System Identification and Control Strategy on Electric Power Steering DC Motor

Bustanul Arifin, Agus Adhi Nugroho, Eka Nuryanto Budisusila, Muhammad Khosyi'in

Abstract


Power steering technology help human to control the car. The hydraulic power steering system now tends to be replaced by the electric power steering system (EPS). As the main driver that require precise control. The contribution of this research is to obtain system identification of EPS motor and novelty control strategy to achieve stable control better. Motor control require an appropriate mathematical model and up-down-up down signals of Pseudo Random Binary Signal Sequence (PRBS) were used. The modelling method used was the Numerical Algorithm for Subspace State Space System Identification (N4SID). The quality of the modeling needs to be measured to see whether it was close to the original signal. The validation of the model obtained tested using Variance Accounted For (VAC), Akaike Information Criterion (AIC), and Final Prediction Error (FPE). The best mathematical model was developed on the basis of these three criteria, which is 3rd order model. The control strategy carried out by means of the Ziegler Nichols, Tyreus Luyben and Haugen tuning technique. With these three tuning methods, the control parameters obtained were used for Proprotional-Integral (PI) and Proportional-Integral-Derivative (PID) control. Based on the study, the Haugen control shows the best results of the two other controls, namely with a rise time value of 11,361 ms, overshoot of 6,898%, and steady state at 1.3 s. This show that PI control using the Haugen tuning method able to control the motor well. Robustness tests have also been carried out because the steering system is operated in unpredictable environmental conditions. The control greatly influenced the performance and stability of EPS control in the car's steering system.

Keywords


System Identification; EPS DC Motor; Myrio1900; Tuning Method; Performance; Stability.

Full Text:

PDF

References


C. Chen and Z. Li, “Research on Control and Optimization of Vehicle Steering Performance,” IEEE 6th Inf. Technol. Mechatronics Eng. Conf., pp. 2036–2039, 2022, doi: 10.1109/ITOEC53115.2022.9734596.

S. E. Miri, M. Azadi, and S. Pakdel, “Development of a duty cycle with K-means clustering technique for hydraulic steering in an instrumented TIBA vehicle,” Transp. Eng., vol. 8, no. 100114, 2022, doi: 10.1016/j.treng.2022.100114.

Y. Wang, X. Liu, J. Chen, W. Chen, C. Li, and D. Huo, “Design and control performance optimization of dual-mode hydraulic steering system for wheel loader,” Autom. Constr., vol. 143, no. 104539, 2022, doi: 10.1016/j.autcon.2022.104539.

G. Geng, Q. Shen, and H. Jiang, “ANFTS Mode Control for an Electronically Controlled Hydraulic Power Steering System on a Permanent Magnet Slip Clutch,” Energies MDPI, vol. 12, no. 9, 2019, doi: 10.3390/en12091739.

A. Mitov, T. Slavov, and J. Kralev, “Robustness Analysis of an Electrohydraulic Steering Control System Based on the Estimated Uncertainty Model,” Inf. MDPI, vol. 12, no. 12, 2021, doi: 10.3390/info12120512.

J. H. Choi, K. Nam, and S. Oh, “Steering feel improvement by mathematical modeling of the Electric Power Steering system,” Mechatronics, vol. 78, 2021, doi: 10.1016/j.mechatronics.2021.102629.

S. You, G. Kim, S. Lee, D. Shin, and W. Kim, “Neural Approximation-Based Adaptive Control Using Reinforced Gain for Steering Wheel Torque Tracking of Electric Power Steering System,” EEE Trans. Syst. Man, Cybern. Syst., vol. 53, no. 7, pp. 4216–4225, 2023, doi: 10.1109/TSMC.2023.3241452.

M. Irmer and H. Henrichfreise, “Design of a robust LQG Compensator for an Electric Power Steering,” IFAC-PapersOnLine, vol. 53, no. 2, 2020, doi: 10.1016/j.ifacol.2020.12.082.

H. Yang, S. Ademi, J. Paredes, and R. A. McMahon, “Comparative Study of Motor Topologies for Electric Power Steering System motor,” IEEE Work. Electr. Mach. Des. Control Diagnosis, pp. 40-45, 2021, doi: 10.1109/WEMDCD51469.2021.9425673.

