Analysis and Performance Comparison of Fuzzy Inference Systems in Handling Uncertainty: A Review

Furizal Furizal, Alfian Ma'arif, Setiawan Ardi Wijaya, Murni Murni, Iswanto Suwarno

Abstract


Uncertainty is an inevitable characteristic in human life and systems, posing challenges in decision-making and data analysis. Fuzzy theory emerges to address this uncertainty by describing variables with vague or uncertain values, one of which is the Fuzzy Inference System (FIS). This research analyzes and compares the performance of FIS from previous studies as a solution to manage uncertainty. FIS allows for flexible and responsive representations of truth levels using human-like linguistic rules. Common FIS methods include FIS-M, FIS-T, and FIS-S, each with different inference and defuzzification approaches. The findings of this research review, referencing previous studies, indicate that the application of FIS in various contexts such as prediction, medical diagnosis, and financial decision-making, yields very high accuracy levels up to 99%. However, accuracy comparisons show variations, with FIS-M tending to achieve more stable accuracy based on the referenced studies. The accuracy difference among FIS-M studies is not significantly different, only around 7.55%. Meanwhile, FIS-S has a wider accuracy range, from 81.48% to 99% (17.52%). FIS-S performs best if it can determine influencing factors well, such as determining constant values in its fuzzy rules. Additionally, the performance comparison of FIS can also be influenced by other factors such as data complexity, variables, domain, membership functions (curves), fuzzy rules, and defuzzification methods used in the study. Therefore, it is important to consider these factors and select the most suitable FIS method to manage uncertainty in the given situation.

Keywords


Fuzzy Inference System; Tsukamoto; Sugeno; Mamdani; Uncertainty.

Full Text:

PDF

References


S. Peng, T. Yang, and I. R. H. Rockett, “Life stress and uncertainty stress: which is more associated with unintentional injury?,” Psychol Health Med, vol. 25, no. 6, pp. 774–780, Jul. 2020, doi: 10.1080/13548506.2019.1687913.

A. Bonnet and J. Glazier, “Educating for uncertainty in what is certainly an uncertain world,” Teachers and Teaching, pp. 1–6, Feb. 2024, doi: 10.1080/13540602.2024.2320160.

Z. Şen, “Philosophical and Logical Principles in Science,” in Shallow and Deep Learning Principles, pp. 67–139, 2023, doi: 10.1007/978-3-031-29555-3_3.

H. Sahay and S. K. Goyal, “Application of Fuzzy Logic to Predict Diseases : An Overview,” International Journal of Advances in Engineering and Management (IJAEM), vol. 3, no. 7, pp. 3786–3791, 2021, doi: 10.35629/5252-030737863791.

H. Das, B. Naik, and H. S. Behera, “Medical disease analysis using Neuro-Fuzzy with Feature Extraction Model for classification,” Inform Med Unlocked, vol. 18, p. 100288, 2020, doi: 10.1016/j.imu.2019.100288.

R. S. Krishnan et al., “Fuzzy Logic based Smart Irrigation System using Internet of Things,” J. Clean Prod., vol. 252, p. 119902, Apr. 2020, doi: 10.1016/j.jclepro.2019.119902.

R. Gogoi and B. Dutta, “Maintenance prioritization of interlocking concrete block pavement using fuzzy logic,” International Journal of Pavement Research and Technology, vol. 13, no. 2, pp. 168–175, Mar. 2020, doi: 10.1007/s42947-019-0098-9.

M. A. S. Yudono, R. M. Faris, A. De Wibowo, M. Sidik, F. Sembiring, and S. F. Aji, “Fuzzy Decision Support System for ABC University Student Admission Selection,” in Proceedings of the International Conference on Economics, Management and Accounting (ICEMAC 2021), 2022, doi: 10.2991/aebmr.k.220204.024.

A. S. Khuman, “The similarities and divergences between grey and fuzzy theory,” Expert Syst Appl, vol. 186, p. 115812, Dec. 2021, doi: 10.1016/j.eswa.2021.115812.

L. A. Zadeh, “Fuzzy Logic,” in Granular, Fuzzy, and Soft Computing, pp. 19–49, 2009, doi: 10.1007/978-1-0716-2628-3_234.

A. M. MacEachren et al., “Visualizing Geospatial Information Uncertainty: What We Know and What We Need to Know,” Cartogr Geogr Inf Sci, vol. 32, no. 3, pp. 139–160, Jan. 2005, doi: 10.1559/1523040054738936.

R. H. Hariri, E. M. Fredericks, and K. M. Bowers, “Uncertainty in big data analytics: survey, opportunities, and challenges,” J Big Data, vol. 6, no. 1, p. 44, Dec. 2019, doi: 10.1186/s40537-019-0206-3.

K. Brodlie, R. Allendes Osorio, and A. Lopes, “A Review of Uncertainty in Data Visualization,” in Expanding the Frontiers of Visual Analytics and Visualization, pp. 81–109, 2012, doi: 10.1007/978-1-4471-2804-5_6.

W. E. Walker et al., “Defining Uncertainty: A Conceptual Basis for Uncertainty Management in Model-Based Decision Support,” Integrated Assessment, vol. 4, no. 1, pp. 5–17, Mar. 2003, doi: 10.1076/iaij.4.1.5.16466.

M. H. Panjaitan and C. Apriono, “Valuation of 5G mmWave Fixed Wireless Access in Residence Area: Analysis of Real Option for Wireless Broadband Service in Kota Wisata Cibubur Using Decision Tree and Black Scholes Model,” Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI), vol. 8, no. 2, p. 226, Jun. 2022, doi: 10.26555/jiteki.v8i2.23626.

