Enhanced Stacked Ensemble-Based Heart Disease Prediction with Chi-Square Feature Selection Method
Abstract
Keywords
Full Text:
PDFReferences
R. Rajendran and A. Karthi, “Heart disease prediction using entropy based feature engineering and ensembling of machine learning classifiers,” Expert Systems with Applications, vol. 207, p. 117882, Nov. 2022, doi: 10.1016/j.eswa.2022.117882.
S. Haseena, S. K. Priya, S. Saroja, R. Madavan, M. Muhibbullah, and U. Subramaniam, “Moth-Flame Optimization for Early Prediction of Heart Diseases,” Computational and Mathematical Methods in Medicine, vol. 2022, pp. 1–10, Sep. 2022, doi: 10.1155/2022/9178302.
D. Yewale, S. P. Vijayaragavan, and V. K. Bairagi, “An Effective Heart Disease Prediction Framework based on Ensemble Techniques in Machine Learning,” International Journal of Advanced Computer Science and Applications, vol. 14, no. 2, 2023, doi: 10.14569/ijacsa.2023.0140223.
V. M. Deshmukh, “Heart Disease Prediction using Ensemble Methods,” International Journal of Recent Technology and Engineering (IJRTE), vol. 8, no. 3, pp. 521–526, Sep. 2019, doi: 10.35940/ijrte.b2046.098319.
S. Mohammad Ganie, P. Kanti Dutta Pramanik, M. Bashir Malik, A. Nayyar, and K. Sup Kwak, “An Improved Ensemble Learning Approach for Heart Disease Prediction Using Boosting Algorithms,” Computer Systems Science and Engineering, vol. 46, no. 3, pp. 3993–4006, 2023, doi: 10.32604/csse.2023.035244.
D. Asif, M. Bibi, M. S. Arif, and A. Mukheimer, “Enhancing Heart Disease Prediction through Ensemble Learning Techniques with Hyperparameter Optimization,” Algorithms, vol. 16, no. 6, p. 308, Jun. 2023, doi: 10.3390/a16060308.
N. Chandrasekhar and S. Peddakrishna, “Enhancing Heart Disease Prediction Accuracy through Machine Learning Techniques and Optimization,” Processes, vol. 11, no. 4, p. 1210, Apr. 2023, doi: 10.3390/pr11041210.
R. Rone Sarra, A. Musa Dinar, and M. Abed Mohammed, “Enhanced accuracy for heart disease prediction using artificial neural network,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 29, no. 1, p. 375, Jan. 2022, doi: 10.11591/ijeecs.v29.i1.pp375-383.
S. Y. Hera, M. Amjad, and M. K. Saba, “Improving heart disease prediction using multi-tier ensemble model,” Network Modeling Analysis in Health Informatics and Bioinformatics, vol. 11, no. 1, Oct. 2022, doi: 10.1007/s13721-022-00381-3.
P. Bizopoulos and D. Koutsouris, “Deep Learning in Cardiology,” IEEE Reviews in Biomedical Engineering, vol. 12, pp. 168–193, 2019, doi: 10.1109/rbme.2018.2885714.
D. Hamid, S. S. Ullah, J. Iqbal, S. Hussain, Ch. A. ul Hassan, and F. Umar, “A Machine Learning in Binary and Multiclassification Results on Imbalanced Heart Disease Data Stream,” Journal of Sensors, vol. 2022, pp. 1–13, Sep. 2022, doi: 10.1155/2022/8400622.
A. E. Korial, I. I. Gorial, and A. J. Humaidi, “An Improved Ensemble-Based Cardiovascular Disease Detection System with Chi-Square Feature Selection,” Computers, vol. 13, no. 6, p. 126, May 2024, doi: 10.3390/computers13060126.
S. Li, F. Li, S. Tang, and W. Xiong, “A Review of Computer-Aided Heart Sound Detection Techniques,” BioMed Research International, vol. 2020, pp. 1–10, Jan. 2020, doi: 10.1155/2020/5846191.
V. Shorewala, “Early detection of coronary heart disease using ensemble techniques,” Informatics in Medicine Unlocked, vol. 26, p. 100655, 2021, doi: 10.1016/j.imu.2021.100655.
A. E. Korial, “Brain Tumor Detection from MRI Images Using Artificial Intelligence,” International Journal on Engineering Applications (IREA), vol. 10, no. 3, p. 185, May 2022, doi: 10.15866/irea.v10i3.21213.
M. M. Taye, “Understanding of Machine Learning with Deep Learning: Architectures, Workflow, Applications and Future Directions,” Computers, vol. 12, no. 5, p. 91, Apr. 2023, doi: 10.3390/computers12050091.
