Combining Finite State Machine and Fuzzy Logic Control for Accuracy Enhancing Performance of a Tomato-Handling Robot Gripper

Rina Mardiati, Hardiansyah Firdaus, Aan Eko Setiawan, Dodi Zulherman

Abstract


Robotic grippers are becoming increasingly vital in modern agriculture, especially in tasks like harvesting delicate crops such as tomatoes, where precision and care are crucial. These advanced tools are designed to handle tomatoes without causing damage, significantly improving efficiency and reducing labor costs. Research on gripper robots for fruit picking continues to be developed using various methods in an effort to achieve accurate picking results. This study proposes a hybrid method that combines Finite State Machine (FSM) for behavior control with Fuzzy Logic Control (FLC) to optimize the positioning of the gripper. The system utilizes a PixyCam2 CMUcam5 for tomato detection, an Arduino microcontroller for image processing, and a servo mechanism to precisely align the gripper with the target. The experimental results confirm that each component functions as expected, with the gripper successfully performing actions such as idling, gripping, and placing in accordance with the FSM model. Furthermore, the FLC model was tested against simulations, resulting in error rates of 1.004% for the elbow angle and 0.826% for the base angle. The entire system was validated by comparing the performance of the system using FLC and non-FLC in ten tests, each with tomatoes placed in different positions. The results indicate that the proposed gripper, utilizing the FSM-FLC model, achieved a 100% success rate in grasping the target, significantly outperforming the FSM-non-FLC gripper, which achieved only a 20% success rate. These findings have important implications for the agricultural industry. The successful integration of the FSM and FLC models in robotic grippers paves the way for fully automated harvesting systems, potentially reducing costs and enhancing productivity.

Keywords


Finite State Machine; Fuzzy Logic Control; Robotic Gripper; Tomato Harvesting; Agricultural Robotic.

Full Text:

PDF

References


J. F. Elfferich, D. Dodou and C. D. Santina, “Soft Robotic Grippers for Crop Handling or Harvesting: A Review,” in IEEE Access, vol. 10, pp. 75428-75443, 2022, doi: 10.1109/ACCESS.2022.3190863.

M. A. Mousa, M. Soliman, M. A. Saleh and A. G. Radwan, “Biohybrid Soft Robots, E-Skin, and Bioimpedance Potential to Build Up Their Applications: A Review,” in IEEE Access, vol. 8, pp. 184524-184539, 2020, doi: 10.1109/ACCESS.2020.3030098.

Z. Li, F. Miao, Z. Yang, P. Chai, and S. Yang, “Factors affecting human hand grasp type in tomato fruit-picking: A statistical investigation for ergonomic development of harvesting robot,” Computers and electronics in agriculture, vol. 157, pp. 90–97, 2019, doi: 10.1016/j.compag.2018.12.047.

B. Zhang, Y. Xie, J. Zhou, K. Wang, and Z. Zhang, “State-of-theart robotic grippers, grasping and control strategies, as well as their applications in agricultural robots: A review,” Computers and Electronics in Agriculture, vol. 177, 2020, doi: 10.1016/j.compag.2020.105694.

S. Fountas, N. Mylonas, I. Malounas, E. Rodias, C. Hellmann Santos, and E. Pekkeriet, “Agricultural robotics for field operations,” Sensors, vol. 20, no. 9, 2020, doi: 10.3390/s20092672.

S. G. Vougioukas, “Agricultural robotics,” Annual review of control, robotics, and autonomous systems, vol. 2, no. 1, pp. 365–392, 2019, doi: 10.1146/annurev-control-053018-023617.

T. Duckett, S. Pearson, S. Blackmore, B. Grieve, W.-H. Chen, G. Cielniak, J. Cleaversmith, J. Dai, S. Davis, C. Fox et al., “Agricultural robotics: the future of robotic agriculture,” arXiv, 2018, doi: 10.31256/WP2018.2.

G. Ren, T. Lin, Y. Ying, G. Chowdhary, and K. Ting, “Agricultural robotics research applicable to poultry production: A review,” Computers and Electronics in Agriculture, vol. 169, 2020, doi: 10.1016/j.compag.2020.105216.