J. Wang and R. Zuo, “Uncertainty Quantification in Geochemical Mapping: A Review and Recommendations,” Geochemistry, Geophysics, Geosystems, vol. 25, no. 3, Mar. 2024, doi: 10.1029/2023GC011301.

L. D. Bevan, “The ambiguities of uncertainty: A review of uncertainty frameworks relevant to the assessment of environmental change,” Futures, vol. 137, p. 102919, Mar. 2022, doi: 10.1016/j.futures.2022.102919.

S. Faghani et al., “Quantifying Uncertainty in Deep Learning of Radiologic Images,” Radiology, vol. 308, no. 2, Aug. 2023, doi: 10.1148/radiol.222217.

S. Handoyo, H. Suharman, E. K. Ghani, and S. Soedarsono, “A business strategy, operational efficiency, ownership structure, and manufacturing performance: The moderating role of market uncertainty and competition intensity and its implication on open innovation,” Journal of Open Innovation: Technology, Market, and Complexity, vol. 9, no. 2, p. 100039, Jun. 2023, doi: 10.1016/j.joitmc.2023.100039.

M. Tavana and V. Hajipour, “A practical review and taxonomy of fuzzy expert systems: methods and applications,” Benchmarking: An International Journal, vol. 27, no. 1, pp. 81–136, Sep. 2019, doi: 10.1108/BIJ-04-2019-0178.

M. Alakhras, M. Oussalah, and M. Hussein, “A survey of fuzzy logic in wireless localization,” EURASIP J Wirel Commun Netw, vol. 2020, no. 1, p. 89, Dec. 2020, doi: 10.1186/s13638-020-01703-7.

Z. Hu et al., “Uncertainty Modeling for Multicenter Autism Spectrum Disorder Classification Using Takagi–Sugeno–Kang Fuzzy Systems,” IEEE Trans Cogn Dev Syst, vol. 14, no. 2, pp. 730–739, Jun. 2022, doi: 10.1109/TCDS.2021.3073368.

B. Kuipers, “Critical decisions under uncertainty: Representation and structure,” Cogn Sci, vol. 12, no. 2, pp. 177–210, Jun. 1988, doi: 10.1016/0364-0213(88)90021-3.

D. Mercieca and D. P. Mercieca, “Engagement with research: acknowledging uncertainty in methodology,” International Journal of Research & Method in Education, vol. 36, no. 3, pp. 228–240, Aug. 2013, doi: 10.1080/1743727X.2013.806470.

P. L. Gentili, “Boolean and fuzzy logic implemented at the molecular level,” Chem Phys, vol. 336, no. 1, pp. 64–73, Jul. 2007, doi: 10.1016/j.chemphys.2007.05.013.

R. M. Zadegan, M. D. E. Jepsen, L. L. Hildebrandt, V. Birkedal, and J. Kjems, “Construction of a Fuzzy and Boolean Logic Gates Based on DNA,” Small, vol. 11, no. 15, pp. 1811–1817, Apr. 2015, doi: 10.1002/smll.201402755.

S. Sunardi, A. Yudhana, and F. Furizal, “Impact of Fuzzy Tsukamoto in Controlling Room Temperature and Humidity,” INTENSIF: Jurnal Ilmiah Penelitian dan Penerapan Teknologi Sistem Informasi, vol. 7, no. 2, pp. 221–242, Aug. 2023, doi: 10.29407/intensif.v7i2.19652.

K. Gupta, D. K. Tayal, and A. Jain, “A Novel Intuitionistic Fuzzy Inference System for Feature Subset Selection in Weather Prediction,” Wirel Pers Commun, vol. 133, no. 2, pp. 831–849, Nov. 2023, doi: 10.1007/s11277-023-10793-7.

N. Z. Mohd Safar, A. A. Ramli, H. Mahdin, D. Ndzi, and K. M. Naim Ku Khalif, “Rain prediction using fuzzy rule based system in North-West malaysia,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 14, no. 3, p. 1564, Jun. 2019, doi: 10.11591/ijeecs.v14.i3.pp1564-1573.

Y. Ardi, S. Effendi, and E. B. Nababan, “Mamdani and Sugeno Fuzzy Performance Analysis on Rainfall Prediction,” Randwick International of Social Science Journal, vol. 2, no. 2, pp. 176–192, Apr. 2021, doi: 10.47175/rissj.v2i2.240.

D. R. Damayanti, S. Wicaksono, M. F. Al Hakim, J. Jumanto, S. Subhan, and Y. N. Ifriza, “Rainfall Prediction in Blora Regency Using Mamdani’s Fuzzy Inference System,” Journal of Soft Computing Exploration, vol. 3, no. 1, pp. 62–69, Mar. 2022, doi: 10.52465/joscex.v3i1.69.

I. F. Astuti, L. Faizah, D. M. Khairina, and D. Cahyadi, “A fuzzy Mamdani approach on community business loan feasibility assessment,” in 2021 3rd East Indonesia Conference on Computer and Information Technology (EIConCIT), pp. 438–442, 2021, doi: 10.1109/EIConCIT50028.2021.9431899.

P. Georgieva, “FSSAM: A Fuzzy Rule-Based System for Financial Decision Making in Real-Time,” in Handbook of Fuzzy Sets Comparison - Theory, Algorithms and Applications, pp. 121–148, 2016, doi: 10.15579/gcsr.vol6.ch6.

S. R. Sharma, O. P. Rahi, A. Singh, and A. J. Patil, “A New Methodology for Risk Analysis for Excitation System of Alternator in SHP using FIS,” in 2020 4th International Conference on Intelligent Computing and Control Systems (ICICCS), pp. 85–92, 2020, doi: 10.1109/ICICCS48265.2020.9121103.

