A Comprehensive Review of AI and Deep Learning Applications in Dentistry: From Image Segmentation to Treatment Planning
Abstract
Keywords
Full Text:
PDFReferences
M. Yamada, “Development of a real-time endoscopic image diagnosis support system using deep learning technology in colonoscopy,” Scientific Reports, vol. 9, no. 1, 2019, doi: 10.1038/s41598-019-50567-5.
S. Kalra, “Pan-cancer diagnostic consensus through searching archival histopathology images using artificial intelligence,” npj Digital Medicine, vol. 3, no. 1, 2020, doi: 10.1038/s41746-020-0238-2.
S. R. Motamedian, “Machine learning and orthodontics, current trends and the future opportunities: A scoping review,” American Journal of Orthodontics and Dentofacial Orthopedics, vol. 160, no. 2, pp. 170-192.e4, 2021, doi: 10.1016/j.ajodo.2021.02.013.
J. Gomez, “Detection and diagnosis of the early caries lesion,” BMC Oral Health, vol. 15, 2015, doi: 10.1186/1472-6831-15-s1-s3.
F. Schwendicke, K. Elhennawy, S. Paris, P. Friebertshäuser, and J. Krois, “Deep learning for caries lesion detection in near-infrared light transillumination images: A pilot study,” Journal of Dentistry, vol. 92, p. 103260, 2020, doi: 10.1016/j.jdent.2019.103260.
M.-J. Kim, Y. Liu, S. H. Oh, H.-W. Ahn, S.-H. Kim, and G. Nelson, “Automatic Cephalometric Landmark Identification System Based on the Multi-Stage Convolutional Neural Networks with CBCT Combination Images,” Sensors, vol. 21, no. 2, p. 505, 2021, doi: 10.3390/s21020505.
S. B. Khanagar, “Developments, application, and performance of artificial intelligence in dentistry – A systematic review,” Journal of Dental Sciences, vol. 16, no. 1, pp. 508-522, 2021, doi: 10.1016/j.jds.2020.06.019.
H. W. Loh, “Application of Deep Learning Models for Automated Identification of Parkinson’s Disease: A Review (2011–2021),” Sensors, vol. 21, no. 21, p. 7034, 2021, doi: 10.3390/s21217034.
E. Y. Park, H. Cho, S. Kang, S. Jeong, and E.-K. Kim, “Caries detection with tooth surface segmentation on intraoral photographic images using deep learning,” BMC Oral Health, vol. 22, no. 1, 2022, doi: 10.1186/s12903-022-02589-1.
P. Singh and P. Sehgal, “G.V Black dental caries classification and preparation technique using optimal CNN-LSTM classifier,” Multimedia Tools and Applications, vol. 80, no. 4, pp. 5255-5272, 2020, doi: 10.1007/s11042-020-09891-6.
M. A. Morid, A. Borjali, and G. Del Fiol, “A scoping review of transfer learning research on medical image analysis using ImageNet,” Computers in Biology and Medicine, vol. 128, p. 104115, 2021, doi: 10.1016/j.compbiomed.2020.104115.
Z. Cui, “TSegNet: An efficient and accurate tooth segmentation network on 3D dental model,” Medical Image Analysis, vol. 69, p. 101949, 2021, doi: 10.1016/j.media.2020.101949.
R. Jain, A. Sutradhar, A. K. Dash, and S. Das, “Automatic Multi-organ Segmentation on Abdominal CT scans using Deep U-Net Model,” 2021 19th OITS International Conference on Information Technology (OCIT), pp. 48-53, 2021, doi: 10.1109/ocit53463.2021.00021.
S. Ramya, S. Sanjika, V. G. Sruthi, S. Swathi, and S. Sweetha, “MRI Image Based Diagnosis Model for Alzheimer’s Disease Using VGG16,” Recent Trends in Data Science and its Applications, pp. 1044-1049, 2023, doi: 10.13052/rp-9788770040723.201.
I. H. Sarker, “Deep Learning: A Comprehensive Overview on Techniques, Taxonomy, Applications and Research Directions,” SN Computer Science, vol. 2, no. 6, 2021, doi: 10.1007/s42979-021-00815-1.
A. Katsumata, “Deep learning and artificial intelligence in dental diagnostic imaging,” Japanese Dental Science Review, vol. 59, pp. 329-333, 2023, doi: 10.1016/j.jdsr.2023.09.004.
M. S. Tonetti, S. Jepsen, L. Jin, and J. Otomo‐Corgel, “Impact of the global burden of periodontal diseases on health, nutrition and wellbeing of mankind: A call for global action,” Journal of Clinical Periodontology, vol. 44, no. 5, pp. 456-462, 2017, doi: 10.1111/jcpe.12732.
