Optimizing Predictive Performance: Hyperparameter Tuning in Stacked Multi-Kernel Support Vector Machine Random Forest Models for Diabetes Identification

Dimas Chaerul Ekty Saputra, Alfian Ma'arif, Khamron Sunat

Abstract


This study addresses the necessity for more advanced diagnostic tools in managing diabetes, a chronic metabolic disorder that leads to disruptions in glucose, lipid, and protein metabolism caused by insufficient insulin activity. The research investigates the innovative application of machine learning models, specifically Stacked Multi-Kernel Support Vector Machines Random Forest (SMKSVM-RF), to determine their effectiveness in identifying complex patterns in medical data. The innovative ensemble learning method SMKSVM-RF combines the strengths of Support Vector Machines (SVMs) and Random Forests (RFs) to leverage their diversity and complementary features. The SVM component implements multiple kernels to identify unique data patterns, while the RF component consists of an ensemble of decision trees to ensure reliable predictions. Integrating these models into a stacked architecture allows SMKSVM-RF to enhance the overall predictive performance for classification or regression tasks by optimizing their strengths. A significant finding of this study is the introduction of SMKSVM-RF, which displays an impressive 73.37% accuracy rate in the confusion matrix. Additionally, its recall is 71.62%, its precision is 70.13%, and it has a noteworthy F1-Score of 71.34%. This innovative technique shows potential for enhancing current methods and developing into an ideal healthcare system, signifying a noteworthy step forward in diabetes detection. The results emphasize the importance of sophisticated machine learning methods, highlighting how SMKSVM-RF can improve diagnostic precision and aid in the continual advancement of healthcare systems for more effective diabetes management.

Keywords


Diabetes; Machine Learning Model; SMKSVM-RF; Hyperparameter Tuning; Predictive Performance Optimization.

Full Text:

PDF

References


Z. Mushtaq, M. F. Ramzan, S. Ali, S. Baseer, A. Samad, and M. Husnain, "Voting Classification-Based Diabetes Mellitus Prediction Using Hypertuned Machine-Learning Techniques," Mobile Information Systems, vol. 2022, pp. 1–16, 2022, doi: 10.1155/2022/6521532.

L. Jiang et al., "A global view of hypertensive disorders and diabetes mellitus during pregnancy," Nat. Rev. Endocrinol., vol. 18, no. 12, pp. 760–775, 2022, doi: 10.1038/s41574-022-00734-y.

F. Hill-Briggs et al., "Social Determinants of Health, Race, and Diabetes Population Health Improvement: Black/African Americans as a Population Exemplar," Curr. Diab. Rep., vol. 22, no. 3, pp. 117–128, 2022, doi: 10.1007/s11892-022-01454-3.

M. Nagassou, R. W. Mwangi, and E. Nyarige, "A Hybrid Ensemble Learning Approach Utilizing Light Gradient Boosting Machine and Category Boosting Model for Lifestyle-Based Prediction of Type-II Diabetes Mellitus," JDAIP, vol. 11, no. 4, pp. 480–511, 2023, doi: 10.4236/jdaip.2023.114025.

K. Ogurtsova et al., "IDF diabetes Atlas: Global estimates of undiagnosed diabetes in adults for 2021," Diabetes Research and Clinical Practice, vol. 183, p. 109118, 2022, doi: 10.1016/j.diabres.2021.109118.

H. Sun et al., "IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045," Diabetes Research and Clinical Practice, vol. 183, p. 109119, 2022, doi: 10.1016/j.diabres.2021.109119.

R. L. Thomas, S. Halim, S. Gurudas, S. Sivaprasad, and D. R. Owens, "IDF Diabetes Atlas: A review of studies utilising retinal photography on the global prevalence of diabetes related retinopathy between 2015 and 2018," Diabetes Research and Clinical Practice, vol. 157, p. 107840, 2019, doi: 10.1016/j.diabres.2019.107840.

