Landing Control Based on Energy Prediction for a Quadcopter Under External Disturbances

Cuong V. Nguyen

Abstract


Unmanned aerial vehicles (UAVs) have recently become one of the most popular research topics. The high diversity in its uses has attracted research attention regarding structure or control capabilities. However, if the energy consumed in each mission cannot be predicted, the available flight time will pose many risks to the UAV and data security. This paper proposes a control algorithm based on predicting the remaining flight time to determine a safe landing station. Suppose the UAV cannot reach the desired destination station. In that case, it will find the nearest landing station to recharge its energy until the SoC (State of Charge) > 90%, then the UAV will continue to perform the mission until the UAV reaches the destination station. In addition, the paper uses a marker-based landing method to improve landing accuracy. The sliding mode controller (SMC) is designed to consider external disturbance factors and consider a solution to reduce chattering.

Keywords


SMC; UAV; Control; Landing; Energy Prediction.

Full Text:

PDF

References


J. Wu et al., “An Adaptive Conversion Speed Q-Learning Algorithm for Search and Rescue UAV Path Planning in Unknown Environments,” IEEE Transactions on Vehicular Technology, vol. 72, no. 12, pp. 15391–15404, Dec. 2023, doi: 10.1109/tvt.2023.3297837.

C. Zhang, W. Zhou, W. Qin, and W. Tang, “A novel UAV path planning approach: Heuristic crossing search and rescue optimization algorithm,” Expert Systems with Applications, vol. 215, p. 119243, Apr. 2023, doi: 10.1016/j.eswa.2022.119243.

M. Song, Y. Huo, Z. Liang, X. Dong, and T. Lu, “UAV Communication Recovery under Meteorological Conditions,” Drones, vol. 7, no. 7, p. 423, Jun. 2023, doi: 10.3390/drones7070423.

O. Kozlov, Y. Kondratenko, and O. Skakodub, “Intelligent IoT-based Control System of the UAV for Meteorological Measurements,” Journal of Mobile Multimedia, pp. 555–596, May 2024, doi: 10.13052/jmm1550-4646.2032.

C. Mourgelas, E. Micha, E. Chatzistavrakis, and I. Voyiatzis, “Classification of Unmanned Aerial Vehicles in Meteorology: A Survey,” Environmental Sciences Proceedings, vol. 26, no. 1, p. 135, Aug. 2023, doi: 10.3390/environsciproc2023026135.

J. Peng et al., “Near Surface Layer Meteorological Observation System Based on Programmable Unmanned Aerial Vehicles,” Journal of Physics: Conference Series, vol. 2419, no. 1, p. 012099, Jan. 2023, doi: 10.1088/1742-6596/2419/1/012099.

M. Aljohani, R. Mukkamala, and S. Olariu, “Autonomous Strike UAVs in Support of Homeland Security Missions: Challenges and Preliminary Solutions,” IEEE Access, vol. 12, pp. 90979-90996, 2024, doi: 10.1109/access.2024.3420235.

P. Daponte and F. Paladi, “Monitoring and Protection of Critical Infrastructure by Unmanned Systems,” NATO Science for Peace and Security Series - D: Information and Communication Security, vol. 63, pp. 1-238, Jan. 2023, doi: 10.3233/nicsp63.

F. Outay, H. A. Mengash, and M. Adnan, “Applications of unmanned aerial vehicle (UAV) in road safety, traffic and highway infrastructure management: Recent advances and challenges,” Transportation Research Part A: Policy and Practice, vol. 141, pp. 116–129, Nov. 2020, doi: 10.1016/j.tra.2020.09.018.

S. Feroz and S. Abu Dabous, “UAV-Based Remote Sensing Applications for Bridge Condition Assessment,” Remote Sensing, vol. 13, no. 9, p. 1809, May 2021, doi: 10.3390/rs13091809.

X. Kong, C. Ni, G. Duan, G. Shen, Y. Yang, and S. K. Das, “Energy Consumption Optimization of UAV-Assisted Traffic Monitoring Scheme With Tiny Reinforcement Learning,” IEEE Internet of Things Journal, vol. 11, no. 12, pp. 21135–21145, Jun. 2024, doi: 10.1109/jiot.2024.3365293.

S. Ali, A. Jalal, M. Hamad Alatiyyah, K. Alnowaiser, and J. Park, “Vehicle Detection and Tracking in UAV Imagery via YOLOv3 and Kalman Filter,” Computers, Materials & Continua, vol. 76, no. 1, pp. 1249–1265, 2023, doi: 10.32604/cmc.2023.038114.