B. Abdualgalil, S. Abraham, and W. M. Ismael, “Early Diagnosis for Dengue Disease Prediction Using Efficient Machine Learning Techniques Based on Clinical Data,” Journal of Robotics and Control (JRC), vol. 3, no. 3, pp. 257–268, May 2022, doi: 10.18196/jrc.v3i3.14387.
Z. Du et al., “Accurate Prediction of Coronary Heart Disease for Patients With Hypertension From Electronic Health Records With Big Data and Machine-Learning Methods: Model Development and Performance Evaluation,” JMIR Medical Informatics, vol. 8, no. 7, p. e17257, Jul. 2020, doi: 10.2196/17257.
S. A. Ebnou Abdem, J. Chenal, E. B. Diop, R. Azmi, M. Adraoui, and C. S. Tekouabou Koumetio, “Using Logistic Regression to Predict Access to Essential Services: Electricity and Internet in Nouakchott, Mauritania,” Sustainability, vol. 15, no. 23, p. 16197, Nov. 2023, doi: 10.3390/su152316197.
P. Gupta and D. D. Seth, “Improving the Prediction of Heart Disease Using Ensemble Learning and Feature Selection,” International Journal of Advances in Soft Computing and its Applications, vol. 14, no. 2, pp. 37–40, Jul. 2022, doi: 10.15849/ijasca.220720.03.
L. Miao and W. Wang, “Cardiovascular Disease Prediction Based on Soft Voting Ensemble Model,” Journal of Physics: Conference Series, vol. 2504, no. 1, p. 012021, May 2023, doi: 10.1088/1742-6596/2504/1/012021.
X.-Y. Gao, A. Amin Ali, H. Shaban Hassan, and E. M. Anwar, “Improving the Accuracy for Analyzing Heart Diseases Prediction Based on the Ensemble Method,” Complexity, vol. 2021, no. 1, Jan. 2021, doi: 10.1155/2021/6663455.
A. Tiwari, A. Chugh, and A. Sharma, “Ensemble framework for cardiovascular disease prediction,” Computers in Biology and Medicine, vol. 146, p. 105624, Jul. 2022, doi: 10.1016/j.compbiomed.2022.105624.
F. Aliyar Vellameeran and T. Brindha, “A new variant of deep belief network assisted with optimal feature selection for heart disease diagnosis using IoT wearable medical devices,” Computer Methods in Biomechanics and Biomedical Engineering, vol. 25, no. 4, pp. 387–411, Jul. 2021, doi: 10.1080/10255842.2021.1955360.
S. Diwan, G. S. Thakur, S. K. Sahu, M. Sahu, and N. K. Swamy, “Predicting Heart Diseases through Feature Selection and Ensemble Classifiers,” Journal of Physics: Conference Series, vol. 2273, no. 1, p. 012027, May 2022, doi: 10.1088/1742-6596/2273/1/012027.
S. J. Pasha and E. S. Mohamed, “Advanced hybrid ensemble gain ratio feature selection model using machine learning for enhanced disease risk prediction,” Informatics in Medicine Unlocked, vol. 32, p. 101064, 2022, doi: 10.1016/j.imu.2022.101064.
A. Kumar, K. U. Singh, and M. Kumar, “A Clinical Data Analysis Based Diagnostic Systems for Heart Disease Prediction Using Ensemble Method,” Big Data Mining and Analytics, vol. 6, no. 4, pp. 513–525, Dec. 2023, doi: 10.26599/bdma.2022.9020052.
G. A. Alshehri and H. M. Alharbi, “Prediction of Heart Disease using an Ensemble Learning Approach,” International Journal of Advanced Computer Science and Applications, vol. 14, no. 8, 2023, doi: 10.14569/ijacsa.2023.01408118.
M. Ahmed and I. Husien, “Heart Disease Prediction Using Hybrid Machine Learning: A Brief Review,” Journal of Robotics and Control (JRC), vol. 5, no. 3, pp. 884-892, 2024, doi: 10.18196/jrc.v5i3.21606
S. Abbas, G. A. Sampedro, S. Alsubai, A. Almadhor, and T. Kim, “An Efficient Stacked Ensemble Model for Heart Disease Detection and Classification,” Computers, Materials & Continua, vol. 77, no. 1, pp. 665–680, 2023, doi: 10.32604/cmc.2023.041031.
S. E. A. Ashri, M. M. El-Gayar, and E. M. El-Daydamony, “HDPF: Heart Disease Prediction Framework Based on Hybrid Classifiers and Genetic Algorithm,” IEEE Access, vol. 9, pp. 146797–146809, 2021, doi: 10.1109/access.2021.3122789.