S. Komsiyah and E. Desvania, “Traffic Lights Analysis and Simulation Using Fuzzy Inference System of Mamdani on Three-Signaled Intersections.,” Procedia Comput Sci, vol. 179, pp. 268–280, 2021, doi: 10.1016/j.procs.2021.01.006.

M. Amini, M. F. Hatwagner, and L. T. Koczy, “Fuzzy System-Based Solutions for Traffic Control in Freeway Networks Toward Sustainable Improvement,” in Information Processing and Management of Uncertainty in Knowledge-Based Systems, pp. 288–305, 2022, doi: 10.1007/978-3-031-08974-9_23.

R. Patil and A. Srinivasaraghavan, “Smart traffic controller using fuzzy inference system(STCFIS),” in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT), pp. 335–340, 2016, doi: 10.1109/NGCT.2016.7877437.

H. K. Wardana, I. Ummah, and L. A. Fitriyah, “Mamdani Fuzzy Inference System (FIS) for Early Diagnosis of Diabetes Mellitus (DM) and Calorie Needs,” in Proceedings of the International Joint Conference on Science and Engineering (IJCSE 2020), 2020, doi: 10.2991/aer.k.201124.070.

W. E. Sari, O. Wahyunggoro, and S. Fauziati, “A comparative study on fuzzy Mamdani-Sugeno-Tsukamoto for the childhood tuberculosis diagnosis,” in Proceedings of the 1st International Conference on Science and Technology 2015 (ICST-2015), p. 070003, 2016, doi: 10.1063/1.4958498.

S. Nurhayati, R. Lubis, and M. Fajar Wicaksono, “Application of the Machine Learning Method for Predicting International Tourists in West Java Indonesia Using the Averege-Based Fuzzy Time Series Model,” Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI), vol. 9, no. 1, pp. 1–11, 2023, doi: 10.26555/jiteki.v9i1.25475.

I. B. P. Manuaba, I. W. B. Sentana, I. N. G. A. Astawa, I. W. Suasnawa, and I. P. B. A. Pradnyana, “Social Media Mining with Fuzzy Text Matching: A Knowledge Extraction on Tourism After COVID-19 Pandemic,” Knowledge Engineering and Data Science, vol. 5, no. 2, p. 143, Dec. 2022, doi: 10.17977/um018v5i22022p143-149.

A. Kusnadi, Y. Arkeman, K. Syamsu, and S. H. Wijaya, “Certainty Factor-based Expert System for Meat Classification within an Enterprise Resource Planning Framework,” Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI), vol. 9, no. 3, pp. 661–672, 2023, doi: 10.26555/jiteki.v9i3.26443.

A. L. Prasasti, I. A. Rahmi, S. F. Nurahmani, and A. Dinimaharawati, “Mental Health Helper: Intelligent Mobile Apps in the Pandemic Era,” Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI), vol. 7, no. 3, p. 479, Jan. 2022, doi: 10.26555/jiteki.v7i3.22012.

Sunardi, A. Yudhana, and Furizal, “Tsukamoto Fuzzy Inference System on Internet of Things-Based for Room Temperature and Humidity Control,” IEEE Access, vol. 11, pp. 6209–6227, 2023, doi: 10.1109/ACCESS.2023.3236183.

D. Suryaningsih and R. D. Puriyanto, “Temperature Measurement and Light Intensity Monitoring in Mini Greenhouses for Microgreen Plants Using the Tsukamoto Fuzzy Logic Method,” Buletin Ilmiah Sarjana Teknik …, vol. 5, no. 3, pp. 336–350, 2023, doi: 10.12928/biste.v5i3.8321.

T. Tundo and F. Mahardika, “Fuzzy Inference System Tsukamoto–Decision Tree C 4.5 in Predicting the Amount of Roof Tile Production in Kebumen,” JTAM (Jurnal Teori dan Aplikasi Matematika), vol. 7, no. 2, p. 533, Apr. 2023, doi: 10.31764/jtam.v7i2.13034.

P. Dore, S. Chakkor, A. El Oualkadi, and M. Baghouri, “Real-time intelligent system for wind turbine monitoring using fuzzy system,” e-Prime - Advances in Electrical Engineering, Electronics and Energy, vol. 3, p. 100096, Mar. 2023, doi: 10.1016/j.prime.2022.100096.

N. Setyanugraha, S. Al Aziz, I. W. Harmoko, and F. Fianti, “Study of a Weather Prediction System Based on Fuzzy Logic Using Mamdani and Sugeno Methods,” Physics Communication, vol. 6, no. 2, pp. 61–70, Aug. 2022, doi: 10.15294/physcomm.v6i2.39703.

D. Ibrahim, “An Overview of Soft Computing,” Procedia Comput Sci, vol. 102, pp. 34–38, 2016, doi: 10.1016/j.procs.2016.09.366.

Y. Zhang and C. Qin, “A Gaussian-Shaped Fuzzy Inference System for Multi-Source Fuzzy Data,” Systems, vol. 10, no. 6, p. 258, Dec. 2022, doi: 10.3390/systems10060258.

B. Shah, “Fuzzy Energy Efficient Routing for Internet of Things (IoT),” in 2018 Tenth International Conference on Ubiquitous and Future Networks (ICUFN), pp. 320–325, 2018, doi: 10.1109/ICUFN.2018.8437033.

K.-C. Chuang, T.-S. Lan, L.-P. Zhang, Y.-M. Chen, and X.-J. Dai, “Parameter Optimization for Computer Numerical Controlled Machining Using Fuzzy and Game Theory,” Symmetry (Basel), vol. 11, no. 12, p. 1450, Nov. 2019, doi: 10.3390/sym11121450.