S. Emmanuel and P. U. Emmoh, “Enhancing Traffic Management in Urban Areas through UAV-Assisted Intelligent Mobile Systems,” Journal of Networking and Communication Systems (JNACS), vol. 7, no. 1, pp. 17–27, 2024, doi: 10.46253/jnacs.v7i1.a2.

M. Hanzla, S. Ali, and A. Jalal, “Smart Traffic Monitoring through Drone Images via Yolov5 and Kalman Filter,” 2024 5th International Conference on Advancements in Computational Sciences (ICACS), pp. 1-8, Feb. 2024, doi: 10.1109/icacs60934.2024.10473259.

X. Kong, C. Ni, G. Duan, G. Shen, Y. Yang, and S. K. Das, “Energy Consumption Optimization of UAV-Assisted Traffic Monitoring Scheme With Tiny Reinforcement Learning,” IEEE Internet of Things Journal, vol. 11, no. 12, pp. 21135–21145, Jun. 2024, doi: 10.1109/jiot.2024.3365293.

D. Lu, J. Ye, Y. Wang, and Z. Yu, “Plant Detection and Counting: Enhancing Precision Agriculture in UAV and General Scenes,” IEEE Access, vol. 11, pp. 116196–116205, 2023, doi: 10.1109/access.2023.3325747.

R. I. Mukhamediev et al., “Coverage Path Planning Optimization of Heterogeneous UAVs Group for Precision Agriculture,” IEEE Access, vol. 11, pp. 5789–5803, 2023, doi: 10.1109/access.2023.3235207.

N. Delavarpour, C. Koparan, J. Nowatzki, S. Bajwa, and X. Sun, “A Technical Study on UAV Characteristics for Precision Agriculture Applications and Associated Practical Challenges,” Remote Sensing, vol. 13, no. 6, p. 1204, Mar. 2021, doi: 10.3390/rs13061204.

P. Velusamy, S. Rajendran, R. K. Mahendran, S. Naseer, M. Shafiq, and J.-G. Choi, “Unmanned Aerial Vehicles (UAV) in Precision Agriculture: Applications and Challenges,” Energies, vol. 15, no. 1, p. 217, Dec. 2021, doi: 10.3390/en15010217.

A. Lambertini, E. Mandanici, M. A. Tini, and L. Vittuari, “Technical Challenges for Multi-Temporal and Multi-Sensor Image Processing Surveyed by UAV for Mapping and Monitoring in Precision Agriculture,” Remote Sensing, vol. 14, no. 19, p. 4954, Oct. 2022, doi: 10.3390/rs14194954.

H. Shakhatreh et al., “Unmanned Aerial Vehicles (UAVs): A Survey on Civil Applications and Key Research Challenges,” IEEE Access, vol. 7, pp. 48572–48634, 2019, doi: 10.1109/access.2019.2909530.

M. Krichen and A. Mihoub, “Unmanned Aerial Vehicles Communications Security Challenges: A Survey,” Synthesis Lectures on Intelligent Technologies, pp. 349–373, 2023, doi: 10.1007/978-3-031-32037-8_12.

A. S. Prasetia, R.-J. Wai, Y.-L. Wen, and Y.-K. Wang, “Mission-Based Energy Consumption Prediction of Multirotor UAV,” IEEE Access, vol. 7, pp. 33055–33063, 2019, doi: 10.1109/access.2019.2903644.

L. H. Manjarrez, J. C. Ramos-Fernández, E. S. Espinoza, and R. Lozano, “Estimation of Energy Consumption and Flight Time Margin for a UAV Mission Based on Fuzzy Systems,” Technologies, vol. 11, no. 1, p. 12, Jan. 2023, doi: 10.3390/technologies11010012.

M. Suwe, M. Eigenseer, and C. Werner, “Model-Based Evaluation of Energy Systems for Multirotor UAV Based on Batteries and Fuel Cells,” Journal of Aviation Technology and Engineering, vol. 12, no. 1, Feb. 2023, doi: 10.7771/2159-6670.1262.

S. A. H. Mohsan, N. Q. H. Othman, Y. Li, M. H. Alsharif, and M. A. Khan, “Unmanned aerial vehicles (UAVs): practical aspects, applications, open challenges, security issues, and future trends,” Intelligent Service Robotics, vol. 16, no. 1, pp. 109-137, Jan. 2023, doi: 10.1007/s11370-022-00452-4.