B. Srınıvasa Rao, “A New Ensenble Learning based Optimal Prediction Model for Cardiovascular Diseases,” E3S Web of Conferences, vol. 309, p. 01007, 2021, doi: 10.1051/e3sconf/202130901007.
K. Chandrashekar and A. T. Narayanreddy, “An Ensemble Feature Optimization for an Effective Heart Disease Prediction Model,” International Journal of Intelligent Engineering and Systems, vol. 16, no. 2, pp. 517–525, Feb. 2023, doi: 10.22266/ijies2023.0430.42.
B. Baranidharan, A. Pal, and P. Muruganandam, "Cardiovascular disease prediction based on ensemble technique enhanced using extra tree classifier for feature selection," International Journal of Recent Technology and Engineering, vol. 8, no. 3, pp. 3236-42, 2019, doi: 10.35940/ijrte.C5404.098319
A. Alqahtani, S. Alsubai, M. Sha, L. Vilcekova, and T. Javed, “Cardiovascular Disease Detection using Ensemble Learning,” Computational Intelligence and Neuroscience, vol. 2022, pp. 1–9, Aug. 2022, doi: 10.1155/2022/5267498.
C. B. C. Latha and S. C. Jeeva, “Improving the accuracy of prediction of heart disease risk based on ensemble classification techniques,” Informatics in Medicine Unlocked, vol. 16, p. 100203, 2019, doi: 10.1016/j.imu.2019.100203.
I. Javid, A. Khalaf, and R. Ghazali, “Enhanced Accuracy of Heart Disease Prediction using Machine Learning and Recurrent Neural Networks Ensemble Majority Voting Method,” International Journal of Advanced Computer Science and Applications, vol. 11, no. 3, 2020, doi: 10.14569/ijacsa.2020.0110369.
N. Harika, S. R. Swamy, and Nilima, “Artificial Intelligence-Based Ensemble Model for Rapid Prediction of Heart Disease,” SN Computer Science, vol. 2, no. 6, Aug. 2021, doi: 10.1007/s42979-021-00829-9.
B. A. Tama, S. Im, and S. Lee, “Improving an Intelligent Detection System for Coronary Heart Disease Using a Two-Tier Classifier Ensemble,” BioMed Research International, vol. 2020, pp. 1–10, Apr. 2020, doi: 10.1155/2020/9816142.
S. A. Ali et al., “An Optimally Configured and Improved Deep Belief Network (OCI-DBN) Approach for Heart Disease Prediction Based on Ruzzo–Tompa and Stacked Genetic Algorithm,” IEEE Access, vol. 8, pp. 65947–65958, 2020, doi: 10.1109/access.2020.2985646.
J. Vijayashree and H. Parveen Sultana, “Heart disease classification using hybridized Ruzzo-Tompa memetic based deep trained Neocognitron neural network,” Health and Technology, vol. 10, no. 1, pp. 207–216, Jan. 2019, doi: 10.1007/s12553-018-00292-2.
R. R. Sarra, A. M. Dinar, M. A. Mohammed, M. K. A. Ghani, and M. A. Albahar, “A Robust Framework for Data Generative and Heart Disease Prediction Based on Efficient Deep Learning Models,” Diagnostics, vol. 12, no. 12, p. 2899, Nov. 2022, doi: 10.3390/diagnostics12122899.
T. K. Sajja and H. K. Kalluri, “A Deep Learning Method for Prediction of Cardiovascular Disease Using Convolutional Neural Network,” Revue d’Intelligence Artificielle, vol. 34, no. 5, pp. 601–606, Nov. 2020, doi: 10.18280/ria.340510.
R. Kapila, T. Ragunathan, S. Saleti, T. J. Lakshmi, and M. W. Ahmad, “Heart Disease Prediction Using Novel Quine McCluskey Binary Classifier (QMBC),” IEEE Access, vol. 11, pp. 64324–64347, 2023, doi: 10.1109/access.2023.3289584.
S. Bashir, A. A. Almazroi, S. Ashfaq, A. A. Almazroi, and F. H. Khan, “A Knowledge-Based Clinical Decision Support System Utilizing an Intelligent Ensemble Voting Scheme for Improved Cardiovascular Disease Prediction,” IEEE Access, vol. 9, pp. 130805–130822, 2021, doi: 10.1109/access.2021.3110604.
X. Wenxin, “Heart Disease Prediction Model Based on Model Ensemble,” 2020 3rd International Conference on Artificial Intelligence and Big Data (ICAIBD), pp. 195-199, May 2020, doi: 10.1109/icaibd49809.2020.9137483.