J. Krois, “Deep Learning for the Radiographic Detection of Periodontal Bone Loss,” Scientific Reports, vol. 9, no. 1, 2019, doi: 10.1038/s41598-019-44839-3.
E.-H. Kim, “Prediction of Chronic Periodontitis Severity Using Machine Learning Models Based On Salivary Bacterial Copy Number,” Frontiers in Cellular and Infection Microbiology, vol. 10, 2020, doi: 10.3389/fcimb.2020.571515.
J.-H. Lee, D.- hyung Kim, S.-N. Jeong, and S.-H. Choi, “Diagnosis and prediction of periodontally compromised teeth using a deep learning-based convolutional neural network algorithm,” Journal of Periodontal & Implant Science, vol. 48, no. 2, p. 114, 2018, doi: 10.5051/jpis.2018.48.2.114.
G. Yauney, A. Rana, L. C. Wong, P. Javia, A. Muftu, and P. Shah, “Automated Process Incorporating Machine Learning Segmentation and Correlation of Oral Diseases with Systemic Health,” 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3387-3393, 2019, doi: 10.1109/embc.2019.8857965.
W. R. Proffita, “The evolution of orthodontics to a data-based specialty,” American Journal of Orthodontics and Dentofacial Orthopedics, vol. 117, no. 5, pp. 545-547, 2000, doi: 10.1016/s0889-5406(00)70194-6.
J.-H. Park, “Automated identification of cephalometric landmarks: Part 1—Comparisons between the latest deep-learning methods YOLOV3 and SSD,” The Angle Orthodontist, vol. 89, no. 6, pp. 903-909, 2019, doi: 10.2319/022019-127.1.
G. Bulatova, B. Kusnoto, V. Grace, T. P. Tsay, D. M. Avenetti, and F. J. C. Sanchez, “Assessment of automatic cephalometric landmark identification using artificial intelligence,” Orthodontics & Craniofacial Research, vol. 24, pp. 37-42, 2021, doi: 10.1111/ocr.12542.
F. Kunz, A. Stellzig-Eisenhauer, F. Zeman, and J. Boldt, “Artificial intelligence in orthodontics,” Journal of Orofacial Orthopedics / Fortschritte der Kieferorthopädie, vol. 81, no. 1, pp. 52-68, 2019, doi: 10.1007/s00056-019-00203-8.
H. Yu, S. Cho, M. Kim, W. Kim, J. Kim, and J. Choi, “Automated Skeletal Classification with Lateral Cephalometry Based on Artificial Intelligence,” Journal of Dental Research, vol. 99, no. 3, pp. 249-256, 2020, doi: 10.1177/0022034520901715.
H.-I. Choi, “Artificial Intelligent Model With Neural Network Machine Learning for the Diagnosis of Orthognathic Surgery,” Journal of Craniofacial Surgery, vol. 30, no. 7, pp. 1986-1989, 2019, doi: 10.1097/scs.0000000000005650.
Z. Cui, “TSegNet: An efficient and accurate tooth segmentation network on 3D dental model,” Medical Image Analysis, vol. 69, p. 101949, 2021, doi: 10.1016/j.media.2020.101949.
Z. Cui, “A fully automatic AI system for tooth and alveolar bone segmentation from cone-beam CT images,” Nature Communications, vol. 13, no. 1, 2022, doi: 10.1038/s41467-022-29637-2
Y. Chen, J. K. Y. Lee, G. Kwong, E. H. N. Pow, and J. K. H. Tsoi, “Morphology and fracture behavior of lithium disilicate dental crowns designed by human and knowledge-based AI,” Journal of the Mechanical Behavior of Biomedical Materials, vol. 131, p. 105256, 2022, doi: 10.1016/j.jmbbm.2022.105256.
S. Tian, “DCPR-GAN: Dental Crown Prosthesis Restoration Using Two-Stage Generative Adversarial Networks,” IEEE Journal of Biomedical and Health Informatics, vol. 26, no. 1, pp. 151-160, 2022, doi: 10.1109/jbhi.2021.3119394.
H. Ding, “Morphology and mechanical performance of dental crown designed by 3D-DCGAN,” Dental Materials, vol. 39, no. 3, pp. 320-332, 2023, doi: 10.1016/j.dental.2023.02.001.
D. Rokaya, “3D-Printed Biomaterials in Biomedical Application,” Functional Biomaterials, pp. 319-339, 2022, doi: 10.1007/978-981-16-7152-4_12.