L. F. Oliveira, M. F. Silva, and A. P. Moreira, “Agricultural robotics: A state of the art survey,” in 23rd international conference series on climbing and walking robots and the support technologies for mobile MachinesAt: Moscow, Russian federation, 2020, pp. 279–286, doi: 10.13180/clawar.2020.24-26.08.44.

L. F. Oliveira, A. P. Moreira, and M. F. Silva, “Advances in agriculture robotics: A state-of-the-art review and challenges ahead,” Robotics, vol. 10, no. 2, 2021, doi: 10.3390/robotics10020052.

Z. Samadikhoshkho, K. Zareinia and F. Janabi-Sharifi, “A Brief Review on Robotic Grippers Classifications,” 2019 IEEE Canadian Conference of Electrical and Computer Engineering (CCECE), pp. 1-4, 2019, doi: 10.1109/CCECE.2019.8861780.

A. Hentout, M. Aouache, A. Maoudj, and I. Akli, “Human–robot interaction in industrial collaborative robotics: a literature review of the decade 2008–2017,” Advanced Robotics, vol. 33, pp. 764–799, 2019, doi: 10.1080/01691864.2019.1636714.

N. R. Sinatra, C. B. Teeple, D. M. Vogt, K. K. Parker, D. F. Gruber, and R. J. Wood, “Ultragentle manipulation of delicate structures using a soft robotic gripper,” Science Robotics, vol. 4, no. 33, 2019, doi: 10.1126/scirobotics.aax5425.

Z. Long, Q. Jiang, T. Shuai, F. Wen, and C. Liang, “A systematic review and meta-analysis of robotic gripper,” in IOP Conference Series: Materials Science and Engineering, vol. 782, no. 4, 2020, doi: 10.1088/1757- 899X/782/4/042055.

S. Zaidi, M. Maselli, C. Laschi, and M. Cianchetti, “Actuation technologies for soft robot grippers and manipulators: A review,” Current Robotics Reports, vol. 2, no. 3, pp. 355–369, 2021, doi: 10.1007/s43154- 021-00054-5.

N. Elangovan, L. Gerez, G. Gao and M. Liarokapis, “Improving Robotic Manipulation Without Sacrificing Grasping Efficiency: A Multi-Modal, Adaptive Gripper With Reconfigurable Finger Bases,” in IEEE Access, vol. 9, pp. 83298-83308, 2021, doi: 10.1109/ACCESS.2021.3086802.

C.-S. Chen and N.-T. Hu, “Eye-in-hand robotic arm gripping system based on machine learning and state delay optimization,” Sensors, vol. 23, no. 3, 2023, doi: 10.3390/s23031076.

T. Wang, T. Jin, Q. Zhang, L. Li, G. Wang, Y. Tian, S. Yi, and Y. Lin, “A bioinspired gripper with sequential motion and mutable posture enabled by antagonistic mechanism,” Advanced Intelligent Systems, vol. 5, no. 3, 2023, doi: 10.1002/aisy.202200304.

C. -C. Wong, M. -Y. Chien, R. -J. Chen, H. Aoyama and K. -Y. Wong, “Moving Object Prediction and Grasping System of Robot Manipulator,” in IEEE Access, vol. 10, pp. 20159-20172, 2022, doi: 10.1109/ACCESS.2022.3151717.

E. Elbasi et al., “Artificial Intelligence Technology in the Agricultural Sector: A Systematic Literature Review,” in IEEE Access, vol. 11, pp. 171-202, 2023, doi: 10.1109/ACCESS.2022.3232485.

Y. Chen, J. Zhang and Y. Gong, “Utilizing Anisotropic Fabrics Composites for High-Strength Soft Manipulator Integrating Soft Gripper,” in IEEE Access, vol. 7, pp. 127416-127426, 2019, doi: 10.1109/ACCESS.2019.2940499.

K. Blanco, E. Navas, L. Emmi and R. Fernandez, “Manufacturing of 3D Printed Soft Grippers: A Review,” in IEEE Access, vol. 12, pp. 30434- 30451, 2024, doi: 10.1109/ACCESS.2024.3369493.

