Portable Fabric-Based Soft Glove Controlled with Single-Channel Electroencephalography
Abstract
Keywords
Full Text:
PDFReferences
S. Kim, M. A. Nussbaum, M. I. Mokhlespour Esfahani, M. M. Alemi, B. Jia, and E. Rashedi, “Assessing the influence of a passive, upper extremity exoskeletal vest for tasks requiring arm elevation: Part II – ‘Unexpected’ effects on shoulder motion, balance, and spine loading,” Appl. Ergon., vol. 70, pp. 323–330, Jul. 2018, doi: 10.1016/j.apergo.-2018.02.024.
D. Sui, J. Fan, H. Jin, X. Cai, J. Zhao, and Y. Zhu, “Design of a wearable upper-limb exoskeleton for activities assistance of daily living,” in 2017 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), Jul. 2017, pp. 845–850. doi: 10.1109/AIM.2017.8014123.
T. Lenzi et al., “The neuro-robotics paradigm: NEURARM, NEUROExos, HANDEXOS,” in 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Sep. 2009, pp. 2430–2433. doi: 10.1109/IEMBS.2009.5334957.
D. R. Dudley, B. A. Knarr, K.-C. Siu, J. Peck, B. Ricks, and J. M. Zuniga, “Testing of a 3D printed hand exoskeleton for an individual with stroke: a case study,” Disabil. Rehabil. Assist. Technol., vol. 16, no. 2, Art. no. 2, Feb. 2021, doi: 10.1080/17483107.2019.1646823.
B. W. K. Ang and C.-H. Yeow, “Print-it-Yourself (PIY) glove: A fully 3D printed soft robotic hand rehabilitative and assistive exoskeleton for stroke patients,” in 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Sep. 2017, pp. 1219–1223. doi: 10.1109/IROS.2017.8202295.
M. Li et al., “A 3D-printed soft hand exoskeleton with finger abduction assistance,” in 2019 16th International Conference on Ubiquitous Robots (UR), Jun. 2019, pp. 319–322. doi: 10.1109/URAI.2019.-8768611.
R. Ismail, M. Ariyanto, K. A. Pambudi, J. W. Syafei, and G. P. Ananto, “Extra robotic thumb and exoskeleton robotic fingers for patient with hand function disability,” in 2017 4th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI), Sep. 2017, pp. 1–6. doi: 10.1109/EECSI.2017.8239166.
N. S. Shalal and W. S. Aboud, “Smart Robotic Exoskeleton: a 3-DOF for Wrist-forearm Rehabilitation,” J. Robot. Control JRC, vol. 2, no. 6, Art. no. 6, Nov. 2021, doi: 10.18196/jrc.26125.
R. K. Salih and W. S. Aboud, “Smart Robotic Exoskeleton: Constructing Using 3D Printer Technique for Ankle-Foot Rehabilitation,” J. Robot. Control JRC, vol. 4, no. 4, Art. no. 4, Aug. 2023, doi: 10.18196/jrc.v4i4.18429.
T. A. Georgiou, D. Asnaghi, A. Liang, and A. M. Agogino, “The Sparthan Three-Dimensional Printed Exo-Glove: A Preliminary Evaluation of Performance Via Case Study,” J. Med. Devices, vol. 13, no. 031007, Jul. 2019, doi: 10.1115/1.4043976.
Y. Bouteraa, I. B. Abdallah, and A. M. Elmogy, “Training of Hand Rehabilitation Using Low Cost Exoskeleton and Vision-Based Game Interface,” J. Intell. Robot. Syst., vol. 96, no. 1, pp. 31–47, Oct. 2019, doi: 10.1007/s10846-018-0966-6.
J. Vertongen and D. Kamper, “Design of a 3D printed hybrid mechanical structure for a hand exoskeleton,” Curr. Dir. Biomed. Eng., vol. 6, no. 2, Sep. 2020, doi: 10.1515/cdbme-2020-2003.
