Dynamic Motion Control of Two-Link Robots with Adaptive Synergetic Algorithms

Aya Khudhair Abbas, Saleem Khalefa Kadhim

Abstract


Robotics is advancing to assist with daily tasks by developing human-like robotic limbs, which involves challenges in integrating software, control systems, electronics, and mechanical designs. To address these challenges, Classic Synergetic Controller (CSC) and Adaptive Synergetic Controller (ASC) algorithms were created using mathematical equations to regulate the robot arm's joint angle position and achieve precise tracking. A comparison with Adaptive Sliding Mode Control (ASMC) and Classical Sliding Mode Control (CSMC) demonstrated that CSC and ASC outperform in efficiency and robustness. ASC improved by 63%, providing smoother angular position tracking and faster response times. CSC reached the desired position angle in 1.5 seconds with oscillations, while ASC achieved it in 2.4 seconds without oscillations and eliminated chattering. CSC's Root Mean Square (RMS) was 1.57 rad, whereas ASC had no RMS value. The improvement rate of ASC over CSC was 100%, ensuring seamless motion, better rise time, and eliminating oscillations, thus providing robust control against disturbances and parameter variations.


Keywords


Synergetic Controller; Adaptive Synergistic Controller; Robotic Manipulators; Two Degrees of Freedom; Chattering.

Full Text:

PDF

References


R. M. Murray, Z. Li, and S. S. Sastry. A mathematical introduction to robotic manipulation. CRC press, 2017.

N. Elkhateeb and R. I. Badr, “Novel PID tracking controller for 2DOF robotic manipulator system based on artificial bee colony algorithm,” The Scientific Journal of Riga Technical University-Electrical, Control and Communication Engineering, vol. 13, pp. 55-62, 2017.

S. S. Ray. Numerical analysis with algorithms and programming. Chapman and Hall/CRC, 2018.

S. N. Essiane, J. T. Bissé, and M. J. P. Pesdjock, “Simple adaptive synergetic control scheme based on the mit rule of the dc motor,” European Journal of Applied Physics, vol. 2, no. 6, 2020, doi: 10.24018/ejphysics.2020.2.6.30.4.

A. N. Popov, “Synergetic synthesis of tracking control systems,” in IOP Conference Series: Materials Science and Engineering, vol. 1029, no. 1, p. 012032, 2021, doi: 10.1088/1757-899X/1029/1/012032.

M. Baccouch and S. Dodds, “A two-link robot manipulator: Simulation and control design,” International Journal of Robotic Engineering, vol. 5, no. 12, 2020,‏ doi: 10.35840/2631-5106/4128.

J. Jalani, N. Mahyuddin, G. Herrmann, and C. Melhuish, “Active robot hand compliance using operational space and Integral Sliding Mode Control,” in 2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 1749-1754, 2013.

K. Lochan and B. K. Roy, “Control of two-link 2-DOF robot manipulator using fuzzy logic techniques: a review,” in Proceedings of Fourth International Conference on Soft Computing for Problem Solving: SocProS 2014, vol. 1, pp. 499-511, 2014.

G. Herrmann, J. Jalani, M. N. Mahyuddin, S. G. Khan, and C. Melhuish, “Robotic hand posture and compliant grasping control using operational space and integral sliding mode control,” Robotica, vol. 34, no. 10, pp. 2163-2185, 2016,‏ doi: 10.1017/S0263574714002811.

O. Jedda, J. Ghabi, and A. Douik, “Sliding mode control of an inverted pendulum,” Applications of Sliding Mode Control, pp. 105-118, 2017.

D. Fulwani and B. Bandyopadhyay, “Design of sliding mode controller with actuator saturation,” in Advances in Sliding Mode Control: Concept, Theory and Implementation, pp. 207-219, 2013.

H. Obeid, L. M. Fridman, S. Laghrouche, and M. Harmouche, “Barrier function-based adaptive sliding mode control,” Automatica, vol. 93, pp. 540-544, 2018, doi: 10.1016/j.automatica.2018.03.078.

A. Samanfar, M. R. Shakarami, J. Soltani Zamani, and E. Rokrok, “Adaptive sliding mode control for multi-machine power systems under normal and faulted conditions,” Scientia Iranica, vol. 29, no. 5, pp. 2526-2536, 2022, doi: 10.24200/sci.2020.55717.4371.