J. Halim, P. Eichler, S. Krusche, M. Bdiwi, and S. Ihlenfeldt, “Nocode robotic programming for agile production: A new markerlessapproach for multimodal natural interaction in a human-robot collaboration context,” Frontiers in Robotics and AI, vol. 9, 2022, doi: 10.3389/frobt.2022.1001955.

Y. Onishi and M. Sampei, “Priority-based state machine synthesis that relaxes behavior design of multi-arm manipulators in dynamic environments,” Advanced Robotics, vol. 37, no. 5, pp. 395–405, 2023, doi: 10.1080/01691864.2023.2177122.

J. Li and Y. Tan, “A probabilistic finite state machine based strategy for multi-target search using swarm robotics,” Applied Soft Computing, vol. 77, pp. 467–483, 2019, doi: 10.1016/j.asoc.2019.01.023.

C. A. My, D. X. Bien, C. H. Le, and M. Packianather, “An efficient finite element formulation of dynamics for a flexible robot with different type of joints,” Mechanism and Machine Theory, vol. 134, pp. 267–288, 2019, doi: 10.1016/j.mechmachtheory.2018.12.026.

D. Faconti, “Mood2be: Models and tools to design robotic behaviors,” Autonomous System Group Eurecat Centre Tecnologic Barcelona, Spain, vol. 4, pp. 1–17, 2019.

A. Miyazawa, P. Ribeiro, W. Li, A. Cavalcanti, J. Timmis, and J. Woodcock, “Robochart: modelling and verification of the functional behaviour of robotic applications,” Software & Systems Modeling, vol. 18, pp. 3097– 3149, 2019. doi: 10.1007/s10270-018-00710-z.

A. Cavalcanti, A. Sampaio, A. Miyazawa, P. Ribeiro, M. Conserva Filho, A. Didier, W. Li, and J. Timmis, “Verified simulation for robotics,” Science of Computer Programming, vol. 174, pp. 1–37, 2019, doi: 10.1016/j.scico.2019.01.004.

S. Supratno, Rohamid, P. W. A. Sucipto, A. Firasanti, R. A. Adara and E. A. Z. Hamidi, “Obstacle Avoidance Behavior Design in Hexapod Robots using Finite State Machine,” 2023 IEEE 9th International Conference on Computing, Engineering and Design (ICCED), pp. 1-4, 2023, doi: 10.1109/ICCED60214.2023.10425666.

D. S. Catherman, J. Tomasz Kaminski and A. Jagetia, “Atlas Humanoid Robot Control with Flexible Finite State Machines for Playing Soccer,” 2020 SoutheastCon, pp. 1-7, 2020, doi: 10.1109/SoutheastCon44009.2020.9368291.

J. Jun, J. Kim, J. Seol, J. Kim and H. I. Son, “Towards an Efficient Tomato Harvesting Robot: 3D Perception, Manipulation, and End-Effector,” in IEEE Access, vol. 9, pp. 17631-17640, 2021, doi: 10.1109/ACCESS.2021.3052240.

C. Dumitrescu, P. Ciotirnae, and C. Vizitiu, “Fuzzy logic for intelligent control system using soft computing applications,” Sensors, vol. 21, no. 8, 2021, doi: 10.3390/s21082617.

S. Cortinovis, G. Vitrani, M. Maggiali, and R. A. Romeo, “Control methodologies for robotic grippers: A review,” in Actuators, vol. 12, no. 8, 2023, doi: 10.3390/act12080332.

A. E. Setiawan, R. Mardiati and E. Mulyana, “Design of Automatic Under Water Robot System Based on Mamdani Fuzzy Logic Controller,” 2020 6th International Conference on Wireless and Telematics (ICWT), pp. 1-5, 2020, doi: 10.1109/ICWT50448.2020.9243615.

A. L. Shuraiji and S. W. Shneen, “Fuzzy logic control and pid controller for brushless permanent magnetic direct current motor: A comparative study,” Journal of Robotics and Control (JRC), vol. 3, no. 6, pp. 762– 768, 2022, doi: 10.18196/jrc.v3i6.15974.