J. Kopowski, D. Mikołajewski, P. Kotlarz, E. Dostatni, and I. Rojek, “A Semi-Automated 3D-Printed Chainmail Design Algorithm with Preprogrammed Directional Functions for Hand Exoskeleton,” Appl. Sci., vol. 12, no. 10, Art. no. 10, Jan. 2022, doi: 10.3390/app12105007.
K. Anandan, N. Rajagopalan, Mohanavelu, and S. Mary, “Design and development of biosignal controlled hand exoskeleton for assistive purposes,” J. Mech. Med. Biol., vol. 23, no. 06, p. 2340033, Aug. 2023, doi: 10.1142/S021951942340033X.
M. Khantan et al., “The NuroSleeve, a user-centered 3D printed hybrid orthosis for individuals with upper extremity impairment,” J. NeuroEngineering Rehabil., vol. 20, no. 1, p. 103, Aug. 2023, doi: 10.1186/s12984-023-01228-2.
A. R. M. Affandi and S. A. Abdullah, “Design of Thumb Exoskeleton Rehabilitation Device,” Int. J. Eng. Technol., vol. 7, no. 4.26, Art. no. 4.26, Nov. 2018, doi: 10.14419/ijet.v7i4.26.22148.
P. Polygerinos, Z. Wang, K. C. Galloway, R. J. Wood, and C. J. Walsh, “Soft robotic glove for combined assistance and at-home rehabilitation,” Robot. Auton. Syst., vol. 73, pp. 135–143, Nov. 2015, doi: 10.1016/j.robot.2014.08.014.
P. Polygerinos, K. C. Galloway, S. Sanan, M. Herman, and C. J. Walsh, “EMG controlled soft robotic glove for assistance during activities of daily living,” in 2015 IEEE International Conference on Rehabilitation Robotics (ICORR), Aug. 2015, pp. 55–60. doi: 10.1109/ICORR.2015.7281175.
P. Polygerinos et al., “Towards a soft pneumatic glove for hand rehabilitation,” in 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, Nov. 2013, pp. 1512–1517. doi: 10.1109/IROS.2013.6696549.
H. Kim et al., “Development of Wearable Finger Prosthesis with Pneumatic Actuator for Patients with Partial Amputations,” Actuators, vol. 12, no. 12, Art. no. 12, Dec. 2023, doi: 10.3390/act12120434.
D. Duanmu, X. Li, W. Huang, and Y. Hu, “Soft Finger Rehabilitation Exoskeleton of Biomimetic Dragonfly Abdominal Ventral Muscles: Center Tendon Pneumatic Bellows Actuator,” Biomimetics, vol. 8, no. 8, Art. no. 8, Dec. 2023, doi: 10.3390/biomimetics8080614.
G. Jackson and H. A. Abdullah, “Development and Testing of a Soft Exoskeleton Robotic Hand Training Device,” Sensors, vol. 23, no. 20, Art. no. 20, Jan. 2023, doi: 10.3390/s23208395.
J. C. Maldonado-Mejía et al., “A fabric-based soft hand exoskeleton for assistance: the ExHand Exoskeleton,” Front. Neurorobotics, vol. 17, 2023, Accessed: Jan. 06, 2024. [Online]. Available: https://www.frontiersin.org/articles/10.3389/fnbot.2023.1091827
L. Gerez, G. Gao, A. Dwivedi, and M. Liarokapis, “A Hybrid, Wearable Exoskeleton Glove Equipped With Variable Stiffness Joints, Abduction Capabilities, and a Telescopic Thumb,” IEEE Access, vol. 8, pp. 173345–173358, 2020, doi: 10.1109/ACCESS.2020.3025273.
N. Takahashi, S. Furuya, and H. Koike, “Soft Exoskeleton Glove with Human Anatomical Architecture: Production of Dexterous Finger Movements and Skillful Piano Performance,” IEEE Trans. Haptics, vol. 13, no. 4, pp. 679–690, Oct. 2020, doi: 10.1109/TOH.2020.-2993445.