A. Baharuddin and M. A. Mohd Basri, “Trajectory Tracking of a Quadcopter UAV using PID Controller,” ELEKTRIKA- Journal of Electrical Engineering, vol. 22, no. 2, pp. 14–21, Aug. 2023, doi: 10.11113/elektrika.v22n2.440.

W. Altalabani and Y. Alaiwi, “Optimized Adaptive PID Controller Design for Trajectory Tracking of a Quadcopter,” Mathematical Modelling of Engineering Problems, vol. 9, no. 6, pp. 1490–1496, Dec. 2022, doi: 10.18280/mmep.090607.

S. Abdelhay and A. Zakriti, “Modeling of a Quadcopter Trajectory Tracking System Using PID Controller,” Procedia Manufacturing, vol. 32, pp. 564–571, 2019, doi: 10.1016/j.promfg.2019.02.253.

J. Yoon and J. Doh, “Optimal PID control for hovering stabilization of quadcopter using long short term memory,” Advanced Engineering Informatics, vol. 53, p. 101679, Aug. 2022, doi: 10.1016/j.aei.2022.101679.

A. Belmouhoub, S. Medjmadj, Y. Bouzid, S. H. Derrouaoui, and M. Guiatni, “Enhanced backstepping control for an unconventional quadrotor under external disturbances,” The Aeronautical Journal, vol. 127, no. 1310, pp. 627–650, Jul. 2022, doi: 10.1017/aer.2022.72.

Y. Nettari, S. Kurt, and M. Labbadi, “Adaptive Robust Control based on Backstepping Sliding Mode techniques for Quadrotor UAV under external disturbances,” IFAC-PapersOnLine, vol. 55, no. 12, pp. 252–257, 2022, doi: 10.1016/j.ifacol.2022.07.320.

W. Xie, D. Cabecinhas, R. Cunha, and C. Silvestre, “Adaptive Backstepping Control of a Quadcopter With Uncertain Vehicle Mass, Moment of Inertia, and Disturbances,” IEEE Transactions on Industrial Electronics, vol. 69, no. 1, pp. 549–559, Jan. 2022, doi: 10.1109/tie.2021.3055181.

W. Xie, W. Zhang, and C. Silvestre, “Saturated Backstepping-Based Tracking Control of a Quadrotor With Uncertain Vehicle Parameters and External Disturbances,” IEEE Control Systems Letters, vol. 6, pp. 1634–1639, 2022, doi: 10.1109/lcsys.2021.3129891.

H. Pang, R. Yao, P. Wang, and Z. Xu, “Adaptive backstepping robust tracking control for stabilizing lateral dynamics of electric vehicles with uncertain parameters and external disturbances,” Control Engineering Practice, vol. 110, p. 104781, May 2021, doi: 10.1016/j.conengprac.2021.104781.

A. Eltayeb, M. F. Rahmat, M. A. M. Basri, M. A. M. Eltoum, and M. S. Mahmoud, “Integral Adaptive Sliding Mode Control for Quadcopter UAV Under Variable Payload and Disturbance,” IEEE Access, vol. 10, pp. 94754–94764, 2022, doi: 10.1109/access.2022.3203058.

N. P. Nguyen and P. Pitakwachara, “Integral terminal sliding mode fault tolerant control of quadcopter UAV systems,” Scientific Reports, vol. 14, no. 1, May 2024, doi: 10.1038/s41598-024-61273-2.

J. Chaoraingern, V. Tipsuwanporn, and A. Numsomran, “Modified Adaptive Sliding Mode Control for Trajectory Tracking of Mini-drone Quadcopter Unmanned Aerial Vehicle,” International Journal of Intelligent Engineering and Systems, vol. 13, no. 5, pp. 145–158, Oct. 2020, doi: 10.22266/ijies2020.1031.14.

E. Ahmed, “Robust Adaptive Sliding Mode Control Design for Quadrotor Unmanned Aerial Vehicle Trajectory Tracking,” International Journal of Computing and Digital Systems, vol. 9, no. 2, pp. 249–257, Jan. 2020, doi: 10.12785/ijcds/090210.

H. T. Sekban and A. Basci, “Designing New Model-Based Adaptive Sliding Mode Controllers for Trajectory Tracking Control of an Unmanned Ground Vehicle,” IEEE Access, vol. 11, pp. 101387–101397, 2023, doi: 10.1109/access.2023.3313942.