W. P. Sari, R. S. Dewanto, and D. Pramadihanto, “Implementation and integration of fuzzy algorithms for descending stair of kmei humanoid robot,” EMITTER International Journal of Engineering Technology, vol. 8, no. 2, pp. 372–388, 2020, doi: 10.24003/emitter.v8i2.535.

E. Marliana, A. Wahjudi, L. Nurahmi, I. M. L. Batan, and G. Wei, “Optimizing the tuning of fuzzy-pid controllers for motion control of friction stir welding robots,” Journal of Robotics and Control (JRC), vol. 5, no. 4, pp. 1002–1017, 2024, doi: 10.18196/jrc.v5i4.21697.

I. Suwarno, Y. Finayani, R. Rahim, J. Alhamid, and A. R. Al-Obaidi, “Controllability and observability analysis of dc motor system and a design of flc-based speed control algorithm,” Journal of Robotics and Control (JRC), vol. 3, no. 2, pp. 227–235, 2022, doi: 10.18196/jrc.v3i2.10741.

S. R. Utama, A. Firdausi, and G. P. Hakim, “Control and monitoring automatic floodgate based on nodemcu and iot with fuzzy logic testing,” Journal of Robotics and Control (JRC), vol. 3, no. 1, pp. 14–17, 2022, doi: 10.18196/jrc.v3i1.11199.

J. N. Juwono, N. D. B. Julienne, A. S. Yogatama, and M. H. Widianto, “Motorized vehicle diagnosis design using the internet of things concept with the help of tsukamoto’s fuzzy logic algorithm,” Journal of Robotics and Control (JRC), vol. 4, no. 2, pp. 202–216, 2023, doi: 10.18196/jrc.v4i2.17256.

M. Daffa Fadillah, N. Ismail, R. Mardiati and A. Kusdiana, “Fuzzy Logic-Based Control System to Maintain pH in Aquaponic,” 2021 7th International Conference on Wireless and Telematics (ICWT), pp. 1-4, 2021, doi: 10.1109/ICWT52862.2021.9678404.

I. Agustian, B. I. Prayoga, H. Santosa, N. Daratha, and R. Faurina, “Nft hydroponic control using mamdani fuzzy inference system,” Journal of Robotics and Control, vol. 3, no. 3, pp. 374–383, 2022, doi: 10.18196/jrc.v3i3.14714.

T. Q. Ngo, T. H. Tran, and T. T. H. Le, “Robust adaptive tracking control for uncertain five-bar parallel robot using fuzzy cmac in order to improve accuracy,” Journal of Robotics and Control (JRC), vol. 5, no. 3, pp. 766– 774, 2024, doi: 10.18196/jrc.v5i3.21742.

S. M. Nasti, Z. Vamossy, and N. Kumar, “Obstacle avoidance during robot ´ navigation in dynamic environment using fuzzy controller,” International Journal of Recent Technology and Engineering, vol. 8, no. 2, pp. 817–822, 2019, doi: 10.35940/ijrte.A1428.078219.

A. Soetedjo, M. I. Ashari, and C. E. Septian, “Implementation of fuzzy logic controller for wall following and obstacle avoiding robot,” Journal of Applied Intelligent System, vol. 4, no. 1, pp. 9–21, 2019, doi: 10.33633/jais.v4i1.2168.

M. Al-Mallah, M. Ali, and M. Al-Khawaldeh, “Obstacles avoidance for mobile robot using type-2 fuzzy logic controller,” Robotics, vol. 11, no. 6, 2022, doi: 10.3390/robotics11060130.

F. Ahmad Fauzi, E. Mulyana, R. Mardiati and A. Eko Setiawan, “Fuzzy Logic Control for Avoiding Static Obstacle in Autonomous Vehicle Robot,” 2021 7th International Conference on Wireless and Telematics (ICWT), pp. 1-5, 2021, doi: 10.1109/ICWT52862.2021.9678436.