H. Elwahsh, E. El-shafeiy, S. Alanazi, and M. A. Tawfeek, “A new smart healthcare framework for real-time heart disease detection based on deep and machine learning,” PeerJ Computer Science, vol. 7, p. e646, Jul. 2021, doi: 10.7717/peerj-cs.646.
S. Richa and S. Shailendra Narayan, “Towards Accurate Heart Disease Prediction System: An Enhanced Machine Learning Approach,” International Journal of Performability Engineering, vol. 18, no. 2, p. 136, 2022, doi: 10.23940/ijpe.22.02.p8.136148.
S. P. Patro, N. Padhy, and R. D. Sah, “An improved ensemble learning approach for the prediction of cardiovascular disease using majority voting prediction,” International Journal of Modelling, Identification and Control, vol. 41, no. 1/2, p. 68, 2022, doi: 10.1504/ijmic.2022.127098.
J. M.-T. Wu et al., “Applying an ensemble convolutional neural network with Savitzky–Golay filter to construct a phonocardiogram prediction model,” Applied Soft Computing, vol. 78, pp. 29–40, May 2019, doi: 10.1016/j.asoc.2019.01.019.
K. Dissanyake and M. G. M. Johar, “Two-level boosting classifiers ensemble based on feature selection for heart disease prediction,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 32, no. 1, p. 381, Oct. 2023, doi: 10.11591/ijeecs.v32.i1.pp381-391.
N. V. MahaLakshmi and R. K. Rout, “Effective heart disease prediction using improved particle swarm optimization algorithm and ensemble classification technique,” Soft Computing, vol. 27, no. 15, pp. 11027–11040, May 2023, doi: 10.1007/s00500-023-08388-2.
V. Jain and K. L. Kashyap, “Multilayer hybrid ensemble machine learning model for analysis of Covid-19 vaccine sentiments,” Journal of Intelligent & Fuzzy Systems, vol. 43, no. 5, pp. 6307–6319, Sep. 2022, doi: 10.3233/jifs-220279.
D. Mohapatra, S. K. Bhoi, C. Mallick, K. K. Jena, and S. Mishra, “Distribution preserving train-test split directed ensemble classifier for heart disease prediction,” International Journal of Information Technology, vol. 14, no. 4, pp. 1763–1769, Jan. 2022, doi: 10.1007/s41870-022-00868-2.
I. D. Mienye, Y. Sun, and Z. Wang, “An improved ensemble learning approach for the prediction of heart disease risk,” Informatics in Medicine Unlocked, vol. 20, p. 100402, 2020, doi: 10.1016/j.imu.2020.100402.
S. Mohan, C. Thirumalai, and G. Srivastava, “Effective Heart Disease Prediction Using Hybrid Machine Learning Techniques,” IEEE Access, vol. 7, pp. 81542–81554, 2019, doi: 10.1109/access.2019.2923707.
L. Ali, C. Zhu, M. Zhou, and Y. Liu, “Early diagnosis of Parkinson’s disease from multiple voice recordings by simultaneous sample and feature selection,” Expert Systems with Applications, vol. 137, pp. 22–28, Dec. 2019, doi: 10.1016/j.eswa.2019.06.052.
A. Rahim, Y. Rasheed, F. Azam, M. W. Anwar, M. A. Rahim, and A. W. Muzaffar, “An Integrated Machine Learning Framework for Effective Prediction of Cardiovascular Diseases,” IEEE Access, vol. 9, pp. 106575–106588, 2021, doi: 10.1109/access.2021.3098688.
E. K. Wang, X. Zhang, and L. Pan, “Automatic Classification of CAD ECG Signals With SDAE and Bidirectional Long Short-Term Network,” IEEE Access, vol. 7, pp. 182873–182880, 2019, doi: 10.1109/access.2019.2936525.
J. Ivan and S. Y. Prasetyo, “Heart Disease Prediction Using Ensemble Model and Hyperparameter Optimization,” International Journal on Recent and Innovation Trends in Computing and Communication, vol. 11, no. 8s, pp. 290–295, Aug. 2023, doi: 10.17762/ijritcc.v11i8s.7208.
DOI: https://doi.org/10.18196/jrc.v5i6.23191
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Raniya R. Sarra, Ivan Isho Gorial, Reham Raad Manea, Ayad E. Korial, Mustafa Mohammed, Yousif Ahmed
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Journal of Robotics and Control (JRC)
P-ISSN: 2715-5056 || E-ISSN: 2715-5072
Organized by Peneliti Teknologi Teknik Indonesia
Published by Universitas Muhammadiyah Yogyakarta in collaboration with Peneliti Teknologi Teknik Indonesia, Indonesia and the Department of Electrical Engineering
Website: http://journal.umy.ac.id/index.php/jrc
Email: jrcofumy@gmail.com