M. Z. Dini, A. Rakhmatsyah, and A. A. Wardana, “Detection of Oxygen Levels (SpO2) and Heart Rate Using a Pulse Oximeter for Classification of Hypoxemia Based on Fuzzy Logic,” Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI), vol. 8, no. 1, p. 17, 2022, doi: 10.26555/jiteki.v8i1.22139.

H. Farahani, M. Blagojević, P. Azadfallah, P. Watson, F. Esrafilian, and S. Saljoughi, “Fuzzy Set Theory and Psychology,” in An Introduction to Artificial Psychology, pp. 31–79, 2023, doi: 10.1007/978-3-031-31172-7_3.

R. Rustum et al., “Sustainability Ranking of Desalination Plants Using Mamdani Fuzzy Logic Inference Systems,” Sustainability, vol. 12, no. 2, p. 631, Jan. 2020, doi: 10.3390/su12020631.

A. Santiago, B. Dorronsoro, A. J. Nebro, J. J. Durillo, O. Castillo, and H. J. Fraire, “A novel multi-objective evolutionary algorithm with fuzzy logic based adaptive selection of operators: FAME,” Inf Sci (N Y), vol. 471, pp. 233–251, Jan. 2019, doi: 10.1016/j.ins.2018.09.005.

B. Saedi, S. D. Mohammadi, and H. Shahbazi, “Application of fuzzy inference system to predict uniaxial compressive strength and elastic modulus of migmatites,” Environ Earth Sci, vol. 78, no. 6, p. 208, Mar. 2019, doi: 10.1007/s12665-019-8219-y.

Y. Yuliza, N. Sari, R. Muwardi, L. Lenni, and Y. Rahmawati, “Fiber Optic Attenuation Analysis Based on Mamdani Fuzzy Logic in Gambir Area, Central Jakarta,” Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI), vol. 8, no. 4, p. 610, 2022, doi: 10.26555/jiteki.v8i4.24549.

I. R. Imaduddin, “Design of Water Level Control in Tank Based on Fuzzy Logic,” Buletin Ilmiah Sarjana Teknik Elektro, vol. 2, no. 3, p. 145, Jan. 2021, doi: 10.12928/biste.v2i3.3307.

F. Furizal, S. Sunardi, A. Yudhana, and R. Umar, “Energy Efficiency with Internet of Things Based Fuzzy Inference System for Room Temperature and Humidity Regulation,” International Journal of Engineering, vol. 37, no. 1, pp. 187–200, 2024, doi: 10.5829/IJE.2024.37.01A.17.

F. Furizal, S. Sunardi, and A. Yudhana, “Temperature and Humidity Control System with Air Conditioner Based on Fuzzy Logic and Internet of Things,” Journal of Robotics and Control (JRC), vol. 4, no. 3, pp. 308–322, May 2023, doi: 10.18196/jrc.v4i3.18327.

S. N. Putri and D. R. S. Saputro, “Construction fuzzy logic with curve shoulder in inference system mamdani,” J Phys Conf Ser, vol. 1776, no. 1, p. 012060, Feb. 2021, doi: 10.1088/1742-6596/1776/1/012060.

F. Azad, “A Review on the Development of Fuzzy Classifiers with Improved Interpretability and Accuracy Parameters,” Journal of Informatics Electrical and Electronics Engineering (JIEEE), vol. 2, no. 2, pp. 1–9, Jun. 2021, doi: 10.54060/JIEEE/002.02.020.

M. J. Fawwaz Dirgantara, A. G. Putrada, and S. Prabowo, “Evaluation of Fuzzy Logic Tsukamoto in a Smart Fire Sprinkler Control Prototype,” in 2021 International Symposium on Electronics and Smart Devices (ISESD), pp. 1–6, 2021, doi: 10.1109/ISESD53023.2021.9501675.

E. Nugraha, A. P. Wibawa, M. L. Hakim, U. Kholifah, R. H. Dini, and M. R. Irwanto, “Implementation of fuzzy tsukamoto method in decision support system of journal acceptance,” J Phys Conf Ser, vol. 1280, no. 2, p. 022031, Nov. 2019, doi: 10.1088/1742-6596/1280/2/022031.

R. Adriman, M. Asfianda, A. A, and Y. Away, “Sistem Embedded Cerdas Menggunakan Logika Fuzzy Untuk Efisiensi Konsumsi Energi Listrik,” Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI), vol. 4, no. 1, p. 58, 2018, doi: 10.26555/jiteki.v4i1.9945.

F. Cavallaro, “A Takagi-Sugeno Fuzzy Inference System for Developing a Sustainability Index of Biomass,” Sustainability, vol. 7, no. 9, pp. 12359–12371, Sep. 2015, doi: 10.3390/su70912359.

L. H. Son, P. Van Viet, and P. Van Hai, “Picture inference system: a new fuzzy inference system on picture fuzzy set,” Applied Intelligence, vol. 46, no. 3, pp. 652–669, Apr. 2017, doi: 10.1007/s10489-016-0856-1.

J.-S. R. Jang and Chuen-Tsai Sun, “Neuro-fuzzy modeling and control,” Proceedings of the IEEE, vol. 83, no. 3, pp. 378–406, Mar. 1995, doi: 10.1109/5.364486.

N. Rinanto, I. Marzuqi, A. Khumaidi, and S. T. Sarena, “Obstacle Avoidance using Fuzzy Logic Controller on Wheeled Soccer Robot,” Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI), vol. 5, no. 1, Jul. 2019, doi: 10.26555/jiteki.v5i1.13298.