W. Perng, R. Conway, E. Mayer-Davis, and D. Dabelea, "Youth-Onset Type 2 Diabetes: The Epidemiology of an Awakening Epidemic," Diabetes Care, vol. 46, no. 3, pp. 490–499, 2023, doi: 10.2337/dci22-0046.

A. J. Thirunavukarasu, D. S. J. Ting, K. Elangovan, L. Gutierrez, T. F. Tan, and D. S. W. Ting, "Large language models in medicine," Nat. Med., vol. 29, no. 8, pp. 1930–1940, 2023, doi: 10.1038/s41591-023-02448-8.

H. Gupta, H. Varshney, T. K. Sharma, N. Pachauri, and O. P. Verma, "Comparative performance analysis of quantum machine learning with deep learning for diabetes prediction," Complex Intell. Syst., vol. 8, no. 4, pp. 3073–3087, 2022, doi: 10.1007/s40747-021-00398-7.

A. Farooqi et al., "A systematic review and meta-analysis to compare the prevalence of depression between people with and without Type 1 and Type 2 diabetes," Primary Care Diabetes, vol. 16, no. 1, pp. 1–10, 2022, doi: 10.1016/j.pcd.2021.11.001.

M. Akbarizadeh, M. Naderi Far, and F. Ghaljaei, "Prevalence of depression and anxiety among children with type 1 and type 2 diabetes: a systematic review and meta-analysis," World J. Pediatr., vol. 18, no. 1, pp. 16–26, 2022, doi: 10.1007/s12519-021-00485-2.

B. A. Al-Ghamdi, J. M. Al-Shamrani, A. M. El-Shehawi, I. Al-Johani, and B. G. Al-Otaibi, "Role of mitochondrial DNA in diabetes Mellitus Type I and Type II," Saudi Journal of Biological Sciences, vol. 29, no. 12, p. 103434, 2022, doi: 10.1016/j.sjbs.2022.103434.

G. T. Russo, V. Manicardi, M. C. Rossi, E. Orsi, and A. Solini, "Sex- and gender-differences in chronic long-term complications of type 1 and type 2 diabetes mellitus in Italy," Nutrition, Metabolism and Cardiovascular Diseases, vol. 32, no. 10, pp. 2297–2309, 2022, doi: 10.1016/j.numecd.2022.08.011.

B. M. Schmidt, "Emerging Diabetic Foot Ulcer Microbiome Analysis Using Cutting Edge Technologies," J. Diabetes Sci. Technol., vol. 16, no. 2, pp. 353–363, 2022, doi: 10.1177/1932296821990097.

D. Costa et al., "Social Aspects of Diabetic Foot: A Scoping Review," Social Sciences, vol. 11, no. 4, p. 149, 2022, doi: 10.3390/socsci11040149.

L. E. Glenn, C. B. Thurlow, and M. Enriquez, "The “Ups and Downs” of Living With Type 2 Diabetes Among Working Adults in the Rural South," J. Prim. Care Community Health, vol. 13, 2022, doi: 10.1177/21501319221143715.

S. Vidolov, S. Geiger, and E. Stendahl, "Affective Resonance and Durability in Political Organizing: The case of patients who hack," Organization Studies, vol. 44, no. 9, pp. 1413–1438, 2023, doi: 10.1177/01708406231162002.

L. E. Egede et al., "Nonmedical Interventions For Type 2 Diabetes: Evidence, Actionable Strategies, And Policy Opportunities: Review article examines type 2 diabetes nonmedical interventions," Health Affairs, vol. 41, no. 7, pp. 963–970, 2022, doi: 10.1377/hlthaff.2022.00236.

S. Ciężki, E. Kurpiewska, A. Bossowski, and B. Głowińska-Olszewska, "Multi-Faceted Influence of Obesity on Type 1 Diabetes in Children – From Disease Pathogenesis to Complications," Front. Endocrinol., vol. 13, p. 890833, 2022, doi: 10.3389/fendo.2022.890833.

M. Levy, S. Israel, and M. Pauzner, "Multifaceted Requirements Engineering: Developing A MESH (Municipal-Environmental-Social-Health) Platform," in 2022 IEEE 30th International Requirements Engineering Conference Workshops (REW), pp. 24–29, 2022, doi: 10.1109/REW56159.2022.00014.