A. A. Zaki, E. Mulyana, R. Mardiati and Ulfiah, “Modeling Wall Tracer Robot Motion Based on Fuzzy Logic Control,” 2020 6th International Conference on Wireless and Telematics (ICWT), pp. 1-6, 2020, doi: 10.1109/ICWT50448.2020.9243624.

R. D. Puriyanto and A. K. Mustofa, “Design and implementation of fuzzy logic for obstacle avoidance in differential drive mobile robot,” Journal of Robotics and Control (JRC), vol. 5, no. 1, pp. 132–141, 2024, doi: 10.18196/jrc.v5i1.20524.

F. Wildani, R. Mardiati, E. Mulyana, A. E. Setiawan, R. R. Nurmalasari and N. Sartika, “Fuzzy Logic Control for Semi-Autonomous Navigation Robot Using Integrated Remote Control,” 2022 8th International Conference on Wireless and Telematics (ICWT), pp. 1-5, 2022, doi: 10.1109/ICWT55831.2022.9935458.

S. Ding, L. Peng, J. Wen, H. Zhao, and R. Liu, “Trajectory tracking control of underactuated tendon-driven truss-like manipulator based on type-1 and interval type-2 fuzzy logic approach,” International Journal of Intelligent Systems, vol. 37, no. 6, pp. 3736–3771, 2022, doi: 10.1002/int.22745.

E. A. Nugroho, J. D. Setiawan, and M. Munadi, “Handling four dof robot to move objects based on color and weight using fuzzy logic control,” Journal of Robotics and Control (JRC), vol. 4, no. 6, pp. 769–779, 2023, doi: 10.18196/jrc.v4i6.20087.

G. Li, H. Tang, Y. Sun, J. Kong, G. Jiang, D. Jiang, B. Tao, S. Xu, and H. Liu, “Hand gesture recognition based on convolution neural network,” Cluster Computing, vol. 22, pp. 2719–2729, 2019, doi: 10.1007/s10586- 017-1435-x.

X. Zhao, X. Chen, Y. He, H. Cao and T. Chen, “Varying Speed Rate Controller for Human–Robot Teleoperation Based on Muscle Electrical Signals,” in IEEE Access, vol. 7, pp. 143563-143572, 2019, doi: 10.1109/ACCESS.2019.2944794.

A. A. Shahid, L. Roveda, D. Piga and F. Braghin, “Learning Continuous Control Actions for Robotic Grasping with Reinforcement Learning,” 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 4066-4072, 2020, doi: 10.1109/SMC42975.2020.9282951.

H. Zeng, Y. Shen, X. Hu, A. Song, B. Xu, H. Li, Y. Wang, and P. Wen, “Semi-autonomous robotic arm reaching with hybrid gaze– brain machine interface,” Frontiers in neurorobotics, vol. 13, 2020, doi: 10.3389/fnbot.2019.00111.

M. H. M. Hamzah, N. M. Thamrin, and M. Tajjudin, “Robotic arm position control using mamdani fuzzy logic on arduino microcontroller.” Journal of Mechanical Engineering, vol. 19, no. 3, pp. 235–255, 2022.

Y. Yan, D. Cheng, J.-E. Feng, H. Li, and J. Yue, “Survey on applications of algebraic state space theory of logical systems to finite state machines,” Science China Information Sciences, vol. 66, no. 1, 2023, doi: 10.1007/s11432-022-3538-4.

Z. Zhang, C. Xia, S. Chen, T. Yang and Z. Chen, “Reachability Analysis of Networked Finite State Machine With Communication Losses: A Switched Perspective,” in IEEE Journal on Selected Areas in Communications, vol. 38, no. 5, pp. 845-853, 2020, doi: 10.1109/JSAC.2020.2980920.

R. Kibria, N. Farzana, F. Farahmandi and M. Tehranipoor, “FSMx: Finite State Machine Extraction from Flattened Netlist With Application to Security,” 2022 IEEE 40th VLSI Test Symposium (VTS), pp. 1-7, 2022, doi: 10.1109/VTS52500.2021.9794151.

M. Ben-Ari and F. Mondada, “Finite State Machines,” in Elements of Robotics, pp. 55–61, 2018, doi: 10.1007/978-3-319-62533-1_4.