J. Wei, M. Peng, Q. Li, and Y. Wang, “Evaluation of a Novel Computer Color Matching System Based on the Improved Back‐Propagation Neural Network Model,” Journal of Prosthodontics, vol. 27, no. 8, pp. 775-783, 2016, doi: 10.1111/jopr.12561.
T. Takahashi, K. Nozaki, T. Gonda, and K. Ikebe, “A system for designing removable partial dentures using artificial intelligence. Part 1. Classification of partially edentulous arches using a convolutional neural network,” Journal of Prosthodontic Research, vol. 65, no. 1, pp. 115-118, 2021, doi: 10.2186/jpr.jpor_2019_354.
C. Cheng, X. Cheng, N. Dai, X. Jiang, Y. Sun, and W. Li, “Prediction of facial deformation after complete denture prosthesis using BP neural network,” Computers in Biology and Medicine, vol. 66, pp. 103-112, 2015, doi: 10.1016/j.compbiomed.2015.08.018.
J. Sporring and K. Hommelhoff Jensen, “Bayes Reconstruction of Missing Teeth,” Journal of Mathematical Imaging and Vision, vol. 31, no. 2, pp. 245-254, 2008, doi: 10.1007/s10851-008-0081-6.
National Cancer Institute. World Health Organization. Qeios, 2020, doi:10.32388/XO5AWV.
E. Choi, “Artificial intelligence in positioning between mandibular third molar and inferior alveolar nerve on panoramic radiography,” Scientific Reports, vol. 12, no. 1, 2022, doi: 10.1038/s41598-022-06483-2.
J. Ferracane, “Models of Caries Formation around Dental Composite Restorations,” Journal of Dental Research, vol. 96, no. 4, pp. 364-371, 2016, doi: 10.1177/0022034516683395.
K. Warin, W. Limprasert, S. Suebnukarn, S. Jinaporntham, P. Jantana, and S. Vicharueang, “AI-based Analysis of Oral Lesions Using Novel Deep Convolutional Neural Networks for Early Detection of Oral Cancer,” Plos one, vol. 17, no. 8, 2022, doi: 10.21203/rs.3.rs-1049349/v1.
M. Aubreville, “Automatic Classification of Cancerous Tissue in Laser Endomicroscopy Images of the Oral Cavity using Deep Learning,” Scientific Reports, vol. 7, no. 1, 2017, doi: 10.1038/s41598-017-12320-8.
W. Poedjiastoeti and S. Suebnukarn, “Application of Convolutional Neural Network in the Diagnosis of Jaw Tumors,” Healthcare Informatics Research, vol. 24, no. 3, p. 236, 2018, doi: 10.4258/hir.2018.24.3.236.
B. L. James, “Validation of a Point-of-Care Optical Coherence Tomography Device with Machine Learning Algorithm for Detection of Oral Potentially Malignant and Malignant Lesions,” Cancers, vol. 13, no. 14, p. 3583, 2021, doi: 10.3390/cancers13143583.
A. E. Heidari, “The use of optical coherence tomography and convolutional neural networks to distinguish normal and abnormal oral mucosa,” Journal of Biophotonics, vol. 13, no. 3, 2020, doi: 10.1002/jbio.201900221.
H.-J. Kong, S.-H. Eom, J.-Y. Yoo, and J.-H. Lee, “Identification of 130 Dental Implant Types Using Ensemble Deep Learning,” International Journal of Oral and Maxillofacial Implants, vol. 38, no. 1, pp. 150-156, 2023, doi: 10.11607/jomi.9818.
V. Kwok, J. G. Caton, I. D. Hart, and T. Kim, “Dental implant prognostication: A commentary,” Journal of Periodontology, vol. 94, no. 6, pp. 713-721, 2023, doi: 10.1002/jper.22-0196.
C. Xu, “Calcium Phosphate Ceramics and Synergistic Bioactive Agents for Osteogenesis in Implant Dentistry,” Tissue Engineering Part C: Methods, vol. 29, no. 5, pp. 197-215, 2023, doi: 10.1089/ten.tec.2023.0042.
T. Takahashi, K. Nozaki, T. Gonda, T. Mameno, and K. Ikebe, “Deep learning-based detection of dental prostheses and restorations,” Scientific Reports, vol. 11, no. 1, 2021, doi: 10.1038/s41598-021-81202-x.
M. Liu, S. Wang, H. Chen, and Y. Liu, “A pilot study of a deep learning approach to detect marginal bone loss around implants,” BMC Oral Health, vol. 22, no. 1, 2022, doi: 10.1186/s12903-021-02035-8.
