

J. Mart´ınez-Mas, A. Bueno-Crespo, S. Khazendar, M. Remezal-Solano, ´ J.-P. Mart´ınez-Cendan, S. Jassim, H. Du, H. Al Assam, T. Bourne, and ´ D. Timmerman, “Evaluation of machine learning methods with fourier transform features for classifying ovarian tumors based on ultrasound images,” PLoS One, vol. 14, no. 7, 2019, doi: 10.1371/journal.pone.0219388.

W. Froyman, D. Van Schoubroeck, and D. Timmerman, “Automated follicle count using three-dimensional ultrasound in polycystic ovarian morphology,” Ultrasound in Obstetrics and Gynecology, vol. 51, no. 1, 2018, doi: 10.1002/uog.18896.

X. Liang, J. Fang, H. Li, X. Yang, D. Ni, F. Zeng, and Z. Chen, “Cr-unetbased ultrasonic follicle monitoring to reduce diameter variability and generate area automatically as a novel biomarker for follicular maturity,” Ultrasound in Medicine and Biology, vol. 46, no. 11, pp. 3125–3134, 2020, doi: 10.1016/j.ultrasmedbio.2020.07.020.

M. ArathiBoyanapalli et al., “A study of preprocessing techniques and features for ovarian cancer using ultrasound images,” European Journal of Molecular and Clinical Medicine, vol. 7, no. 10, pp. 293–303, 2020.

J. Jin, H. Zhu, J. Zhang, Y. Ai, J. Zhang, Y. Teng, C. Xie, and X. Jin, “Multiple u-net-based automatic segmentations and radiomics feature stability on ultrasound images for patients with ovarian cancer,” Frontiers in Oncology, vol. 10, p. 614201, 2021, doi:10.3389/fonc.2020.614201.

J. Redmon, S. Divvala, R. Girshick and A. Farhadi, “You Only Look Once: Unified, Real-Time Object Detection,” 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 779-788, 2016, doi: 10.1109/CVPR.2016.91.

J. Redmon and A. Farhadi, “YOLO9000: Better, Faster, Stronger,” 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6517-6525, 2017, doi: 10.1109/CVPR.2017.690.

A. Bochkovskiy, C. Y. Wang, and H. Y. M. Liao, “YOLOv4: Optimal Speed and Accuracy of Object Detection,” arXiv, 2020.

C.-Y. Wang, I.-H. Yeh, and H.-Y. M. Liao, “You Only Learn One Representation: Unified Network for Multiple Tasks,” ArXiv, pp. 1–11, 2021.

Z. Ge, S. Liu, F. Wang, Z. Li, and J. Sun, “YOLOX: Exceeding YOLO Series in 2021,” ArXiv, pp. 1–7, 2021.

Y. Zhu, S. Li, W. Du, and Y. Du, “Identification of table grapes in the natural environment based on an improved yolov5 and localization of picking points,” Precision Agriculture, vol. 24, no. 4, pp. 1–22, 2023, doi: 10.1007/s11119-023-09992-w.

C. Li, L. Li, H. Jiang, K. Weng, Y. Geng, L. Li, Z. Ke, Q. Li, M. Cheng, W. Nie, Y. Li, B. Zhang, Y. Liang, L. Zhou, X. Xu, X. Chu, X. Wei, and X. Wei, “YOLOv6: A Single-Stage Object Detection Framework for Industrial Applications,” ArXiv, 2022, doi: 10.48550/arXiv.2209.02976.

D. Reis, J. Kupec, J. Hong, and A. Daoudi, “Real-Time Flying Object Detection with YOLOv8,” Computer Vision and Pattern Recognition, 2023, doi: 10.48550/arXiv.2305.09972.

YOLO-NAS, “A Next-Generation, Object Detection Foundational Model generated by Deci’s Neural Architecture Search Technology,” https: //github.com/Deci-AI/supe-gradients/blob/master/YOLONAS.md, 2023, [Online; accessed 19-September-2023].