K. H. L. Heung, R. K. Y. Tong, A. T. H. Lau, and Z. Li, “Robotic Glove with Soft-Elastic Composite Actuators for Assisting Activities of Daily Living,” Soft Robot., vol. 6, no. 2, pp. 289–304, Apr. 2019, doi: 10.1089/soro.2017.0125.
B. B. Kang, H. Choi, H. Lee, and K.-J. Cho, “Exo-Glove Poly II: A Polymer-Based Soft Wearable Robot for the Hand with a Tendon-Driven Actuation System,” Soft Robot., vol. 6, no. 2, Art. no. 2, Apr. 2019, doi: 10.1089/soro.2018.0006.
S.-S. Yun, B. B. Kang, and K.-J. Cho, “Exo-Glove PM: An Easily Customizable Modularized Pneumatic Assistive Glove,” IEEE Robot. Autom. Lett., vol. 2, no. 3, Art. no. 3, Jul. 2017, doi: 10.1109/-LRA.2017.2678545.
J. D. Setiawan, M. Ariyanto, S. Nugroho, M. Munadi, and R. Ismail, “A Soft Exoskeleton Glove Incorporating Motor-Tendon Actuator for Hand Movements Assistance,” Int. Rev. Autom. Control IREACO, vol. 13, no. 1, Art. no. 1, Jan. 2020, doi: 10.15866/ireaco.v13i1.18274.
J. D. Setiawan et al., “Fuzzy Logic Control for a Soft Exoskeleton Glove Using a Motor-Tendon Actuator,” Ing. E Investig., vol. 41, no. 1, Apr. 2021, doi: 10.15446/ing.investig.v41n1.81531.
J. Yang, H. Xie, and J. Shi, “A novel motion-coupling design for a jointless tendon-driven finger exoskeleton for rehabilitation,” Mech. Mach. Theory, vol. 99, pp. 83–102, May 2016, doi: 10.1016/-j.mechmachtheory.2015.12.010.
P. Tran et al., “FLEXotendon Glove-III: Voice-Controlled Soft Robotic Hand Exoskeleton With Novel Fabrication Method and Admittance Grasping Control,” IEEEASME Trans. Mechatron., vol. 27, no. 5, pp. 3920–3931, Oct. 2022, doi: 10.1109/TMECH.-2022.3148032.
W. Chen et al., “Soft Exoskeleton With Fully Actuated Thumb Movements for Grasping Assistance,” IEEE Trans. Robot., vol. 38, no. 4, pp. 2194–2207, Aug. 2022, doi: 10.1109/TRO.2022.3148909.
L. Yang, F. Zhang, J. Zhu, and Y. Fu, “A Portable Device for Hand Rehabilitation With Force Cognition: Design, Interaction, and Experiment,” IEEE Trans. Cogn. Dev. Syst., vol. 14, no. 2, pp. 599–607, Jun. 2022, doi: 10.1109/TCDS.2021.3055626.
D. Yoshikawa, H. Kawamoto, and Y. Sankai, “Development of a wearable cybernic glove that enables object grasping and gripping force measurement with open finger pad,” Adv. Robot., vol. 37, no. 14, pp. 924–941, Jul. 2023, doi: 10.1080/01691864.2023.2226202.
R. C. Silva et al., “Biomimetic Design of a Tendon-Driven Myoelectric Soft Hand Exoskeleton for Upper-Limb Rehabilitation,” Biomimetics, vol. 8, no. 3, Art. no. 3, Jul. 2023, doi: 10.3390/-biomimetics8030317.
P. Tran, D. Elliott, K. Herrin, and J. P. Desai, “Towards comprehensive evaluation of the FLEXotendon glove-III: a case series evaluation in pediatric clinical cases and able-bodied adults,” Biomed. Eng. Lett., vol. 13, no. 3, pp. 485–494, Aug. 2023, doi: 10.1007/s13534-023-00280-0.