M. Labbadi and M. Cherkaoui, “Robust adaptive backstepping fast terminal sliding mode controller for uncertain quadrotor UAV,” Aerospace Science and Technology, vol. 93, p. 105306, 2019.

F. Mohd Zaihidee, S. Mekhilef, and M. Mubin, “Robust speed control of PMSM using sliding mode control (SMC)—A review,” Energies, vol. 12, no. 9, p. 1669, 2019, doi:10.3390/en12091669

S. Jung, “Improvement of tracking control of a sliding mode controller for robot manipulators by a neural network,” International Journal of Control, Automation and Systems, vol. 16, no. 2, pp. 937-943, 2018.

S. Fan, H. Gu, Y. Zhang, M. Jin, and H. Liu, “Research on adaptive grasping with object pose uncertainty by multi-fingered robot hand,” International Journal of Advanced Robotic Systems, vol. 15, no. 2, 2018.

X. Li, Z. Chen, and C. Ma, “Optimal grasp force for robotic grasping and in-hand manipulation with impedance control,” Assembly Automation, vol. 41, no. 2, pp. 208-220, 2021.

E. Shahriari, S. A. B. Birjandi, and S. Haddadin, “Passivity-based adaptive force-impedance control for modular multi-manual object manipulation,” IEEE Robotics and Automation Letters, vol. 7, no. 2, pp. 2194-2201, 2022.

T. Zhang, L. Jiang, S. Fan, X. Wu, and W. Feng, “Development and experimental evaluation of multi-fingered robot hand with adaptive impedance control for unknown environment grasping,” Robotica, vol. 34, no. 5, pp. 1168-1185, 2016.

S. M. Mahdi, N. Q. Yousif, A. A. Oglah, M. E. Sadiq, A. J. Humaidi, and A. T. Azar, “Adaptive synergetic motion control for wearable knee-assistive system: a rehabilitation of disabled patients,” in Actuators, vol. 11, no. 7, p. 176, 2022,‏ doi: 10.3390/act11070176.

Shadow Robot Company, “Shadow dexterous hand technical specification, Shadow Robot Company, 2022.

S. A. Ajwad, R. U. Islam, M. R. Azam, M. I. Ullah, and J. Iqbal, “Sliding mode control of rigid-link anthropomorphic robotic arm,” in 2016 2nd International Conference on Robotics and Artificial Intelligence (ICRAI), pp. 75-80, 2016.

S. S. Ali, S. M. Raafat, and A. Al-Khazraji, “Improving the performance of medical robotic system using H∞ loop shaping robust controller,” International Journal of Modelling, Identification and Control, vol. 34, no. 1, pp. 3-12, 2020.

A. S. Ahmed and S. K. Kadhim, “Non-Leaner Control on the Pneumatic Artificial Muscles: A Comparative Study Between Adaptive Backstepping and Conventional Backstepping Algorithms,” Mathematical Modelling of Engineering Problems, vol. 10, no. 2, 2023, doi: 10.18280/mmep.100236.

S. A. Emam, “Generalized Lagrange’s equations for systems with general constraints and distributed parameters,” Multibody System Dynamics, vol. 49, pp. 95-117, 2020.

R. Dhaouadi and A. A. Hatab, “Dynamic modelling of differential-drive mobile robots using lagrange and newton-euler methodologies: A unified framework,” Advances in robotics & automation, vol. 2, no. 2, pp. 1-7, 2013, ‏doi: 10.4172/2168-9695.1000107.

C. Armenta-Déu and H. Cortés, “Analysis of kinetic energy recovery systems in electric vehicles,” Vehicles, vol. 5, no. 2, pp. 387-403, 2023, doi: 10.3390/vehicles5020022.

H. El-Hussieny, S. G. Jeong, and J. H. Ryu, “Dynamic modeling of a class of soft growing robots using euler-lagrange formalism,” Society of Instrument and Control Engineers, 2019.

M. W. Spong, S. Hutchinson, and M. Vidyasagar. Robot modeling and control. John Wiley & Sons, 2020.

A. S. Ahmed and S. K. Kadhim, “A comparative study between convolution and optimal backstepping controller for single arm pneumatic artificial muscles,” Journal of Robotics and Control (JRC), vol. 3, no. 6, pp. 769-778, 2022,‏‏ doi: 10.18196/jrc.v3i6.16064.