C. Papoutsi et al., "Implementation and delivery of group consultations for young people with diabetes in socioeconomically deprived, ethnically diverse settings," BMC Med., vol. 20, no. 1, p. 459, 2022, doi: 10.1186/s12916-022-02654-0.

S. Neethirajan, "Artificial Intelligence and Sensor Innovations: Enhancing Livestock Welfare with a Human-Centric Approach," Human-Centric Intelligent Systems, pp. 1-16, 2023, doi: 10.1007/s44230-023-00050-2.

R. Hendawi, J. Li, and S. Roy, "A Mobile App That Addresses Interpretability Challenges in Machine Learning–Based Diabetes Predictions: Survey-Based User Study," JMIR Form. Res., vol. 7, p. e50328, 2023, doi: 10.2196/50328.

F. Curia, "Explainable and transparency machine learning approach to predict diabetes develop," Health Technol., vol. 13, no. 5, pp. 769–780, 2023, doi: 10.1007/s12553-023-00781-z.

N. Bacanin, C. Stoean, M. Zivkovic, M. Rakic, R. Strulak-Wójcikiewicz, and R. Stoean, "On the Benefits of Using Metaheuristics in the Hyperparameter Tuning of Deep Learning Models for Energy Load Forecasting," Energies, vol. 16, no. 3, p. 1434, 2023, doi: 10.3390/en16031434.

Y. Ali, E. Awwad, M. Al-Razgan, and A. Maarouf, "Hyperparameter Search for Machine Learning Algorithms for Optimizing the Computational Complexity," Processes, vol. 11, no. 2, p. 349, 2023, doi: 10.3390/pr11020349.

M. Misdram, E. Noersasongko, and F. Y. Pamuji, "Gaussian Based-SMOTE Method for Handling Imbalanced Small Datasets," Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI), vol. 9, no. 4, 2023, doi: http://dx.doi.org/10.26555/jiteki.v9i4.26881.

F. Zhang, M. Petersen, L. Johnson, J. Hall, and S. E. O’Bryant, "Hyperparameter Tuning with High Performance Computing Machine Learning for Imbalanced Alzheimer’s Disease Data," Applied Sciences, vol. 12, no. 13, p. 6670, 2022, doi: 10.3390/app12136670.

D. Rotariu et al., "Oxidative stress – Complex pathological issues concerning the hallmark of cardiovascular and metabolic disorders," Biomedicine & Pharmacotherapy, vol. 152, p. 113238, 2022, doi: 10.1016/j.biopha.2022.113238.

C. Xin, H. Fan, J. Xie, J. Hu, X. Sun, and Q. Liu, "Impact of Diabetes Mellitus on Lower Urinary Tract Symptoms in Benign Prostatic Hyperplasia Patients: A Meta-Analysis," Front. Endocrinol., vol. 12, p. 741748, 2022, doi: 10.3389/fendo.2021.741748.

A. Khanam, G. Hithamani, J. Naveen, S. R. Pradeep, S. Barman, and K. Srinivasan, "Management of Invasive Infections in Diabetes Mellitus: A Comprehensive Review," Biologics, vol. 3, no. 1, pp. 40–71, 2023, doi: 10.3390/biologics3010004.

K. Sękowski, J. Grudziąż-Sękowska, J. Pinkas, and M. Jankowski, "Public knowledge and awareness of diabetes mellitus, its risk factors, complications, and prevention methods among adults in Poland—A 2022 nationwide cross-sectional survey," Front. Public Health, vol. 10, p. 1029358, 2022, doi: 10.3389/fpubh.2022.1029358.

E. Vlachou, A. Ntikoudi, D. A. Owens, M. Nikolakopoulou, T. Chalimourdas, and O. Cauli, "Effectiveness of cognitive behavioral therapy-based interventions on psychological symptoms in adults with type 2 diabetes mellitus: An update review of randomized controlled trials," Journal of Diabetes and its Complications, vol. 36, no. 5, p. 108185, 2022, doi: 10.1016/j.jdiacomp.2022.108185.