C. -Y. Wang, A. Bochkovskiy and H. -Y. M. Liao, “YOLOv7: Trainable Bag-of-Freebies Sets New State-of-the-Art for RealTime Object Detectors,” 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7464-7475, 2023, doi: 10.1109/CVPR52729.2023.00721.

deci.ai, “he Deep Learning Platform Production-Grade Performance, Faster,” https://deci.ai/, 2023, [Online; accessed 19-September-2023].

X. Chu, L. L. Bo, and Z. Meituan, “Make repvgg greater again: A quantization-aware approach,” ArXiv, 2022, doi: 10.48550/arXiv.2212.01593.

W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C. Y. Fu, and A. C. Berg, “SSD: Single shot multibox detector,” in European Conference on Computer Vision, vol. 9905, pp. 21–37, 2016, doi: 10.1007/978-3-319- 46448-0 2.

K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” in 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings, pp. 1–14, 2015.

V. Sudha and T. R. Ganeshbabu, “A convolutional neural network classifier VGG-19 architecture for lesion detection and grading in diabetic retinopathy based on deep learning,” Computers, Materials and Continua, vol. 66, no. 1, pp. 827–842, 2021, doi: 10.32604/cmc.2020.012008.

K. He, X. Zhang, S. Ren and J. Sun, “Deep Residual Learning for Image Recognition,” 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770-778, 2016, doi: 10.1109/CVPR.2016.90.

C. Szegedy et al., “Going deeper with convolutions,” 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1-9, 2015, doi: 10.1109/CVPR.2015.7298594.

A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, and H. Adam, “MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications,” ArXiv, 2017.

Simon Haykin; Bart Kosko, “GradientBased Learning Applied to Document Recognition,” in Intelligent Signal Processing, pp.306-351, 2001, doi: 10.1109/9780470544976.ch9.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with Deep Convolutional Neural Networks,” in Communications of the ACM, vol. 60, no, 6, pp. 1–1432 2017, doi: 10.1145/3065386.

M. Sandler, A. Howard, M. Zhu, A. Zhmoginov and L. -C. Chen, “MobileNetV2: Inverted Residuals and Linear Bottlenecks,” 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4510-4520, 2018, doi: 10.1109/CVPR.2018.00474.

F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and K. Keutzer, “SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and 0.5MB model size,” ArXiv, pp. 1–13, 2016.

S. Guo, Y. Liu, Y. Ni, and W. Ni, “Lightweight SSD: Real-time lightweight single shot detector for mobile devices,” in VISIGRAPP 2021 - Proceedings of the 16th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, vol. 5, pp. 25–35, 2021, doi: 10.5220/0010188000250035.

Y. Quan, D. Zhang, L. Zhang and J. Tang, “Centralized Feature Pyramid for Object Detection,” in IEEE Transactions on Image Processing, vol. 32, pp. 4341-4354, 2023, doi: 10.1109/TIP.2023.3297408.

T. Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollar, and C. L. Zitnick, “Microsoft COCO: Common objects in ´ context,” in European Conference on Computer Vision, vol. 8693, pp. 740–755, 2015, doi: 10.1007/978-3-319-10602-1 48.

A. Adel, K. Anis, A. Mohanned, S. Abdulrahman, and B. Bilel, “Aerial images processing for car detection using convolutional neural networks: Comparison between faster r-cnn and yolov3,” electronics, vol. 10, no. 7, 2021, doi: 10.3390/electronics10070820.




DOI: https://doi.org/10.18196/jrc.v5i2.20589

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Van-Hung Le, Thi-Loan Pham

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 


Journal of Robotics and Control (JRC)

P-ISSN: 2715-5056 || E-ISSN: 2715-5072
Organized by Peneliti Teknologi Teknik Indonesia
Published by Universitas Muhammadiyah Yogyakarta in collaboration with Peneliti Teknologi Teknik Indonesia, Indonesia and the Department of Electrical Engineering
Website: http://journal.umy.ac.id/index.php/jrc
Email: jrcofumy@gmail.com


Kuliah Teknik Elektro Terbaik