Y. Tanaka, H. Minegishi, Y. Fujii, and A. Chiba, “Reduction of Torque Ripple and Radial Force Harmonics in Consequent-Pole Permanent Magnet Motor for Electric Power Steering Applications,” 25th Int. Conf. Electr. Mach. Syst., pp. 1-6, 2022, doi: 10.1109/ICEMS56177.2022.9982893.

S.-W. Song, M.-K. Hong, J. Lee, and W.-H. Kim, “A Study on Reduction of Cogging Torque and Magnet Usage through Intersect Magnet Consequent Pole Structure,” Energies, vol. 15, no. 23, 2022, doi: 10.3390/en15239255.

R. Manca et al., “Performance Assessment of an Electric Power Steering System for Driverless Formula Student Vehicles,” Actuators, vol. 10, no. 7, 2021, doi: 10.3390/act10070165.

P. Thomas and P. K. Shanmugam, “A review on mathematical models of electric vehicle for energy management and grid integration studies,” J. Energy Storage, vol. 55, p. 105468, 2022.

L. Maybury, P. Corcoran, and L. Cipcigan, “Mathematical modelling of electric vehicle adoption: A systematic literature review,” Transp. Res. Part D Transp. Environ., vol. 107, 2022, doi: 10.1016/j.trd.2022.103278.

M. Posypkin, A. Gorshenin, and V. Titarev, “Control, Optimization, and Mathematical Systems, Modeling of Complex,” Mathematics, vol. 10, no. 13, 2022, doi: 10.3390/books978-3-0365-7641-1.

K. Zimmermann, I. Zeidis, and V. Lysenko, “Mathematical model of a linear motor controlled by a periodic magnetic field considering dry and viscous friction,” Appl. Math. Model., vol. 89, no. 2, pp. 1155–1162, 2021, doi: 10.1016/j.apm.2020.08.021.

A. Szántó, É. Ádámkó, G. Juhász, and G. Á. Sziki, “Simultaneous measurement of the moment of inertia and braking torque of electric motors applying additional inertia,” Meas. J. Int. Meas. Confed., vol. 204, 2022, doi: 10.1016/j.measurement.2022.112135.

S. Pan, D. Wang, and W. Huang, “A novel small motor measurement system based on ultrasonic bearings,” Meas. J. Int. Meas. Confed., vol. 168, 2021, doi: 10.1016/j.measurement.2020.108307.

Y. Wen, G. Li, Q. Wang, R. Tang, Y. Liu, and H. Li, “Investigation on the Measurement Method for Output Torque of a Spherical Motor,” Appl. Sci., vol. 10, no. 7, 2020, doi: 10.3390/app10072510.

M. Akbaba and A. Dalcali, “A novel method for measuring inductances and analysis of shaded-pole motors,” Eng. Sci. Technol. an Int. J., vol. 36, 2022, doi: 10.1016/j.jestch.2022.101133.

G. Á. Sziki, A. Szántó, J. Kiss, G. Juhász, and É. Ádámkó, “Measurement System for the Experimental Study and Testing of Electric Motors at the Faculty of Engineering, University of Debrecen,” Appl. Sci., vol. 12, no. 19, 2022, doi: 10.3390/app121910095.

Z. Xu, C. Huang, H. Wang, D.-H. Lee, and F. Zhang, “Mathematical model of stepped rotor type 12/14 bearingless switched reluctance motor based on maxwell stress method,” Energy Reports, vol. 9, no. 8, pp. 556–566, 2023, doi: 10.1016/j.egyr.2023.04.345.

T. Zhang, G. Li, R. Zhou, Q. Wang, and L. Wang, “Torque Modeling of Reluctance Spherical Motors Using the Virtual Work Method,” Int. J. Appl. Electromagn. Mech., vol. 71, no. 3, pp. 199 – 219, 2023, doi: 10.3233/JAE-220104.

V. I. Ivlev and S. Y. Misyurin, “Parameter identification for mathematical model of vane air motor,” Procedia Comput. Sci., vol. 213, pp. 240–249, 2022, doi: 10.1016/j.procs.2022.11.062.