R. Hussain, T. Zielinska, and R. Hexel, “Finite state automaton based control system for walking machines,” International Journal of Advanced Robotic Systems, vol. 16, no. 3, 2019, doi: 10.1177/1729881419853182.

R. Balogh and D. Obdrzalek, “Using Finite State Machines in Introductory Robotics: Methods and Applications for Teaching and Learning,” in Robotics in Education, pp. 85–91, 2019, doi: 10.1007/978-3-319-97085-1_9.

M. Rossander and H. Lideskog, “Design and implementation of a control system for an autonomous reforestation machine using finite state machines,” Forests, vol. 14, no. 7, 2023, doi: 10.3390/f14071340.

A. Hamada, H. Melik, and S. Raheem, “The use of fuzzy logic theory in control charts (a comparative study),” International Journal of Innovation, Creativity and Change, vol. 11, no. 7, pp. 389–402, 2020.

K. Mittal, A. Jain, K. S. Vaisla, O. Castillo, and J. Kacprzyk, “A comprehensive review on type 2 fuzzy logic applications: Past, present and future,” Engineering Applications of Artificial Intelligence, vol. 95, 2020, doi: 10.1016/j.engappai.2020.103916.

L. A. Zadeh, Fuzzy logic, Springer Dordrecht, 2023, doi: 10.1007/978- 94-011-2014-2.

A. Jain and A. Sharma, “Membership function formulation methods for fuzzy logic systems: A comprehensive review,” Journal of Critical Reviews, vol. 7, no. 19, pp. 8717–8733, 2020.

J. M. B. Flores et al., “A review on applications of fuzzy logic control for refrigeration systems,” Applied Sciences, vol. 12, no. 3, 2022, doi: 10.3390/app12031302.

C. Dumitrescu, P. Ciotirnae, and C. Vizitiu, “Fuzzy logic for intelligent control system using soft computing applications,” Sensors, vol. 21, no. 8, 2021, doi: 10.3390/s21082617.

J. R. G. Mart´ınez et al., “A pid-type fuzzy logic controller-based approach for motion control applications,” Sensors, vol. 20, no. 18, 2020, doi: 10.3390/s20185323.

W. Ba, X. Dong, A. Mohammad, M. Wang, D. Axinte and A. Norton, “Design and Validation of a Novel Fuzzy-Logic-Based Static Feedback Controller for Tendon-Driven Continuum Robots,” in IEEE/ASME Transactions on Mechatronics, vol. 26, no. 6, pp. 3010-3021, 2021, doi: 10.1109/TMECH.2021.3050263.

M. Wozniak, A. Zielonka, and A. Sikora, “Driving support by type-2 ´ fuzzy logic control model,” Expert Systems with Applications, vol. 207, 2022, doi: 10.1016/j.eswa.2022.117798.

X. Zhao, Y. He, X. Chen, and Z. Liu, “Human–robot collaborative assembly based on eye-hand and a finite state machine in a virtual environment,” Applied Sciences, vol. 11, no. 12, 2021, doi: 10.3390/app11125754.

F. Dimeas, D. V. Sako, V. C. Moulianitis, and N. A. Aspragathos, “Design and fuzzy control of a robotic gripper for efficient strawberry harvesting,” Robotica, vol. 33, no. 5, pp. 1085–1098, 2015, doi: 10.1017/S0263574714001155.




DOI: https://doi.org/10.18196/jrc.v5i6.23579

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Rina Mardiati, Hardiansyah Firdaus, Aan Eko Setiawan, Dodi Zulherman

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 


Journal of Robotics and Control (JRC)

P-ISSN: 2715-5056 || E-ISSN: 2715-5072
Organized by Peneliti Teknologi Teknik Indonesia
Published by Universitas Muhammadiyah Yogyakarta in collaboration with Peneliti Teknologi Teknik Indonesia, Indonesia and the Department of Electrical Engineering
Website: http://journal.umy.ac.id/index.php/jrc
Email: jrcofumy@gmail.com


Kuliah Teknik Elektro Terbaik