G. Nijaguna, J. A. Babu, B. Parameshachari, R. P. De Prado, and J. Frnda, “Quantum Fruit Fly algorithm and ResNet50-VGG16 for medical diagnosis,” Applied Soft Computing, vol. 136, p. 110055, 2023, doi: 10.1016/j.asoc.2023.110055.
S. Nagarkar, A. D. Loguercio, and J. Perdigão, “Evidence-based fact checking for selective procedures in restorative dentistry,” Clinical Oral Investigations, vol. 27, no. 2, pp. 475-488, 2023, doi: 10.1007/s00784-022-04832-z.
A. K. Swanson, I. S. Duqum, L. H. Heimisdóttir, and J. T. Wright, “Digital restorative workflows for developmental dental defects in young patients,” The Journal of the American Dental Association, vol. 154, no. 4, pp. 340-348, 2023, doi: 10.1016/j.adaj.2022.11.014.
K. M. Sunnetci, E. Kaba, F. Beyazal Çeliker, and A. Alkan, “Comparative parotid gland segmentation by using ResNet‐18 and MobileNetV2 based DeepLab v3+ architectures from magnetic resonance images,” Concurrency and Computation: Practice and Experience, vol. 35, no. 1, 2022, doi: 10.1002/cpe.7405.
M. Madi, I. Almindil, M. Alrassasi, D. Alramadan, O. Zakaria, and A. S. Alagl, “Cone-Beam Computed Tomography and Histological Findings for Socket Preservation Techniques Using Different Grafting Materials: A Systematic Review,” Journal of Functional Biomaterials, vol. 14, no. 5, p. 282, 2023, doi: 10.3390/jfb14050282.
H. Choi, J. P. Yun, A. Lee, S.-S. Han, S. W. Kim, and C. Lee, “Deep learning synthesis of cone-beam computed tomography from zero echo time magnetic resonance imaging,” Scientific Reports, vol. 13, no. 1, 2023, doi: 10.1038/s41598-023-33288-8.
L. Jiang, “Analysis of epidemiological trends of and associated factors for tooth loss among 35- to 44-year-old adults in Guangdong, Southern China, 1995–2015: a population-based cross-sectional survey,” BMC Oral Health, vol. 23, no. 1, 2023, doi: 10.1186/s12903-023-02776-8.
B. Jabeen, Z. Afshan, K. Aslam, M. Iftikhar, S. Rasool, and H. Ahsan, “Association of Smoked and Smokeless Tobacco with Tooth Loss,” Pakistan Journal of Medical and Health Sciences, vol. 17, no. 5, pp. 136-137, 2023, doi: 10.53350/pjmhs2023175136.
A. M. Scott, W. M. Reed, S. Ajwani, and T. R. Parmenter, “Panoramic radiographs and dental patients with Down syndrome: A scoping review,” Special Care in Dentistry, vol. 43, no. 2, pp. 199-220, 2022, doi: 10.1111/scd.12762.
A. Kang, F. A. Firth, J. Antoun, L. Mei, A. Ali, and M. Farella, “Three‐dimensional digital assessment of typodont activations,” Orthodontics & Craniofacial Research, vol. 26, no. 2, pp. 285-296, 2022, doi: 10.1111/ocr.12611.
C. Sheng, “Transformer-Based Deep Learning Network for Tooth Segmentation on Panoramic Radiographs,” Journal of Systems Science and Complexity, vol. 36, no. 1, pp. 257-272, 2022, doi: 10.1007/s11424-022-2057-9.
A. Haghanifar, M. M. Majdabadi, and S.-B. Ko, “Automated Teeth Extraction from Dental Panoramic X-Ray Images using Genetic Algorithm,” 2020 IEEE International Symposium on Circuits and Systems (ISCAS), 2020, doi: 10.1109/iscas45731.2020.9180937.
S. Helli and A. Hamamci, “Tooth Instance Segmentation on Panoramic Dental Radiographs Using U-Nets and Morphological Processing,” Düzce Üniversitesi Bilim ve Teknoloji Dergisi, vol. 10, no. 1, pp. 39-50, 2022, doi: 10.29130/dubited.950568.
C. Rohrer, J. Krois, J. Patel, H. Meyer-Lueckel, J. A. Rodrigues, and F. Schwendicke, “Segmentation of Dental Restorations on Panoramic Radiographs Using Deep Learning,” Diagnostics, vol. 12, no. 6, p. 1316, 2022, doi: 10.3390/diagnostics12061316.
H. Wang, J. Minnema, K. Batenburg, T. Forouzanfar, F. Hu, and G. Wu, “Multiclass CBCT Image Segmentation for Orthodontics with Deep Learning,” Journal of Dental Research, vol. 100, no. 9, pp. 943-949, 2021, doi: 10.1177/00220345211005338.