H. Shimoji, T. Ikeda, T. Todaka, S. Aihara, and K. Fujiwara, “Parameter identification for standardization of motor loss distribution measurement using thermographic camera,” J. Magn. Magn. Mater., vol. 591, p. 171694, 2024.

B. Arifin, A. A. Nugroho, B. Suprapto, S. A. D. Prasetyowati, and Z. Nawawi, “Review of Method for System Identification on Motors,” Int. Conf. Electr. Eng. Comput. Sci. Informatics, vol. 2021-Octob, no. October, pp. 257–262, 2021, doi: 10.23919/EECSI53397.2021.9624259.

A. Ouannou, F. Giri, A. Brouri, H. Oubouaddi, and C. Abdelaali, “Parameter Identification of Switched Reluctance Motor Using Exponential Swept-Sine Signal,” IFAC-PapersOnLine, vol. 55, no. 12, pp. 132–137, 2022, doi: 10.1016/j.ifacol.2022.07.300.

S. Zhou, D. Wang, and Y. Li, “Parameter identification of permanent magnet synchronous motor based on modified- fuzzy particle swarm optimization,” Energy Reports, vol. 9, no. 1, 2023, doi: 10.1016/j.egyr.2022.11.124.

C.-C. Peng and C.-Y. Su, “Modeling and Parameter Identification of a Cooling Fan for Online Monitoring,” IEEE Trans. Instrum. Meas., vol. 70, pp. 1–14, 2021, doi: doi: 10.1109/TIM.2021.3104375.

C.-C. Peng and T.-Y. Chen, “A recursive low-pass filtering method for a commercial cooling fan tray parameter online estimation with measurement noise,” Measurement, vol. 205, 2022, doi: 10.1016/j.measurement.2022.112193.

M. Nachtsheim, J. Ernst, C. Endisch, and R. Kennel, “Performance of Recursive Least Squares Algorithm Configurations for Online Parameter Identification of Induction Machines in an Automotive Environment,” IEEE Trans. Transp. Electrif., vol. 9, no. 3, pp. 4236–4254, 2023, doi: 10.1109/TTE.2023.3244619.

V. A. Thomas and K. Srinivasan, “Design and implementation of enhanced PID controller in embedded platform for realtime applications,” 2019 2nd Int. Conf. Power Embed. Drive Control (ICPEDC), Chennai, India, pp. 129–133, 2019, doi: 10.1109/ICPEDC47771.2019.9036491.

A. Zeno, M. Omtveit, and K. Uhlen, “Improvement of System Identification using N4SID and DBSCAN Clustering for Monitoring of Electromechanical Oscillations,” IEEE Belgrade PowerTech, pp. 01-06, 2023, doi: 10.1109/PowerTech55446.2023.10202776.

H. Q. T. Ngo, H. D. Nguven, and Q. V. Truong, “A Design of PID Controller Using FPGA-Realization for Motion Control Systems,” 2020 Int. Conf. Adv. Comput. Appl. (ACOMP), Quy Nhon, Vietnam, pp. 150–154, 2020, doi: 10.1109/ACOMP50827.2020.00030.

D. C. Dursun, A. Yildiz, and M. Polat, “Modeling of Synchronous Reluctance Motor and Open and Closed Loop Speed Control,” 2022 21st Int. Symp. INFOTEH-JAHORINA, pp. 1-6, 2022, doi: 10.1109/INFOTEH53737.2022.9751332.

M. K. Jayaram, “Analysis & Simulation of Open loop and Closed loop Control of a Flyback converter,” 2022 Int. Conf. Electron. Renew. Syst., pp. 11–14, 2022, doi: 10.1109/ICEARS53579.2022.9752398.

J. M. Diaz, R. Costa-Castello, and S. Dormido, “Closed-Loop Shaping Linear Control System Design: An Interactive Teaching/Learning Approach,” IEEE Control Syst. Mag., vol. 39, no. 5, pp. 58–74, 2019, doi: 10.1109/MCS.2019.2925255.

C. S. Rao, S. Santosh, and D. R. V, “Tuning optimal PID controllers for open loop unstable first order plus time delay systems by minimizing ITAE criterion,” IFAC-PapersOnLine, vol. 53, no. 1, pp. 123–128, 2020, doi: 10.1016/j.ifacol.2020.06.021.