D. Copaci, E. Cano, L. Moreno, and D. Blanco, “New Design of a Soft Robotics Wearable Elbow Exoskeleton Based on Shape Memory Alloy Wire Actuators,” Appl. Bionics Biomech., vol. 2017, p. e1605101, Sep. 2017, doi: 10.1155/2017/1605101.
Y. Wang, S. Zheng, Z. Song, J. Pang, and J. Li, “A Coupling Dynamic Model for Studying the Physical Interaction Between a Finger Exoskeleton and a Human Finger,” IEEE Access, vol. 8, pp. 125412–125422, 2020, doi: 10.1109/ACCESS.2020.3007799.
A. Hadi, K. Alipour, S. Kazeminasab, and M. Elahinia, “ASR glove: A wearable glove for hand assistance and rehabilitation using shape memory alloys,” J. Intell. Mater. Syst. Struct., vol. 29, no. 8, Art. no. 8, May 2018, doi: 10.1177/1045389X17742729.
D. Hwang, J. Lee, and K. Kim, “On the design of a miniature haptic ring for cutaneous force feedback using shape memory alloy actuators,” Smart Mater. Struct., vol. 26, no. 10, p. 105002, Sep. 2017, doi: 10.1088/1361-665X/aa860d.
M. F. Simons et al., “B:Ionic Glove: A Soft Smart Wearable Sensory Feedback Device for Upper Limb Robotic Prostheses,” IEEE Robot. Autom. Lett., vol. 6, no. 2, pp. 3311–3316, Apr. 2021, doi: 10.1109/-LRA.2021.3064269.
K. J. D. Laurentis and C. Mavroidis, “Mechanical design of a shape memory alloy actuated prosthetic hand,” Technol. Health Care, vol. 10, no. 2, pp. 91–106, Jan. 2002, doi: 10.3233/THC-2002-10202.
Q. Xie et al., “Design of a SMA-based soft composite structure for wearable rehabilitation gloves,” Front. Neurorobotics, vol. 17, 2023, Accessed: Jan. 06, 2024. [Online]. Available: https://www.-frontiersin.org/articles/10.3389/fnbot.2023.1047493
S. Kazeminasab, A. Hadi, K. Alipour, and M. Elahinia, “Force and motion control of a tendon-driven hand exoskeleton actuated by shape memory alloys,” Ind. Robot Int. J., vol. 45, no. 5, pp. 623–633, Jan. 2018, doi: 10.1108/IR-01-2018-0020.
T. Shahid, D. Gouwanda, S. G. Nurzaman, and A. A. Gopalai, “Moving toward Soft Robotics: A Decade Review of the Design of Hand Exoskeletons,” Biomimetics, vol. 3, no. 3, Art. no. 3, Sep. 2018, doi: 10.3390/biomimetics3030017.
V. W. Oguntosin, Y. Mori, H. Kim, S. J. Nasuto, S. Kawamura, and Y. Hayashi, “Design and Validation of Exoskeleton Actuated by Soft Modules toward Neurorehabilitation—Vision-Based Control for Precise Reaching Motion of Upper Limb,” Front. Neurosci., vol. 11, 2017, Accessed: Dec. 06, 2022. [Online]. Available: https://www.-frontiersin.org/articles/10.3389/fnins.2017.00352
T. Triwiyanto et al., “Embedded Machine Learning Using a Multi-Thread Algorithm on a Raspberry Pi Platform to Improve Prosthetic Hand Performance,” Micromachines, vol. 13, no. 2, Art. no. 2, Feb. 2022, doi: 10.3390/mi13020191.
J. Luo, C. Liu, Y. Feng, and C. Yang, “A method of motion recognition based on electromyographic signals,” Adv. Robot., vol. 34, no. 15, Art. no. 15, Aug. 2020, doi: 10.1080/01691864.2020.1750480.