P. Nagaraj, P. Deepalakshmi, V. Muneeswaran, and K. Muthamil Sudar, "Sentiment Analysis on Diabetes Diagnosis Health Care Using Machine Learning Technique," in Congress on Intelligent Systems, vol. 114, pp. 491–502, 2022, doi: 10.1007/978-981-16-9416-5_35.

J. Ramesh, R. Aburukba, and A. Sagahyroon, "A remote healthcare monitoring framework for diabetes prediction using machine learning," Healthc. technol. lett., vol. 8, no. 3, pp. 45–57, 2021, doi: 10.1049/htl2.12010.

S. Sivaranjani, S. Ananya, J. Aravinth, and R. Karthika, "Diabetes Prediction using Machine Learning Algorithms with Feature Selection and Dimensionality Reduction," in 2021 7th International Conference on Advanced Computing and Communication Systems (ICACCS), pp. 141–146, 2021, doi: 10.1109/ICACCS51430.2021.9441935.

D. Das, A. Banerjee, A. B. Jena, A. K. Duttaroy, and S. Pathak, "Essentiality, relevance, and efficacy of adjuvant/combinational therapy in the management of thyroid dysfunctions," Biomedicine & Pharmacotherapy, vol. 146, p. 112613, 2022, doi: 10.1016/j.biopha.2022.112613.

M. H. Alshayeji, "Early Thyroid Risk Prediction by Data Mining and Ensemble Classifiers," MAKE, vol. 5, no. 3, pp. 1195–1213, 2023, doi: 10.3390/make5030061.

K. H. Priya and K. Valarmathi, "Big Data Analytics on Thyroid: A Review on Algorithms, Attributes and Future," in 2022 1st International Conference on Computational Science and Technology (ICCST), pp. 1056–1061, 2022, doi: 10.1109/ICCST55948.2022.10040437.

M. Y. M. Parvees and M. Raja, "Optimal Feature Subset Selection with Multi-Kernel Extreme Learning Machine for Medical Data Classification," Turkish Journal of Computer and Mathematics Education, vol. 12, no. 6, pp. 3612–3623, 2021, doi: https://doi.org/10.17762/turcomat.v12i6.7157.

A. M. Siregar and S. Faisal, "Optimized Machine Learning Performance with Feature Selection for Breast Cancer Disease Classification," Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI), vol. 9, no. 4, 2023, doi: http://dx.doi.org/10.26555/jiteki.v9i4.27527.

A. Rahman et al., "Robust biometric system using session invariant multimodal EEG and keystroke dynamics by the ensemble of self-ONNs," Computers in Biology and Medicine, vol. 142, p. 105238, 2022, doi: 10.1016/j.compbiomed.2022.105238.

F. Melky, S. Sendari, and I. A. Elbaith, "Optimization of Heavy Point Position Measurement on Vehicles Using Support Vector Machine," Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI), vol. 9, no. 3, 2023, doi: 10.26555/jiteki.v9i3.26261.

D. C. E. Saputra, Y. Maulana, E. Faristasari, A. Ma’arif, and I. Suwarno, "Machine Learning Performance Analysis for Classification of Medical Specialties," in Proceeding of the 3rd International Conference on Electronics, Biomedical Engineering, and Health Informatics, vol. 1008, pp. 513–528, 2023, doi: 10.1007/978-981-99-0248-4_34.

H. Syahputra and A. Wibowo, "Comparison of Support Vector Machine (SVM) and Random Forest Algorithm for Detection of Negative Content on Websites," Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI), vol. 9, no. 1, 2023, doi: http://dx.doi.org/10.26555/jiteki.v9i1.25861.

H. Saputra, D. Stiawan, and H. Satria, "Malware Detection in Portable Document Format (PDF) Files with Byte Frequency Distribution (BFD) and Support Vector Machine (SVM)," Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI), vol. 9, no. 4, 2023, doi: http://dx.doi.org/10.26555/jiteki.v%25vi%25i.27559.