R. Aisuwarya and Y. Hidayati, “Implementation of Ziegler-Nichols PID Tuning Method on Stabilizing Temperature of Hot-water Dispenser,” 2019 16th Int. Conf. Qual. Res. Int. Symp. Electr. Comput. Eng., pp. 1-5,2019, doi: 10.1109/QIR.2019.8898259.

Y. Liang, S. Li, C. Yan, M. Li, and C. Jiang, “Explaining the black-box model: A survey of local interpretation methods for deep neural networks,” Neurocomputing, vol. 419, pp. 168–182, 2021, doi: 10.1016/j.neucom.2020.08.011.

L. Orellana, L. Sainz, E. Prieto-Araujo, M. Cheah-Mané, H. Mehrjerdi, and O. Gomis-Bellmunt, “Study of black-box models and participation factors for the Positive-Mode Damping stability criterion,” Int. J. Electr. Power Energy Syst., vol. 148, 2023, doi: 10.1016/j.ijepes.2023.108957.

V. Anumola, C. P. R. Nadakuduru, and K. Vadde, “Implementation of Adaptive Cruise Control and Cloud based Black Box Technology for Modern Automotive Vehicles,” Int. Conf. Distrib. Comput. Electr. Circuits Electron., pp. 1–6, 2023, doi: 10.1109/ICDCECE57866.2023.10150905.

O. Loyola-González, “Black-Box vs. White-Box: Understanding Their Advantages and Weaknesses From a Practical Point of View,” IEEE Access, vol. 7, pp. 154096–154113, 2019, doi: 10.1109/ACCESS.2019.2949286.

G. Rojas-Dueñas, J.-R. Riba, K. Kahalerras, M. Moreno-Eguilaz, A. Kadechk, and A. Gomez-Pau, “Black-Box Modelling of a DC-DC Buck Converter Based on a Recurrent Neural Network,” IEEE Int. Conf. Ind. Technol., pp. 456–461, 2020, doi: 10.1109/ICIT45562.2020.9067098.

Y. Li, R. Lei, H. Hu, and K. Zhao, “A black box based model for phase change heat exchanger in refrigeration system simulations using Kriging interpolation method,” Int. J. Refrig., vol. 153, pp. 231–239, 2023, doi: 10.1016/j.ijrefrig.2023.05.005.

İ. Uyanık, U. Saranlı, M. M. Ankaralı, N. J. Cowan, and Ö. Morgül, “Frequency-Domain Subspace Identification of Linear Time-Periodic (LTP) Systems,” IEEE Trans. Automat. Contr., vol. 64, no. 6, pp. 2529–2536, 2019, doi: 10.1109/TAC.2018.2867360.

M. Yin, A. Iannelli, and R. S. Smith, “Subspace Identification of Linear Time-Periodic Systems With Periodic Inputs,” IEEE Control Syst. Lett., vol. 5, no. 1, pp. 145–150, 2021, doi: 10.1109/LCSYS.2020.3000950.

A. A. Rohmawati and P. H. Gunawan, “The Causality Effect on Vector Autoregressive Model: The Case for Rainfall Forecasting,” 2019 7th Int. Conf. Inf. Commun. Technol., pp. 1–5, 2019, doi: 10.1109/ICoICT.2019.8835379.

L. Yang, H. Wang, Y. El-Laham, J. I. L. Fonte, D. T. Pérez, and M. F. Bugallo, “Indoor Altitude Estimation of Unmanned Aerial Vehicles Using a Bank of Kalman Filters,” ICASSP 2020 - 2020 IEEE Int. Conf. Acoust. Speech Signal Process., pp. 5455-5459, 2020, doi: 10.1109/ICASSP40776.2020.9054203.

G. Brunetti, J. Šimůnek, D. Glöckler, and C. Stumpp, “Handling model complexity with parsimony: Numerical analysis of the nitrogen turnover in a controlled aquifer model setup,” J. Hydrol., vol. 584, 2020, doi: 10.1016/j.jhydrol.2020.124681.