N. B. Almutairi and M. Zribi, “Sliding mode control of a three-dimensional overhead crane,” Journal of Vibration and Control Overhead Crane, vol. 15, no. 11, pp. 1679–1730, 2009.

D. H. Tu'ma and A. K. Hamoudi, “Performance of 2-link robot by utilizing adaptive sliding mode controller,” Journal of Engineering, vol. 26, no. 12, pp. 44-65, 2020.

D. S. Shanan and S. K. Kadhim, “Comparative Analysis of Airflow Regulation in Ventilator Systems Using Various Control Strategies,” Journal Européen des Systèmes Automatisés, vol. 56, no. 5, 2023, doi: 10.18280/jesa.560512.

D. Sheltag and S. K. Kadhim, “Enhancing Artificial Ventilator Systems: A Comparative Analysis of Traditional and Nonlinear PID Controllers,” Mathematical Modelling of Engineering Problems, vol. 11, no. 3, 2024,‏ doi: 10.18280/mmep.110303.

H. Benbouhenni, “Synergetic control theory scheme for asynchronous generator based dual-rotor wind power,” Journal of Electrical Engineering, Electronics, Control and Computer Science, vol. 7, no. 3, pp. 19-28, 2021.

Q. Junjie, L. Kaiting, W. Huaren, Y. Jianfei, and L. Xiaohui, “Syner getic control of grid-connected photovoltaic systems,” Int J Pho toenergy, vol. 2017, p. 5051489, 2017, doi: 10.1155/2017/50514_89.

E. Santi, A. Monti, D. Li, K. Proddutur, and R. A. Dougal, “Synergetic control for power electronics applications: A comparison with the sliding mode approach,” Journal of Circuits, Systems, and Computers, vol. 13, no. 4, pp. 737-760, 2004.

M. Harmas, A. Hamzaoui, K. Harmas, and Z. Bouchama, “Adaptive fuzzy synergetic converter control,” in 1st Taibah University international conference on computing and information tech nology ICCIT 2012, pp 734–738, 2012.

Q. Wang, J. Feng, and T. Li, “Analysis of the Synergetic Control Based on Variable Structure and Application of Power Electronics,” Proc. - 2009 Int. Conf. Inf. Eng. Comput. Sci. ICIECS 2009, no. 5, pp. 3–6, 2009, doi: 10.1109/ICIECS.2009.5367012.

I. Kondratiev, E. Santi, R. Dougal, and R. Veselov, “Synergetic con trol for m-parallel connected dc–dc buck converters,” in PESC, 30th annual IEEE, vol. 1, pp. 182–188, 2004.

E. Santi, A. Monti, D. Li, K. Proddutur, and R. A. Dougal, “Synergetic control for DC-DC boost converter: implementation options,” IEEE Transactions on industry applications, vol. 39, no. 6, pp. 1803-1813, 2003.

X. Ju, P. Zhao, H. Sun, W. Yao, and J. Wen, “Nonlinear synergetic governor controllers for steam turbine generators to enhance power system stability,” Energies, vol. 10, no. 8, p. 1092, 2017, doi: 10.3390/en1008102.

A. J. Humaidi, I. K. Ibraheem, A. T. Azar, and M. E. Sadiq, “A new adaptive synergetic control design for single link robot arm actuated by pneumatic muscles,” Entropy, vol. 22, no. 7, p. 723, 2020.

A. F. Mutlak and A. J. Humaidi, “A Comparative Study of Synergetic and Sliding Mode Controllers for Pendulum Systems,” Journal Européen des Systèmes Automatisés, vol. 56, no. 5, 2023, doi: 10.18280/jesa.560518.

A. Q. Al-Dujaili, A. J. Humaidi, Z. T. Allawi, and M. E. Sadiq, “Earthquake hazard mitigation for uncertain building systems based on adaptive synergetic control,” Applied system innovation, vol. 6, no. 2, p. 34, 2023, doi: 10.3390/asi6020034.