A. Pfob, S.-C. Lu, and C. Sidey-Gibbons, "Machine learning in medicine: a practical introduction to techniques for data pre-processing, hyperparameter tuning, and model comparison," BMC Med. Res. Methodol., vol. 22, no. 1, p. 282, 2022, doi: 10.1186/s12874-022-01758-8.

W. Pannakkong, K. Thiwa-Anont, K. Singthong, P. Parthanadee, and J. Buddhakulsomsiri, "Hyperparameter Tuning of Machine Learning Algorithms Using Response Surface Methodology: A Case Study of ANN, SVM, and DBN," Mathematical Problems in Engineering, vol. 2022, pp. 1–17, 2022, doi: 10.1155/2022/8513719.

J. Isabona, A. L. Imoize, and Y. Kim, "Machine Learning-Based Boosted Regression Ensemble Combined with Hyperparameter Tuning for Optimal Adaptive Learning," Sensors, vol. 22, no. 10, p. 3776, 2022, doi: 10.3390/s22103776.

S. Nematzadeh, F. Kiani, M. Torkamanian-Afshar, and N. Aydin, "Tuning hyperparameters of machine learning algorithms and deep neural networks using metaheuristics: A bioinformatics study on biomedical and biological cases," Computational Biology and Chemistry, vol. 97, p. 107619, 2022, doi: 10.1016/j.compbiolchem.2021.107619.

I. D. Raji, H. Bello-Salau, I. J. Umoh, A. J. Onumanyi, M. A. Adegboye, and A. T. Salawudeen, "Simple Deterministic Selection-Based Genetic Algorithm for Hyperparameter Tuning of Machine Learning Models," Applied Sciences, vol. 12, no. 3, p. 1186, 2022, doi: 10.3390/app12031186.

L. Wu, G. Perin, and S. Picek, "I Choose You: Automated Hyperparameter Tuning for Deep Learning-based Side-channel Analysis," IEEE Trans. Emerg. Topics Comput., pp. 1–12, 2022, doi: 10.1109/TETC.2022.3218372.

D. Passos and P. Mishra, "A tutorial on automatic hyperparameter tuning of deep spectral modelling for regression and classification tasks," Chemometrics and Intelligent Laboratory Systems, vol. 223, p. 104520, 2022, doi: 10.1016/j.chemolab.2022.104520.

P. P. Ippolito, "Hyperparameter Tuning: The Art of Fine-Tuning Machine and Deep Learning Models to Improve Metric Results," in Applied Data Science in Tourism, pp. 231–251, 2022, doi: 10.1007/978-3-030-88389-8_12.

A. Saboor, M. Usman, S. Ali, A. Samad, M. F. Abrar, and N. Ullah, "A Method for Improving Prediction of Human Heart Disease Using Machine Learning Algorithms," Mobile Information Systems, vol. 2022, pp. 1–9, 2022, doi: 10.1155/2022/1410169.

Md. S. Reza, U. Hafsha, R. Amin, R. Yasmin, and S. Ruhi, "Improving SVM performance for type II diabetes prediction with an improved non-linear kernel: Insights from the PIMA dataset," Computer Methods and Programs in Biomedicine Update, vol. 4, p. 100118, 2023, doi: 10.1016/j.cmpbup.2023.100118.

D. J. Derwin, B. P. Shan, and O. J. Singh, "Hybrid multi-kernel SVM algorithm for detection of microaneurysm in color fundus images," Med. Biol. Eng. Comput., vol. 60, no. 5, pp. 1377–1390, 2022, doi: 10.1007/s11517-022-02534-y.

C. Guo, Z. Jiang, and D. Zhang, "Multi-Feature Complementary Learning for Diabetes Mellitus Detection Using Pulse Signals," IEEE J. Biomed. Health Inform., vol. 26, no. 11, pp. 5684–5694, 2022, doi: 10.1109/JBHI.2022.3198792.