G. Flood-Page, L. Boutonnier, and J.-M. Pereira, “Application of the Akaike Information Criterion to the interpretation of bender element tests,” Soil Dyn. Earthq. Eng., vol. 177, 2024, doi: 10.1016/j.soildyn.2023.108373.

M. Ingdal, R. Johnsen, and D. A. Harrington, “The Akaike information criterion in weighted regression of immittance data,” Electrochim. Acta, vol. 317, pp. 648–653, 2019, doi: 10.1016/j.electacta.2019.06.030.

G. Li, W. Chang, and H. Yang, “A Novel Combined Prediction Model for Monthly Mean Precipitation With Error Correction Strategy,” IEEE Access, vol. 8, pp. 141432–141445, 2020, doi: 10.1109/ACCESS.2020.3013354.

J.-U.-R. Chughtai, I. U. Haq, O. Shafiq, and M. Muneeb, “Travel Time Prediction Using Hybridized Deep Feature Space and Machine Learning Based Heterogeneous Ensemble,” IEEE Access, vol. 10, pp. 98127–98139, 2022, doi: 10.1109/ACCESS.2022.3206384.

S. Kaur and A. Jindal, “Singular Value Decomposition (SVD) based Image Tamper Detection Scheme,” 2020 Int. Conf. Inven. Comput. Technol., 2020, doi: 10.1109/ICICT48043.2020.9112432.

K. Li, H. Luo, C. Yang, and S. Yin, “Subspace-Aided Closed-Loop System Identification With Application to DC Motor System,” IEEE Trans. Ind. Electron., vol. 67, no. 3, pp. 2304–2313, 2020, doi: 10.1109/TIE.2019.2907447.

C. M. Pappalardo, Ş. İ. Lök, L. Malgaca, and D. Guida, “Experimental modal analysis of a single-link flexible robotic manipulator with curved geometry using applied system identification methods,” Mech. Syst. Signal Process., vol. 200, 2023, doi: 10.1016/j.ymssp.2023.110629.

S. N. Campelo, E. J. Jacobs IV, K. N. Aycock, and R. V. Davalos, “Real-Time Temperature Rise Estimation during Irreversible Electroporation Treatment through State-Space Modeling,” Bioeng., vol. 9, no. 10, p. 499, 2022, doi: 10.3390/bioengineering9100499.

E. S. Yadav and T. Indiran, “PRBS based model identification and GPC PID control design for MIMO Process,” Mater. Today Proc., vol. 17, no. 1, pp. 16–25, 2019, doi: 10.1016/j.matpr.2019.06.396.

G. Iadarola, P. Daponte, L. De Vito, and S. Rapuano, “On the Effects of PRBS Non-Idealities in Signal Reconstruction from AICs,” IEEE Trans. Instrum. Meas., vol. 72, pp. 1-11, 2023.

S. Liu and Y. Chen, “Photonic Random Demodulator With Improved Performance by Compressing the PRBS Amplitude,” IEEE Photonics Technol. Lett., vol. 36, no. 5, pp. 329–332, 2024, doi: 10.1109/LPT.2024.3354039.

D. Łuczak, “Nonlinear Identification with Constraints in Frequency Domain of Electric Direct Drive with Multi-Resonant Mechanical Part,” Energies, vol. 14, no. 21, 2021, doi: 10.3390/en14217190.

D. Walczuch, T. Nitzsche, T. Seidel, and J. Schoning, “Overview of Closed-Loop Control Systems and Artificial Intelligence Utilization in Greenhouse Farming,” 2022 IEEE Int. Conf. Omni-layer Intell. Syst., pp. 1-6 ,2022, doi: 10.1109/COINS54846.2022.9854938.

M. Schwenzer, M. Ay, T. Bergs, and D. Abel, “Review on model predictive control: an engineering perspective,” Int. J. Adv. Manuf. Technol., vol. 117, pp. 1327–1349, 2021, doi: 10.1007/s00170-021-07682-3.

B. Verma and P. K. Padhy, “Robust Fine Tuning of Optimal PID Controller With Guaranteed Robustness,” IEEE Trans. Ind. Electron., vol. 67, no. 6, pp. 4911–4920, 2020, doi: 10.1109/TIE.2019.2924603.