L. B. Palma, R. A. Antunes, P. Gil, and V. Brito, “Takagi-Sugeno-Kang fuzzy PID control for DC electrical machines,” in 2020 IEEE 14th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG), pp. 309–316, 2020, doi: 10.1109/CPE-POWERENG48600.2020.9161668.

A. B. Setiawan and R. D. Puriyanto, “Pengatur Intensitas Cahaya Ruangan dengan Metode Fuzzy Logic Menggunakan PLC,” Buletin Ilmiah Sarjana Teknik Elektro, vol. 1, no. 3, p. 100, Dec. 2019, doi: 10.12928/biste.v1i3.1033.

F. Umam, Ach. Dafid, and A. D. Cahyani, “Implementation Of Fuzzy Logic Control Method On Chilli Cultivation Technology Based Smart Drip Irrigation System,” Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI), vol. 9, no. 1, pp. 132–141, 2023, doi: 10.26555/jiteki.v9i1.25813.

A. A. Nada and M. A. Bayoumi, “Development of embedded fuzzy control using reconfigurable FPGA technology,” Automatika, vol. 65, no. 2, pp. 609–626, Apr. 2024, doi: 10.1080/00051144.2024.2313904.

J. S. Zangina, M. Aliyu Suleiman, and A. Ahmed, “Analysis of Grid-tied Solar Photovoltaic Energy Generation under Uncertain Atmospheric Conditions Using Adaptive Neuro-fuzzy Control System,” Archives of Advanced Engineering Science, Jan. 2024, doi: 10.47852/bonviewAAES42022110.

T. Mohamed and M. Boudiaf, “Protection System for Induction Motor based on Sugeno Inference,” Przeglad Elektrotechniczny, vol. 1, no. 3, pp. 140–143, Mar. 2020, doi: 10.15199/48.2020.03.30.

F. Hosseini and M. Sadat Hosseini, “Direct Model Reference Takagi–Sugeno Fuzzy Control of Siso Nonlinear Systems Design By Membership Function,” Azerbaijan Journal of High Performance Computing, vol. 6, no. 1, pp. 19–29, 2023, doi: 10.32010/26166127.2023.6.1.19.29.

H.-C. Cho, S.-J. Han, I. Heo, H. Kang, W.-H. Kang, and K. S. Kim, “Heating Temperature Prediction of Concrete Structure Damaged by Fire Using a Bayesian Approach,” Sustainability, vol. 12, no. 10, p. 4225, May 2020, doi: 10.3390/su12104225.

À. Nebot and F. Mugica, “Energy Performance Forecasting of Residential Buildings Using Fuzzy Approaches,” Applied Sciences, vol. 10, no. 2, p. 720, Jan. 2020, doi: 10.3390/app10020720.

M. Zakhrouf, H. Bouchelkia, and M. Stamboul, “Neuro-Wavelet (WNN) and Neuro-Fuzzy (ANFIS) systems for modeling hydrological time series in arid areas. A case study: the catchment of Aïn Hadjadj (Algeria),” Desalination Water Treat, vol. 57, no. 37, pp. 17182–17194, Aug. 2016, doi: 10.1080/19443994.2015.1085908.

J. Kaur and M. Mahajan, “Hybrid of Fuzzy Logic and Random Walker Method for Medical Image Segmentation,” International Journal of Image, Graphics and Signal Processing, vol. 7, no. 2, pp. 23–29, Jan. 2015, doi: 10.5815/ijigsp.2015.02.04.

L. C. Felius, F. Dessen, and B. D. Hrynyszyn, “Retrofitting towards energy-efficient homes in European cold climates: a review,” Energy Effic, vol. 13, no. 1, pp. 101–125, Jan. 2020, doi: 10.1007/s12053-019-09834-7.

D. Farhan and F. Sulianta, “Implementation of Fuzzy Tsukamoto Logic to Determine the Number of Seeds Koi Fish in the Sukamanah Cianjur Farmer’s Group,” Jurnal Teknik Informatika (JUTIF), vol. 4, no. 1, pp. 187–198, Feb. 2023, doi: 10.52436/1.jutif.2023.4.1.477.

A. D. Permana, “Design and Development of Fuzzy Logic Application Tsukamoto Method in Predicting the Number of Covid-19 Positive Cases in West Java,” International Journal of Global Operations Research, vol. 1, no. 2, pp. 85–95, Feb. 2020, doi: 10.47194/ijgor.v1i2.35.

R. Firmansyah, S. Puspitorini, P. Pariyadi, and T. Syah, “Sales and Stock Purchase Prediction System Using Trend Moment Method and FIS Tsukamoto,” Arcitech: Journal of Computer Science and Artificial Intelligence, vol. 1, no. 1, p. 15, Jun. 2021, doi: 10.29240/arcitech.v1i1.3057.

R. Rustanuarsi and A. M. Abadi, “Construction of Fuzzy Inference Model to Predict Percentage of Poor Population in Indonesia,” J Phys Conf Ser, vol. 1097, p. 012072, Sep. 2018, doi: 10.1088/1742-6596/1097/1/012072.

N. Alavi, “Quality determination of Mozafati dates using Mamdani fuzzy inference system,” Journal of the Saudi Society of Agricultural Sciences, vol. 12, no. 2, pp. 137–142, Jun. 2013, doi: 10.1016/j.jssas.2012.10.001.

J. Eliyanto and S. Surono, “Distance Functions Study in Fuzzy C-Means Core and Reduct Clustering,” Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI), vol. 7, no. 1, p. 118, 2021, doi: 10.26555/jiteki.v7i1.20516.