A. Waris, I. K. Niazi, M. Jamil, K. Englehart, W. Jensen, and E. N. Kamavuako, “Multiday Evaluation of Techniques for EMG-Based Classification of Hand Motions,” IEEE J. Biomed. Health Inform., vol. 23, no. 4, Art. no. 4, Jul. 2019, doi: 10.1109/JBHI.2018.2864335.
R. S. Araujo, C. R. Silva, S. P. N. Netto, E. Morya, and F. L. Brasil, “Development of a Low-Cost EEG-Controlled Hand Exoskeleton 3D Printed on Textiles,” Front. Neurosci., vol. 15, 2021, Accessed: Dec. 06, 2022. [Online]. Available: https://www.frontiersin.org/-articles/10.3389/fnins.2021.661569
N. Cheng et al., “Brain-Computer Interface-Based Soft Robotic Glove Rehabilitation for Stroke,” IEEE Trans. Biomed. Eng., vol. 67, no. 12, Art. no. 12, Dec. 2020, doi: 10.1109/TBME.2020.2984003.
N. Guo et al., “SSVEP-Based Brain Computer Interface Controlled Soft Robotic Glove for Post-Stroke Hand Function Rehabilitation,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 30, pp. 1737–1744, 2022, doi: 10.1109/TNSRE.2022.3185262.
T. Jumphoo, M. Uthansakul, P. Duangmanee, N. Khan, and P. Uthansakul, “Soft Robotic Glove Controlling Using Brainwave Detection for Continuous Rehabilitation at Home,” Comput. Mater. Contin., vol. 66, no. 1, Art. no. 1, 2020, doi: 10.32604/cmc.-2020.012433.
W. O. Tatum, “Ellen R. Grass Lecture: Extraordinary EEG,” Neurodiagnostic J., vol. 54, no. 1, Art. no. 1, Mar. 2014, doi: 10.1080/21646821.2014.11079932.
R. Alazrai, M. Abuhijleh, H. Alwanni, and M. I. Daoud, “A Deep Learning Framework for Decoding Motor Imagery Tasks of the Same Hand Using EEG Signals,” IEEE Access, vol. 7, pp. 109612–109627, 2019, doi: 10.1109/ACCESS.2019.2934018.
H. A. Ali et al., “EEG-based Brain Computer Interface Prosthetic Hand using Raspberry Pi 4,” Int. J. Adv. Comput. Sci. Appl. IJACSA, vol. 12, no. 9, Art. no. 9, Sep. 2021, doi: 10.14569/IJACSA.-2021.0120905.
A. M. Cruz-Rodríguez and H. Sánchez-Machet, “Prótesis de mano controlada con señales EEG,” MOMENTO, no. 63, Art. no. 63, Jul. 2021, doi: 10.15446/mo.n63.96407.
Q. Huang, Z. Zhang, T. Yu, S. He, and Y. Li, “An EEG-/EOG-Based Hybrid Brain-Computer Interface: Application on Controlling an Integrated Wheelchair Robotic Arm System,” Front. Neurosci., vol. 13, 2019, Accessed: Dec. 06, 2022. [Online]. Available: https://www.frontiersin.org/articles/10.3389/fnins.2019.01243
E. O. Ige, A. Adetunla, A. Awesu, and O. K. Ajayi, “Sensitivity Analysis of a Smart 3D-Printed Hand Prosthetic,” J. Robot., vol. 2022, p. e9145352, Feb. 2022, doi: 10.1155/2022/9145352.
S. Kim, D. Y. Shin, T. Kim, S. Lee, J. K. Hyun, and S.-M. Park, “Enhanced Recognition of Amputated Wrist and Hand Movements by Deep Learning Method Using Multimodal Fusion of Electro-myography and Electroencephalography,” Sensors, vol. 22, no. 2, Art. no. 2, Jan. 2022, doi: 10.3390/s22020680.