A. M. Austin et al., "Using a cohort study of diabetes and peripheral artery disease to compare logistic regression and machine learning via random forest modeling," BMC Med. Res. Methodol., vol. 22, no. 1, p. 300, 2022, doi: 10.1186/s12874-022-01774-8.

P. Palimkar, R. N. Shaw, and A. Ghosh, "Machine Learning Technique to Prognosis Diabetes Disease: Random Forest Classifier Approach," in Advanced Computing and Intelligent Technologies, vol. 218, pp. 219–244, 2022, doi: 10.1007/978-981-16-2164-2_19.

J. Hendy, T. Vandrevala, A. Ahmed, C. Kelly, L. Gray, and A. Ala, "Feeling misidentified: Understanding migrant’s readiness to engage in health care screening," Social Science & Medicine, vol. 237, p. 112481, 2019, doi: 10.1016/j.socscimed.2019.112481.

M. Ye, H. Zhang, and L. Li, "Research on Data Mining Application of Orthopedic Rehabilitation Information for Smart Medical," IEEE Access, vol. 7, pp. 177137–177147, 2019, doi: 10.1109/ACCESS.2019.2957579.

T. Sharma and M. Shah, "A comprehensive review of machine learning techniques on diabetes detection," Vis. Comput. Ind. Biomed. Art, vol. 4, no. 1, p. 30, 2021, doi: 10.1186/s42492-021-00097-7.

G. B. Bolli, F. Porcellati, P. Lucidi, and C. G. Fanelli, "The physiological basis of insulin therapy in people with diabetes mellitus," Diabetes Research and Clinical Practice, vol. 175, p. 108839, 2021, doi: 10.1016/j.diabres.2021.108839.

A. Cherkas, S. Holota, T. Mdzinarashvili, R. Gabbianelli, and N. Zarkovic, "Glucose as a Major Antioxidant: When, What for and Why It Fails?," Antioxidants, vol. 9, no. 2, p. 140, 2020, doi: 10.3390/antiox9020140.

M. J. C. Zavaleta et al., "Diabetic gastroenteropathy: An underdiagnosed complication," WJD, vol. 12, no. 6, pp. 794–809, 2021, doi: 10.4239/wjd.v12.i6.794.

A. Misra et al., "Diabetes in developing countries," Journal of Diabetes, vol. 11, no. 7, pp. 522–539, 2019, doi: 10.1111/1753-0407.12913.

S. Kaul and Y. Kumar, "Artificial Intelligence-based Learning Techniques for Diabetes Prediction: Challenges and Systematic Review," SN Comput. Sci., vol. 1, no. 6, p. 322, 2020, doi: 10.1007/s42979-020-00337-2.

E. Dritsas and M. Trigka, "Data-Driven Machine-Learning Methods for Diabetes Risk Prediction," Sensors, vol. 22, no. 14, p. 5304, 2022, doi: 10.3390/s22145304.

J. Hao, S. Luo, and L. Pan, "Rule extraction from biased random forest and fuzzy support vector machine for early diagnosis of diabetes," Sci. Rep., vol. 12, no. 1, p. 9858, 2022, doi: 10.1038/s41598-022-14143-8.

P. Nagaraj, V. Muneeswaran, and G. Deshik, "Ensemble Machine Learning (Grid Search & Random Forest) based Enhanced Medical Expert Recommendation System for Diabetes Mellitus Prediction," in 2022 3rd International Conference on Electronics and Sustainable Communication Systems (ICESC), pp. 757–765, 2022, doi: 10.1109/ICESC54411.2022.9885312.

H. Ohanyan et al., "Associations between the urban exposome and type 2 diabetes: Results from penalised regression by least absolute shrinkage and selection operator and random forest models," Environment International, vol. 170, p. 107592, 2022, doi: 10.1016/j.envint.2022.107592.

S. Gündoğdu, "Efficient prediction of early-stage diabetes using XGBoost classifier with random forest feature selection technique," Multimed Tools Appl., vol. 82, no. 22, pp. 34163–34181, 2023, doi: 10.1007/s11042-023-15165-8.