B. Ma, W. Pei, and Q. Zhang, “Trajectory Tracking Control of Autonomous Vehicles Based on an Improved Sliding Mode Control Scheme,” Electronics, vol. 12, no. 12, p. 2748, Jun. 2023, doi: 10.3390/electronics12122748.

N. P. Nguyen, N. X. Mung, H. L. N. N. Thanh, T. T. Huynh, N. T. Lam, and S. K. Hong, “Adaptive Sliding Mode Control for Attitude and Altitude System of a Quadcopter UAV via Neural Network,” IEEE Access, vol. 9, pp. 40076–40085, 2021, doi: 10.1109/access.2021.3064883.

J. Rao, B. Li, Z. Zhang, D. Chen, and W. Giernacki, “Position Control of Quadrotor UAV Based on Cascade Fuzzy Neural Network,” Energies, vol. 15, no. 5, p. 1763, Feb. 2022, doi: 10.3390/en15051763.

K. Jia, S. Lin, Y. Du, C. Zou, and M. Lu, “Research on Route Tracking Controller of Quadrotor UAV Based on Fuzzy Logic and RBF Neural Network,” IEEE Access, vol. 11, pp. 111433–111447, 2023, doi: 10.1109/access.2023.3322944.

B. Jiang, B. Li, W. Zhou, L.-Y. Lo, C.-K. Chen, and C.-Y. Wen, “Neural Network Based Model Predictive Control for a Quadrotor UAV,” Aerospace, vol. 9, no. 8, p. 460, Aug. 2022, doi: 10.3390/aerospace9080460.

J. Morales, I. Castelo, R. Serra, P. U. Lima, and M. Basiri, “Vision-Based Autonomous Following of a Moving Platform and Landing for an Unmanned Aerial Vehicle,” Sensors, vol. 23, no. 2, p. 829, Jan. 2023, doi: 10.3390/s23020829.

M. F. Khyasudeen et al., “The development of a GPS-based autonomous quadcopter towards precision landing on moving platform,” International Journal of Vehicle Autonomous Systems, vol. 16, pp. 108–126, 2022, doi: 10.1504/ijvas.2022.133006.

I. S. Amiri et al., “The development of a GPS-based autonomous quadcopter for precision landing on a moving platform,” International Journal of Vehicle Autonomous Systems, vol. 1, no. 1, 2021, doi: 10.1504/ijvas.2021.10055418.

A. S. Priambodo, F. Arifin, A. Nasuha, Muslikhin, and A. Winursito, “A Vision and GPS Based System for Autonomous Precision Vertical Landing of UAV Quadcopter,” Journal of Physics: Conference Series, vol. 2406, no. 1, p. 012004, Dec. 2022, doi: 10.1088/1742-6596/2406/1/012004.

J. Wubben et al., “A vision-based system for autonomous vertical landing of unmanned aerial vehicles,” 2019 IEEE/ACM 23rd International Symposium on Distributed Simulation and Real Time Applications (DS-RT), pp. 1-7, Oct. 2019, doi: 10.1109/ds-rt47707.2019.8958701.

L. Xin, Z. Tang, W. Gai, and H. Liu, “Vision-Based Autonomous Landing for the UAV: A Review,” Aerospace, vol. 9, no. 11, p. 634, Oct. 2022, doi: 10.3390/aerospace9110634.

A. Khazetdinov, A. Zakiev, T. Tsoy, M. Svinin, and E. Magid, “Embedded ArUco: a novel approach for high precision UAV landing,” 2021 International Siberian Conference on Control and Communications (SIBCON), pp. 1-6, May 2021, doi: 10.1109/sibcon50419.2021.9438855.

A. Marut, K. Wojtowicz, and K. Falkowski, “ArUco markers pose estimation in UAV landing aid system,” 2019 IEEE 5th International Workshop on Metrology for AeroSpace (MetroAeroSpace), pp. 261-266, Jun. 2019, doi: 10.1109/metroaerospace.2019.8869572.

I. E. Sevostyanov and D. V. Devitt, “Uav Visual Positioning System For High-Precision Autonomous Landing,” Mathematical Methods in Technologies and Technics, no. 7, pp. 83–86, 2021, doi: 10.52348/2712-8873_mmtt_2021_7_83.

Z. Yue, H. Shuai, D. Xuechao, and X. Ziqi, “UAV Landing Aid Hexapod Robot based on ArUco Marker and Sparse Optical Flow,” Journal of Physics: Conference Series, vol. 2281, no. 1, p. 012002, Jun. 2022, doi: 10.1088/1742-6596/2281/1/012002.