S. R. Sreeja and D. Samanta, “Classification of multiclass motor imagery EEG signal using sparsity approach,” Neurocomputing, vol. 368, pp. 133–145, Nov. 2019, doi: 10.1016/j.neucom.2019.08.037.
M. Staffa, M. Giordano, and F. Ficuciello, “A WiSARD Network Approach for a BCI-Based Robotic Prosthetic Control,” Int. J. Soc. Robot., vol. 12, no. 3, Art. no. 3, Jul. 2020, doi: 10.1007/s12369-019-00576-1.
T. Triwiyanto, W. Caesarendra, V. Abdullayev, A. A. Ahmed, and H. Herianto, “Single Lead EMG signal to Control an Upper Limb Exoskeleton Using Embedded Machine Learning on Raspberry Pi,” J. Robot. Control JRC, vol. 4, no. 1, Art. no. 1, Feb. 2023, doi: 10.18196/jrc.v4i1.17364.
A. de F. Zanona et al., “Brain-computer interface combined with mental practice and occupational therapy enhances upper limb motor recovery, activities of daily living, and participation in subacute stroke,” Front. Neurol., vol. 13, 2023, Accessed: Jan. 06, 2024. [Online]. Available: https://www.frontiersin.org/articles/10.3389/-fneur.2022.1041978
A. A. Frolov et al., “Post-stroke Rehabilitation Training with a Motor-Imagery-Based Brain-Computer Interface (BCI)-Controlled Hand Exoskeleton: A Randomized Controlled Multicenter Trial,” Front. Neurosci., vol. 11, 2017, Accessed: Jan. 06, 2024. [Online]. Available: https://www.frontiersin.org/articles/10.3389/fnins.2017.00400
A. Chowdhury, A. Dutta, and G. Prasad, “Corticomuscular Co-Activation Based Hybrid Brain-Computer Interface for Motor Recovery Monitoring,” IEEE Access, vol. 8, pp. 174542–174557, 2020, doi: 10.1109/ACCESS.2020.3026037.
A. Jain and L. Kumar, “PreMovNet: Premovement EEG-Based Hand Kinematics Estimation for Grasp-and-Lift Task,” IEEE Sens. Lett., vol. 6, no. 7, pp. 1–4, Jul. 2022, doi: 10.1109/LSENS.2022.3183284.
D. Pei, P. Olikkal, T. Adali, and R. Vinjamuri, “Reconstructing Synergy-Based Hand Grasp Kinematics from Electro-encephalographic Signals,” Sensors, vol. 22, no. 14, Art. no. 14, Jan. 2022, doi: 10.3390/s22145349.
U. Asgher et al., “Motor Training Using Mental Workload (MWL) With an Assistive Soft Exoskeleton System: A Functional Near-Infrared Spectroscopy (fNIRS) Study for Brain–Machine Interface (BMI),” Front. Neurorobotics, vol. 15, 2021, Accessed: Jan. 06, 2024. [Online]. Available: https://www.frontiersin.org/articles/10.3389/-fnbot.2021.605751
G. Roy, A. K. Bhoi, S. Das, and S. Bhaumik, “Cross-correlated spectral entropy-based classification of EEG motor imagery signal for triggering lower limb exoskeleton,” Signal Image Video Process., vol. 16, no. 7, pp. 1831–1839, Oct. 2022, doi: 10.1007/s11760-022-02142-1.
DOI: https://doi.org/10.18196/jrc.v5i4.21211
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Joga Dharma Setiawan, Mochammad Ariyanto, Farika Tono Putri, Rifky Ismail, Lovenda Samudro
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Journal of Robotics and Control (JRC)
P-ISSN: 2715-5056 || E-ISSN: 2715-5072
Organized by Peneliti Teknologi Teknik Indonesia
Published by Universitas Muhammadiyah Yogyakarta in collaboration with Peneliti Teknologi Teknik Indonesia, Indonesia and the Department of Electrical Engineering
Website: http://journal.umy.ac.id/index.php/jrc
Email: jrcofumy@gmail.com