A. Larasati, Y. Ruth, W. Natalia, E. Mohamad, and A. R. Purnama, “A Sentiment Analysis Using Fuzzy Support Vector Machine Algorithm,” Buletin Ilmiah Sarjana Teknik Elektro, vol. 5, no. 4, pp. 467–474, 2023, doi: 10.12928/biste.v5i4.9363.

I. Alfi, I. Hidayah, A. Erna, and I. Hidayatulloh, “Fuzzy Logic Tsukamoto for SARIMA On Automation of Bandwidth Allocation,” International Journal of Advanced Computer Science and Applications, vol. 8, no. 11, 2017, doi: 10.14569/IJACSA.2017.081147.

D. Norvindes Dellas, I. Purnamasari, and N. Arista Rizki, “Fuzzy Inference System Using Tsukamoto Method For Making Decision of Production (Case Study: PT Waru Kaltim Plantation),” METIK JURNAL, vol. 4, no. 2, pp. 76–82, Dec. 2020, doi: 10.47002/metik.v4i2.171.

A. Pranolo, Y. Mao, A. P. Wibawa, A. B. P. Utama, and F. A. Dwiyanto, “Optimized Three Deep Learning Models Based-PSO Hyperparameters for Beijing PM2.5 Prediction,” Knowledge Engineering and Data Science, vol. 5, no. 1, p. 53, Jun. 2022, doi: 10.17977/um018v5i12022p53-66.

R. A. Asmara, N. Noprianto, M. A. Ilmy, and K. Arai, “Traffic Density Prediction using IoT-based Double Exponential Smoothing,” Knowledge Engineering and Data Science, vol. 5, no. 2, p. 168, Dec. 2022, doi: 10.17977/um018v5i22022p168-178.

A. K. Sharma, D. Singh, and N. K. Verma, “Data Driven Aerodynamic Modeling Using Mamdani Fuzzy Inference Systems,” in 2018 International Conference on Sensing,Diagnostics, Prognostics, and Control (SDPC), pp. 359–364, 2018, doi: 10.1109/SDPC.2018.8664870.

A. Bagis and M. Konar, “Comparison of Sugeno and Mamdani fuzzy models optimized by artificial bee colony algorithm for nonlinear system modelling,” Transactions of the Institute of Measurement and Control, vol. 38, no. 5, pp. 579–592, May 2016, doi: 10.1177/0142331215591239.

T. H. Saragih, V. N. Wijayaningrum, and M. Haekal, “Jatropha Curcas Disease Identification using Random Forest,” Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI), vol. 7, no. 1, p. 9, 2021, doi: 10.26555/jiteki.v7i1.20141.

I. A. Pardosi and H. Gohzali, “Analysis of Combination Algorithms for Denoising and Contrast Enhancement Images,” Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI), vol. 8, no. 2, p. 186, Jun. 2022, doi: 10.26555/jiteki.v8i2.22216.

M. S. Devi and M. Soranamageswari, “A hybrid technique of Mamdani and Sugeno based fuzzy interference system approach,” in 2016 International Conference on Data Mining and Advanced Computing (SAPIENCE), pp. 340–342, 2016, doi: 10.1109/SAPIENCE.2016.7684131.

S. Uppalapati and D. Kaur, “Design and implementation of a Mamdani fuzzy inference system on an FPGA,” in NAFIPS 2009 - 2009 Annual Meeting of the North American Fuzzy Information Processing Society, pp. 1–6, 2009, doi: 10.1109/NAFIPS.2009.5156408.

M. Hilmi, I. Abdul, J. Jaafar, L. AB, and J. Mabor, “A Comparative Study of Mamdani and Sugeno Fuzzy Models for Quality of Web Services Monitoring,” International Journal of Advanced Computer Science and Applications, vol. 8, no. 9, 2017, doi: 10.14569/IJACSA.2017.080948.

M.-D. Pop, D. Pescaru, and M. V. Micea, “Mamdani vs. Takagi–Sugeno Fuzzy Inference Systems in the Calibration of Continuous-Time Car-Following Models,” Sensors, vol. 23, no. 21, p. 8791, Oct. 2023, doi: 10.3390/s23218791.

A. N. Sihananto and F. A. Bachtiar, “Gold price movement forecasting using hybrid ES-FIS,” in 2017 International Conference on Sustainable Information Engineering and Technology (SIET), pp. 321–326, 2017, doi: 10.1109/SIET.2017.8304156.

S. Supatmi, R. Hou, and I. D. Sumitra, “Study of Hybrid Neurofuzzy Inference System for Forecasting Flood Event Vulnerability in Indonesia,” Comput Intell Neurosci, vol. 2019, pp. 1–13, Feb. 2019, doi: 10.1155/2019/6203510.

A. G. Putrada, N. Alamsyah, I. D. Oktaviani, and M. N. Fauzan, “A Hybrid Genetic Algorithm-Random Forest Regression Method for Optimum Driver Selection in Online Food Delivery,” Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI), vol. 9, no. 4, pp. 1060–1079, 2023, doi: 10.26555/jiteki.v9i4.27014.

S. Vashishtha and S. Susan, “Unsupervised Fuzzy Inference System for Speech Emotion Recognition using audio and text cues (Workshop Paper),” in 2020 IEEE Sixth International Conference on Multimedia Big Data (BigMM), pp. 394–403, 2020, doi: 10.1109/BigMM50055.2020.00067.