C. V. Nguyen, H. T. Tran, H. T. Do, T. Hoang, D. L. T. Tran, and M. T. Nguyen, “A Novel Framework of Visual Detection, Tracking and Landing for UAVs Utilizing AR Markers,” 2023 International Conference on Control, Robotics and Informatics (ICCRI), pp. 81-85, May 2023, doi: 10.1109/iccri58865.2023.00023.

H.-H. Kang and S.-Y. Shin, “Precise Drone Landing System Using Aruco Maker,” The Journal of Korean Institute of Communications and Information Sciences, vol. 47, no. 1, pp. 145–150, Jan. 2022, doi: 10.7840/kics.2022.47.1.145.

L. B. Junior et al., “A Comparison of Fiducial Markers Pose Estimation for UAVs Indoor Precision Landing,” Optimization, Learning Algorithms and Applications, pp. 18–33, 2024, doi: 10.1007/978-3-031-53025-8_2.

F. Yacef, N. Rizoug, L. Degaa, and M. Hamerlain, “Energy-Efficiency Path Planning for Quadrotor UAV Under Wind Conditions,” 2020 7th International Conference on Control, Decision and Information Technologies (CoDIT), vol. 1, pp. 1133-1138 Jun. 2020, doi: 10.1109/codit49905.2020.9263968.

M. Shah Alam and J. Oluoch, “A survey of safe landing zone detection techniques for autonomous unmanned aerial vehicles (UAVs),” Expert Systems with Applications, vol. 179, p. 115091, Oct. 2021, doi: 10.1016/j.eswa.2021.115091.

Z. Wang and G. Wang, “Energy-Efficient Mobile Edge Computing Assisted by Layered Uavs Based on Convex Optimization,” Physical Communication, vol. 65, p. 102382, 2023, doi: 10.2139/ssrn.4576663.

H. Jin et al., “A survey of energy efficient methods for UAV communication,” Vehicular Communications, vol. 41, p. 100594, Jun. 2023, doi: 10.1016/j.vehcom.2023.100594.

D. An, R. Krzysiak, D. Hollenbeck, and Y. Chen, “Battery-health-aware UAV mission planning using a cognitive battery management system,” 2023 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 523-528, Jun. 2023, doi: 10.1109/icuas57906.2023.10156138.

B. Bose, S. Shaosen, W. Li, L. Gao, K. Wei, and A. Garg, “Cloud-Battery management system based health-aware battery fast charging architecture using error-correction strategy for electric vehicles,” Sustainable Energy, Grids and Networks, vol. 36, p. 101197, Dec. 2023, doi: 10.1016/j.segan.2023.101197.

I. Lebedev, A. Erashov, and A. Shabanova, “Accurate Autonomous UAV Landing Using Vision-Based Detection of ArUco-Marker,” Interactive Collaborative Robotics, pp. 179–188, 2020, doi: 10.1007/978-3-030-60337-3_18.

A. E. S. Morando, M. F. Santos, P. Castillo, and A. Correa-Victorino, “Vision-Based Algorithm for Autonomous Aerial Landing,” 2024 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 652-657, Jun. 2024, doi: 10.1109/icuas60882.2024.10556880.

O. Gharsa, M. M. Touba, M. Boumehraz, N. Abderrahman, S. Bellili, and A. Titaouine, “Autonomous landing system for A Quadrotor using a vision-based approach,” 2024 8th International Conference on Image and Signal Processing and their Applications (ISPA), pp. 1-5, Apr. 2024, doi: 10.1109/ispa59904.2024.10536784.

G. G. Jin, P. Pal, Y. K. Chung, H. K. Kang, T. T. Yetayew, and S. Bhakta, “Modelling, control and development of GUI-based simulator for a quadcopter using nonlinear PID control,” Australian Journal of Electrical and Electronics Engineering, vol. 20, no. 4, pp. 387–399, Aug. 2023, doi: 10.1080/1448837x.2023.2249166.




DOI: https://doi.org/10.18196/jrc.v5i6.23074

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Cuong Van Nguyen

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 


Journal of Robotics and Control (JRC)

P-ISSN: 2715-5056 || E-ISSN: 2715-5072
Organized by Peneliti Teknologi Teknik Indonesia
Published by Universitas Muhammadiyah Yogyakarta in collaboration with Peneliti Teknologi Teknik Indonesia, Indonesia and the Department of Electrical Engineering
Website: http://journal.umy.ac.id/index.php/jrc
Email: jrcofumy@gmail.com


Kuliah Teknik Elektro Terbaik