F. Niu, K. Sun, S. Huang, Y. Hu, D. Liang, and Y. Fang, “A Review on Multimotor Synchronous Control Methods,” IEEE Trans. Transp. Electrif., vol. 9, no. 1, pp. 22–33, 2023, doi: 10.1109/TTE.2022.3168647.

A. Turan, “PID controller design with a new method based on proportional gain for cruise control system,” J. Radiat. Res. Appl. Sci., vol. 17, no. 1, 2024, doi: 10.1016/j.jrras.2023.100810.

V. Rajs, N. L. Rašević, M. Z. Bodić, M. M. Zuković, and K. B. Babković, “PID Controller Design for Motor Speed Regulation with Linear and Non-Linear Load,” IFAC-PapersOnLine, vol. 55, no. 4, pp. 225–229, 2022, doi: 10.1016/j.ifacol.2022.06.037.

D. Debnath, P. Malla, and S. Roy, “Position control of a DC servo motor using various controllers: A comparative study,” Mater. Today Proc., vol. 58, no. 1, pp. 484–488, 2022, doi: 10.1016/j.matpr.2022.03.008.

V. Zhmud, W. Hardt, O. Stukach, L. Dimitrov, and J. Nosek, “The Parameter Optimization of the PID and PIDD Controller for a Discrete Object,” Dyn. Syst. Mech. Mach., pp. 1-6, 2019, doi: 10.1109/Dynamics47113.2019.8944718.

J. Fišer and P. Zítek, “PID Controller Tuning via Dominant Pole Placement in Comparison with Ziegler-Nichols Tuning,” IFAC-PapersOnLine, vol. 52, no. 18, pp. 43–48, 2019, doi: 10.1016/j.ifacol.2019.12.204.

I. A. A. Jamil and M. Moghavvemi, “Optimization of PID Controller Tuning method using Evolutionary Algorithms,” 2021 Innov. Power Adv. Comput. Technol. (i-PACT), pp. 1–7, 2021, doi: 10.1109/i-PACT52855.2021.9696875.

C. Wang, Y. Zhuang, Y. Dong, L. Zhang, L. Liu, and J. Du, “Design and control analysis of the side-stream extractive distillation column with low concentration intermediate-boiling entrainer,” Chem. Eng. Sci., vol. 247, 2022, doi: 10.1016/j.ces.2021.116915.

J. Liu et al., “Dynamic controllability strategy of reactive-extractive dividing wall column for the separation of water-containing ternary azeotropic mixture,” Sep. Purif. Technol., vol. 304, 2023, doi: 10.1016/j.seppur.2022.122338.

T. Bestwick and K. V. Camarda, “Artificial Neural Network-Based Real-Time PID Controller Tuning,” Comput. Aided Chem. Eng. Elsevier, vol. 52, pp. 1609–1614, 2023, doi: 10.1016/B978-0-443-15274-0.50256-0.

B. M. Abubakr, O. A. Abolaeha, and A. A. Hameda, “Performance Evaluation of the Good Gain Method Against Other Methods Using a Water Level Control System,” Int. J. Syst. Appl. Eningeering Dev., vol. 14, 2020, doi: 10.46300/91015.2020.14.8.

B. Wu, X. Han, and N. Hui, “System Identification and Controller Design of a Novel Autonomous Underwater Vehicle,” Mach., vol. 9, no. 6, 20121, doi: 10.3390/machines9060109.

K. R. A. Govind and S. Mahapatra, “Design of PI/PID Control Algorithm for a Benchmark Heat Exchanger System using Frequency Domain Specifications,” IEEE Int. Power Renew. Energy Conf., pp. 1–5, 2022, doi: 10.1109/IPRECON55716.2022.10059570.

L. Fan and Z. Miao, “Admittance-Based Stability Analysis: Bode Plots, Nyquist Diagrams or Eigenvalue Analysis?,” IEEE Trans. Power Syst., vol. 35, no. 4, pp. 3312–3315, 2020, doi: 10.1109/TPWRS.2020.2996014.

G. W. Roberts, "A Modified Nyquist Stability Criteria that Takes into Account Input/Output Circuit Loading Effects," 2021 19th IEEE International New Circuits and Systems Conference (NEWCAS), Toulon, France, pp. 1-4, 2021, doi: 10.1109/NEWCAS50681.2021.9462771.