A. S. A.-M. AL-Ghamdi, M. Ragab, S. A. AlGhamdi, A. H. Asseri, R. F. Mansour, and D. Koundal, “Detection of Dental Diseases through X-Ray Images Using Neural Search Architecture Network,” Computational Intelligence and Neuroscience, vol. 2022, pp. 1-7, 2022, doi: 10.1155/2022/3500552.
S. Tao and Z. Wang, “Tooth CT Image Segmentation Method Based on the U-Net Network and Attention Module,” Computational and Mathematical Methods in Medicine, vol. 2022, pp. 1-8, 2022, doi: 10.1155/2022/3289663.
C. Kim, D. Kim, H. Jeong, S.-J. Yoon, and S. Youm, “Automatic Tooth Detection and Numbering Using a Combination of a CNN and Heuristic Algorithm,” Applied Sciences, vol. 10, no. 16, p. 5624, 2020, doi: 10.3390/app10165624.
E. Shaheen, “A novel deep learning system for multi-class tooth segmentation and classification on cone beam computed tomography. A validation study,” Journal of Dentistry, vol. 115, p. 103865, 2021, doi: 10.1016/j.jdent.2021.103865.
L. Schneider, “Benchmarking Deep Learning Models for Tooth Structure Segmentation,” Journal of Dental Research, vol. 101, no. 11, pp. 1343-1349, 2022, doi: 10.1177/00220345221100169.
O. Salih and K. J. Duffy, “The local ternary pattern encoder–decoder neural network for dental image segmentation,” IET Image Processing, vol. 16, no. 6, pp. 1520-1530, 2022, doi: 10.1049/ipr2.12416.
K. Zhang, H. Chen, P. Lyu, and J. Wu, “A relation-based framework for effective teeth recognition on dental periapical X-rays,” Computerized Medical Imaging and Graphics, vol. 95, p. 102022, 2022, doi: 10.1016/j.compmedimag.2021.102022.
J. R. Vest and L. D. Gamm, “Health information exchange: persistent challenges and new strategies,” J Am Med Inform Assoc., vol. 17, no. 3, pp. 288–294, 2010, doi: 10.1136/jamia.2010.003673.
F. Schwendicke, W. Samek, and J. Krois, “Artificial intelligence in dentistry: chances and challenges,” J Dent Res., vol. 99, no. 7, pp. 769–74, 2020, doi: 10.1177/0022034520915714
K. Li, Y. Li, J. Zhang, X. Liu, and Z. Ma, “Federated deep long-tailed learning: A survey,” Neurocomputing, vol. 595, p. 127906, 2024, doi: 10.1016/j.neucom.2024.127906.
R. Rischke, L. Schneider, K. Müller, W. Samek, F. Schwendicke, and J. Krois, “Federated Learning in Dentistry: Chances and Challenges,” Journal of Dental Research, vol. 101, no. 11, pp. 1269-1273, 2022, doi: 10.1177/00220345221108953.
F. Schwendicke et al., “Artificial intelligence for oral and dental healthcare: core education curriculum,” Journal of Dentistry, vol. 128, p. 104363, 2023.
T. Ma and A. Zhang, “Integrate multi-omics data with biological interaction networks using Multi-view Factorization AutoEncoder (MAE),” BMC Genomics, vol. 20, 2019, doi: 10.1186/s12864-019-6285-x.
A. Cheerla and O. Gevaert, “Deep learning with multimodal representation for pancancer prognosis prediction,” Bioinformatics, vol. 35, no. 14, 2019, doi: 10.1093/bioinformatics/btz342.
N. Haghjoo, A. Moeini, and A. Masoudi-Nejad, “Introducing a panel for early detection of lung adenocarcinoma by using data integration of genomics, epigenomics, transcriptomics and proteomics,” Experimental and Molecular Pathology, vol. 112, p. 104360, 2020, doi: 10.1016/j.yexmp.2019.104360.
DOI: https://doi.org/10.18196/jrc.v5i6.23056
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Rajashree Nambiar, Raghu Nanjundegowda
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Journal of Robotics and Control (JRC)
P-ISSN: 2715-5056 || E-ISSN: 2715-5072
Organized by Peneliti Teknologi Teknik Indonesia
Published by Universitas Muhammadiyah Yogyakarta in collaboration with Peneliti Teknologi Teknik Indonesia, Indonesia and the Department of Electrical Engineering
Website: http://journal.umy.ac.id/index.php/jrc
Email: jrcofumy@gmail.com