S. You and M. Kang, "A Study on Methods to Prevent Pima Indians Diabetes using SVM," Korean Journal of Artificial Intelligence, vol. 8, no. 2, pp. 7–10, 2020, doi: 10.24225/KJAI.2020.VOL8.NO2.7.

Y. Aggarwal, J. Das, P. M. Mazumder, R. Kumar, and R. K. Sinha, "Heart rate variability features from nonlinear cardiac dynamics in identification of diabetes using artificial neural network and support vector machine," Biocybernetics and Biomedical Engineering, vol. 40, no. 3, pp. 1002–1009, 2020, doi: 10.1016/j.bbe.2020.05.001.

D. C. E. Saputra, K. Sunat, and T. Ratnaningsih, "A New Artificial Intelligence Approach Using Extreme Learning Machine as the Potentially Effective Model to Predict and Analyze the Diagnosis of Anemia," Healthcare, vol. 11, no. 5, p. 697, 2023, doi: 10.3390/healthcare11050697.

P. S. Washburn, Mahendran, Dhanasekharan, Periyasamy, and Murugeswari, "Investigation of severity level of diabetic retinopathy using adaboost classifier algorithm," Materials Today: Proceedings, vol. 33, pp. 3037–3042, 2020, doi: 10.1016/j.matpr.2020.03.199.

X. Wang et al., "Exploratory study on classification of diabetes mellitus through a combined Random Forest Classifier," BMC Med Inform Decis Mak, vol. 21, no. 1, p. 105, 2021, doi: 10.1186/s12911-021-01471-4.

D. C. Yadav and S. Pal, "An Experimental Study of Diversity of Diabetes Disease Features by Bagging and Boosting Ensemble Method with Rule Based Machine Learning Classifier Algorithms," SN Comput. Sci., vol. 2, no. 1, p. 50, 2021, doi: 10.1007/s42979-020-00446-y.

D. C. E. Saputra, A. Azhari, and A. Ma’arif, "K-Nearest Neighbor of Beta Signal Brainwave to Accelerate Detection of Concentration on Student Learning Outcomes," Engineering Letters, vol. 30, no. 1, pp. 318–234, 2022.

H. Mzoughi et al., "Deep Multi-Scale 3D Convolutional Neural Network (CNN) for MRI Gliomas Brain Tumor Classification," J. Digit Imaging, vol. 33, no. 4, pp. 903–915, 2020, doi: 10.1007/s10278-020-00347-9.

R. D. Joshi and C. K. Dhakal, "Predicting Type 2 Diabetes Using Logistic Regression and Machine Learning Approaches," IJERPH, vol. 18, no. 14, p. 7346, 2021, doi: 10.3390/ijerph18147346.

R. Krishnamoorthi et al., "A Novel Diabetes Healthcare Disease Prediction Framework Using Machine Learning Techniques," Journal of Healthcare Engineering, vol. 2022, pp. 1–10, 2022, doi: 10.1155/2022/1684017.

H. B. Kibria, M. Nahiduzzaman, M. O. F. Goni, M. Ahsan, and J. Haider, "An Ensemble Approach for the Prediction of Diabetes Mellitus Using a Soft Voting Classifier with an Explainable AI," Sensors, vol. 22, no. 19, p. 7268, 2022, doi: 10.3390/s22197268.




DOI: https://doi.org/10.18196/jrc.v4i6.20898

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Dimas Chaerul Ekty Saputra, Alfian Ma'arif, Khamron Sunat

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 


Journal of Robotics and Control (JRC)

P-ISSN: 2715-5056 || E-ISSN: 2715-5072
Organized by Peneliti Teknologi Teknik Indonesia
Published by Universitas Muhammadiyah Yogyakarta in collaboration with Peneliti Teknologi Teknik Indonesia, Indonesia and the Department of Electrical Engineering
Website: http://journal.umy.ac.id/index.php/jrc
Email: jrcofumy@gmail.com


Kuliah Teknik Elektro Terbaik