K. Choromański, J. Kozakiewicz, M. Sobucki, M. Pilarska-Mazurek, and R. Olszewski, “Analysis of Ensemble of Neural Networks and Fuzzy Logic Classification in Process of Semantic Segmentation of Martian Geomorphological Settings,” in Proceedings of the 3rd International Conference on Deep Learning Theory and Applications, pp. 184–192, 2022, doi: 10.5220/0011315200003277.

S. A. M. Al-Taie and B. I. Khaleel, “Palm Print Recognition Using Intelligent Techniques: A review,” Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI), vol. 9, no. 1, pp. 156–164, 2023, doi: 10.26555/jiteki.v9i1.25777.

B. A. Saputra and A. Ma’arif, “Prototipe Solar Tracking Berbasis Arduino dan Sensor Light Dependent Resistor (LDR),” Buletin Ilmiah Sarjana Teknik Elektro, vol. 4, no. 1, pp. 30–40, Nov. 2022, doi: 10.12928/biste.v4i1.5547.

S. Moradi and F. Mokhatab Rafiei, “A dynamic credit risk assessment model with data mining techniques: evidence from Iranian banks,” Financial Innovation, vol. 5, no. 1, p. 15, Mar. 2019, doi: 10.1186/s40854-019-0121-9.

B. Sahin, T. L. Yip, P.-H. Tseng, M. Kabak, and A. Soylu, “An Application of a Fuzzy TOPSIS Multi-Criteria Decision Analysis Algorithm for Dry Bulk Carrier Selection,” Information, vol. 11, no. 5, p. 251, May 2020, doi: 10.3390/info11050251.

D. Parry, “Evaluation of a Fuzzy Ontology-Based Medical Information System,” International Journal of Healthcare Information Systems and Informatics, vol. 1, no. 1, pp. 40–51, Jan. 2006, doi: 10.4018/jhisi.2006010103.

D. D. Saputra, A. Ma, H. Maghfiroh, M. A. Baballe, and A. Marcelo, “Performance Evaluation of Sliding Mode Control ( SMC ) for DC Motor Speed Control,” Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI), vol. 9, no. 2, pp. 502–510, 2023, doi: 10.26555/jiteki.v9i2.26291.

Y. Yuliza, R. Muwardi, D. Widya Pratama, M. Heri Santoso, and M. Yunita, “Modification of Control Oil Feeding with PLC Using Simulation Visual Basic and Neural Network Analysis,” Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI), vol. 8, no. 1, p. 38, Apr. 2022, doi: 10.26555/jiteki.v8i1.22336.

A. Chakraborty, A. Chakraborty, and B. Mukherjee, “Detection of Parkinson’s Disease Using Fuzzy Inference System,” in Intelligent Systems Technologies and Applications, pp. 79–90, 2016, doi: 10.1007/978-3-319-23036-8_7.

D. M. N. Fajri, W. F. Mahmudy, and Y. P. Anggodo, “Optimization of FIS Tsukamoto using particle swarm optimization for dental disease identification,” in 2017 International Conference on Advanced Computer Science and Information Systems (ICACSIS), pp. 261–268, 2017, doi: 10.1109/ICACSIS.2017.8355044.

U. A. Umoh and A. A. Udosen, “Sugeno-Type Fuzzy Inference Model for Stock Price Prediction,” Int J Comput Appl, vol. 103, no. 3, pp. 1–12, Oct. 2014, doi: 10.5120/18051-8957.

P. Lestantyo, F. Ramdani, and W. F. Mahmudy, “Utilization of Current Data for Geospatial Analysis of the Appropriateness of Apple Plantation Land Based on Fuzzy Inference Systems,” Journal of Information Technology and Computer Science, vol. 4, no. 1, pp. 64–75, Jun. 2019, doi: 10.25126/jitecs.20194196.

R. Bakri, A. N. Rahma, I. Suryani, and Y. Sari, “Penerapan Logika Fuzzy dalam Menentukan Jumlah Peserta BPJS Kesehatan Menggunakan Fuzzy Inference System Sugeno,” Jurnal Lebesgue : Jurnal Ilmiah Pendidikan Matematika, Matematika dan Statistika, vol. 1, no. 3, pp. 182–192, Dec. 2020, doi: 10.46306/lb.v1i3.38.

D. Syahputra, Tulus, and Sawaluddin, “The Accuracy Of Fuzzy Sugeno Method With Antropometry On Determination Natural Patient Status,” J Phys Conf Ser, vol. 930, p. 012022, Dec. 2017, doi: 10.1088/1742-6596/930/1/012022.

Y. Perwira and R. K. Lubis, “Application Of Fuzzy Logic In The Measurement System Of Student Satisfaction Level Towards Lecturers Based On The Fuzzy Infrence Analysis Of The Mamdani …,” Infokum, vol. 10, no. 1, pp. 91–104, 2021.

M. Sridharan, “Application of Mamdani fuzzy inference system in predicting the thermal performance of solar distillation still,” J Ambient Intell Humaniz Comput, vol. 12, no. 11, pp. 10305–10319, Nov. 2021, doi: 10.1007/s12652-020-02810-5.

V. I. Variani, “Performance of Fuzzy Inference System for Calorific Value Predicting by Using The Mamdani Method,” Indonensian Journal of Applied Physics, vol. 11, no. 1, p. 87, Apr. 2021, doi: 10.13057/ijap.v11i1.44122.

D. M. Efendi and F. Ardhy, “Comparative Analysis using Tsukamoto and Sugeno Methods of Fuzzy Inference System for Sales of Medicine,” Journal of Applied Science, Engineering and Technology, vol. 1, no. 1, p. 1, Apr. 2022, doi: 10.47355/aset.v1i1.10.