L. Li, Y. Yu, L. Hu, X. Ruan, R. Su, and X. Fu, “Modelling and Stability Analysis for a Magnetically Levitated Slice Motor (MLSM) with Gyroscopic Effect and Non-Collocated Structure Based on the Extended Inverse Nyquist Stability Criterion,” Mach., vol. 9, no. 9, 2021, doi: 10.3390/machines9090201.

J. Samanes et al., “Control Design and Stability Analysis of Power Converters: The MIMO Generalized Bode Criterion,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 8, no. 2, pp. 1880–1893, 2020, doi: doi: 10.1109/JESTPE.2019.2941829.

S. Alghamdi, A. B. Wazir, H. H. H. Awaji, A. A. Alhussainy, H. F. Sindi, and M. Raw, “Tuning PID Controller Parameters of Automatic Voltage Regulator (AVR) Using Particle Swarm Optimization : A Comparative Study,” IEEE PES Conf. Innov. Smart Grid Technol., pp. 1–6, 2023, doi: 10.1109/ISGTMiddleEast56437.2023.10078497.

P. Gopi, S. Srinivasan, and M. Krishnamoorthy, “Disk margin based robust stability analysis of a DC motor drive,” Eng. Sci. Technol. an Int. J., vol. 32, 2022, doi: 10.1016/j.jestch.2021.10.006.

P. Oziablo, D. Mozyrska, and M. Wyrwas, “Discrete-Time Fractional, Variable-Order PID Controller for a Plant with Delay,” Entropy, vol. 22, no. 7, 2020, doi: 10.3390/e22070771.

A. Tsavnin, S. Efimov, and S. Zamyatin, “Overshoot Elimination for Control Systems with Parametric Uncertainty via a PID Controller,” Symmetry, vol. 12, no. 7, 2020, doi: 10.3390/sym12071092.

A. M. Abdel-hamed, A. Y. Abdelaziz, and A. El-Shahat, “Design of a 2DOF-PID Control Scheme for Frequency/Power Regulation in a Two-Area Power System Using Dragonfly Algorithm with Integral-Based Weighted Goal Objective,” Energies, vol. 16, no. 1, 2023, doi: 10.3390/en16010486.

H. Budiarto, V. Triwidyaningrum, F. Umam, and A. Dafid, “Implementation of Automatic DC Motor Braking PID Control System on (Disc Brakes),” J. Robot. Control, vol. 4, no. 3, 2023, doi: 10.18196/jrc.v4i3.18505.

M. Y. Silaa, O. Barambones, and A. Bencherif, “A Novel Adaptive PID Controller Design for a PEM Fuel Cell Using Stochastic Gradient Descent with Momentum Enhanced by Whale Optimizer,” Electron., vol. 11, no. 16, 2022, doi: 10.3390/electronics11162610.

R. Büchi, “PID Controller Parameter Tables for Time-Delayed Systems Optimized Using Hill-Climbing,” Signals, vol. 3, no. 1, pp. 146–156, 2022, doi: 10.3390/signals3010010.

S. S. Husain, A. Q. Al-Dujaili, A. A. Jaber, A. J. Humaidi, and R. S. Al-Azzawi, “Design of a Robust Controller Based on Barrier Function for Vehicle Steer-by-Wire Systems,” World Electr. Veh. J., vol. 15, no. 1, 2024, doi: 10.3390/wevj15010017.




DOI: https://doi.org/10.18196/jrc.v5i3.21614

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Bustanul Arifin, Agus Adhi Nugroho, Eka Nuryanto Budisusila, Muhammad Khosyi'in

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 


Journal of Robotics and Control (JRC)

P-ISSN: 2715-5056 || E-ISSN: 2715-5072
Organized by Peneliti Teknologi Teknik Indonesia
Published by Universitas Muhammadiyah Yogyakarta in collaboration with Peneliti Teknologi Teknik Indonesia, Indonesia and the Department of Electrical Engineering
Website: http://journal.umy.ac.id/index.php/jrc
Email: jrcofumy@gmail.com


Kuliah Teknik Elektro Terbaik