A. Rebai, K. Guesmi, and B. Hemici, “Adaptive fuzzy synergetic control for nonlinear hysteretic systems,” Nonlinear Dynamics, vol. 86, pp. 1445-1454, 2016.

A. J. Humaidi and A. H. Hameed, “Design and comparative study of advanced adaptive control schemes for position control of electronic throttle valve,” Information, vol. 10, no. 2, p. 65, 2019, doi: 10.3390/info10020065.

A. Kanchanaharuthai and E. Mujjalinvimut, “Application of adaptive synergetic control to power systems with superconducting magnetic energy storage system,” International Journal of Innovative Computing, Information and Control, vol. 13, no. 6, pp. 1873-1885, 2017.

Q. Xu, “Precision motion control of piezoelectric nanopositioning stage with chattering-free adaptive sliding mode control,” IEEE Transactions on Automation Science and Engineering, vol. 14, no. 1, pp. 238-248, 2016.

A. Kanchanaharuthai and E. Mujjalinvimut, “Adaptive finite-time synergetic control design for power systems with static var compensator,” Int. J. innovative Comput., Inf. Control: IJICIC, vol. 16, pp. 1007-1020, 2020.

H. S. Majeed, S. K. Kadhim, and A. A. Jaber, “Design of a sliding mode controller for a prosthetic human hand’s finger,” Engineering and Technology Journal, vol. 40, no. 1, pp. 257-266, 2022, doi: 10.30684/etj.v40i1.1943.

A. M. Hameed and A. K. Hamoudi, “A 2-Link Robot with Adaptive Sliding Mode Controlled by Barrier Function,” Journal Européen des Systèmes Automatisés, vol. 56, no. 6, 2023, doi: 10.18280/jesa.560620.

H. Zhou and J. Zhai, “Adaptive Sliding Mode Control with Disturbance Observer for Trajectory Tracking of Robotic Milling,” in Chinese Intelligent Systems Conference (pp. 643-652, 2023, doi: 10.1007/978-981-99-6886-2_55.

S. Yi and J. Zhai, “Adaptive second-order fast nonsingular terminal sliding mode control for robotic manipulators,” ISA transactions, vol. 90, pp. 41-51, 2019, doi: 10.1016/j.isatra.2018.12.046.

Z. Li, J. Zhai, and H. R. Karimi, “Adaptive finite‐time super‐twisting sliding mode control for robotic manipulators with control backlash,” International Journal of Robust and Nonlinear Control, vol. 31, no. 17, pp. 8537-8550, 2021, doi: 10.1002/rnc.5744.

S. Abulanwar, A. Ghanem, M. E. Rizk, and W. Hu, “Adaptive synergistic control strategy for a hybrid AC/DC microgrid during normal operation and contingencies,” Applied Energy, 304, p. 117756, 2021, doi: 10.1016/j.apenergy.2021.117756.

D. Al-hadithy and A. Hammoudi, “Two-link robot through strong and stable adaptive sliding mode controller,” in 2020 13th International Conference on Developments in eSystems Engineering (DeSE), pp. 121-127, 2020, doi: 10.1109/DeSE51703.2020.9450762.

M. A. Salman and S. K. Kadhim, “Optimal backstepping controller design for prosthetic knee joint,” Journal Européen des Systèmes Automatisés, vol. 55, no. 1, pp. 49-59, 2022, doi: 10.18280/jesa.550105.

R. C. D. Hora, S. D. S. Lima, and S. H. D. C. Santos, “Moving mass/load speed influence on the structural dynamic response of a bridge,” Revista IBRACON de Estruturas e Materiais, vol. 16, p. e16601, 2023, doi: 10.1590/S1983-41952023000600001.




DOI: https://doi.org/10.18196/jrc.v5i5.22985

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Aya Khudhair Abbas, Saleem Khalefa Kadhim

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 


Journal of Robotics and Control (JRC)

P-ISSN: 2715-5056 || E-ISSN: 2715-5072
Organized by Peneliti Teknologi Teknik Indonesia
Published by Universitas Muhammadiyah Yogyakarta in collaboration with Peneliti Teknologi Teknik Indonesia, Indonesia and the Department of Electrical Engineering
Website: http://journal.umy.ac.id/index.php/jrc
Email: jrcofumy@gmail.com


Kuliah Teknik Elektro Terbaik