K. Guney and N. Sarikaya, “Comparison of Mamdani and Sugeno Fuzzy Inference System Models for Resonant Frequency Calculation of Rectangular Microstrip Antennas,” Progress In Electromagnetics Research B, vol. 12, pp. 81–104, 2009, doi: 10.2528/PIERB08121302.

R. S. A. Meta, Y. Yupianti, and R. Julita, “Comparative Study of Tsukamoto and Sugeno’s Method in Determining Total Demand Based on Sales and Inventory (Case Study of Duta Ponsel Sukamerindu),” Jurnal Komputer, Informasi dan Teknologi (JKOMITEK), vol. 1, no. 2, Dec. 2021, doi: 10.53697/jkomitek.v1i2.228.

K. W. Suardika, G. K. Gandhiadi, and L. P. I. Harini, “Perbandingan Metode Tsukamoto, Metode Mamdani dan Metode Sugeno untuk Menentukan Produksi Dupa (Studi Kasus : CV. Dewi Bulan),” E-Jurnal Matematika, vol. 7, no. 2, p. 180, May 2018, doi: 10.24843/MTK.2018.v07.i02.p201.

L. C. Teixeira, P. P. Mariani, O. C. Pedrollo, N. M. dos Reis Castro, and V. Sari, “Artificial Neural Network and Fuzzy Inference System Models for Forecasting Suspended Sediment and Turbidity in Basins at Different Scales,” Water Resources Management, vol. 34, no. 11, pp. 3709–3723, Sep. 2020, doi: 10.1007/s11269-020-02647-9.

L. V. Lucchese, G. G. de Oliveira, and O. C. Pedrollo, “Mamdani fuzzy inference systems and artificial neural networks for landslide susceptibility mapping,” Natural Hazards, vol. 106, no. 3, pp. 2381–2405, Apr. 2021, doi: 10.1007/s11069-021-04547-6.

M. Noureldin, A. Ali, M. S. E. Nasab, and J. Kim, “Optimum distribution of seismic energy dissipation devices using neural network and fuzzy inference system,” Computer-Aided Civil and Infrastructure Engineering, vol. 36, no. 10, pp. 1306–1321, Oct. 2021, doi: 10.1111/mice.12673.

M. Ogedjo et al., “Modeling of sugarcane bagasse conversion to levulinic acid using response surface methodology (RSM), artificial neural networks (ANN), and fuzzy inference system (FIS): A comparative evaluation,” Fuel, vol. 329, p. 125409, Dec. 2022, doi: 10.1016/j.fuel.2022.125409.

A. B. W. Putra, R. Malani, B. Suprapty, A. F. O. Gaffar, and R. Voliansky, “Inter-Frame Video Compression based on Adaptive Fuzzy Inference System Compression of Multiple Frame Characteristics,” Knowledge Engineering and Data Science, vol. 6, no. 1, p. 1, May 2023, doi: 10.17977/um018v6i12023p1-14.

A. Senthilselvi, J. S. Duela, R. Prabavathi, and D. Sara, “Performance evaluation of adaptive neuro fuzzy system (ANFIS) over fuzzy inference system (FIS) with optimization algorithm in de-noising of images from salt and pepper noise,” J Ambient Intell Humaniz Comput, Mar. 2021, doi: 10.1007/s12652-021-03024-z.

M. R. Kaloop, A. Bardhan, N. Kardani, P. Samui, J. W. Hu, and A. Ramzy, “Novel application of adaptive swarm intelligence techniques coupled with adaptive network-based fuzzy inference system in predicting photovoltaic power,” Renewable and Sustainable Energy Reviews, vol. 148, p. 111315, Sep. 2021, doi: 10.1016/j.rser.2021.111315.

N. Rathnayake, T. L. Dang, and Y. Hoshino, “A Novel Optimization Algorithm: Cascaded Adaptive Neuro-Fuzzy Inference System,” International Journal of Fuzzy Systems, vol. 23, no. 7, pp. 1955–1971, Oct. 2021, doi: 10.1007/s40815-021-01076-z.

M. Vechione and R. L. Cheu, “Comparative evaluation of adaptive fuzzy inference system and adaptive neuro-fuzzy inference system for mandatory lane changing decisions on freeways,” J Intell Transp Syst, vol. 26, no. 6, pp. 746–760, Nov. 2022, doi: 10.1080/15472450.2021.1967153.

H. Haviluddin, H. S. Pakpahan, N. Puspitasari, G. M. Putra, R. Y. Hasnida, and R. Alfred, “Adaptive Neuro-Fuzzy Inference System for Waste Prediction,” Knowledge Engineering and Data Science, vol. 5, no. 2, p. 122, Dec. 2022, doi: 10.17977/um018v5i22022p122-128.

P. Goswami, A. Noorwali, A. Kumar, M. Z. Khan, P. Srivastava, and S. Batra, “Appraising Early Reliability of a Software Component Using Fuzzy Inference,” Electronics (Basel), vol. 12, no. 5, p. 1137, Feb. 2023, doi: 10.3390/electronics12051137.




DOI: https://doi.org/10.18196/jrc.v5i4.22123

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Furizal Furizal, Alfian Ma'arif, Setiawan Ardi Wijaya, Murni Murni, Iswanto Suwarno

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 


Journal of Robotics and Control (JRC)

P-ISSN: 2715-5056 || E-ISSN: 2715-5072
Organized by Peneliti Teknologi Teknik Indonesia
Published by Universitas Muhammadiyah Yogyakarta in collaboration with Peneliti Teknologi Teknik Indonesia, Indonesia and the Department of Electrical Engineering
Website: http://journal.umy.ac.id/index.php/jrc
Email: jrcofumy@gmail.com


Kuliah Teknik Elektro Terbaik