HyVADSVM: Hybrid VADER-SVM and GridSearchCV Optimization for Enhancing Cyberbullying Detection

Authors

DOI:

https://doi.org/10.18196/jrc.v6i1.24385

Keywords:

Cyberbullying Detection, Hyperparameter Tuning, Machine Learning, Sentiment Analysis, Social Media Analysis.

Abstract

Cyberbullying detection is becoming increasingly crucial in today’s digital era, as many individuals suffer from online harassment. The main challenge lies in accurately identifying patterns of harassment in social media texts, which often use informal languages, slang, and sarcasm. Existing methods struggle to capture emotional context owing to the vast amount of data and rapid digital interactions. This study aims to improve the detection accuracy by combining advanced sentiment analysis using VADER and parameter tuning with GridSearchCV. Data were collected from Instagram, Twitter, and YouTube, with TF-IDF employed for feature extraction. Multiple machine-learning classifiers (SVM, K-NN, NB, LR, DT, and RF) were tested to determine the best-performing model. VADER was selected for its reliability in processing social media texts rich in informal contexts, effectively capturing emotional nuances, such as sarcasm and varying sentiment intensities. This makes it well suited for complex language patterns typical of cyberbullying scenarios, enhancing data labeling and analysis accuracy. Using 10-fold cross-validation for reliable testing, performance metrics (accuracy, precision, recall, and F1-Score) were evaluated using a confusion matrix. The findings highlight SVM as the most effective model when optimized with GridSearchCV, achieving accuracy (98.83%), precision (98.78%), recall (98.83%), and F1-Score (98.62%) with kernel =linear, C=1, and gamma=scale. This optimized model, HyVADSVM model has significant potential in cyberbullying detection, contributing to academic research and serving as an effective tool to prevent online harassment. Future work could integrate this model into real-time systems, improve user safety, and support digital policymaking.

References

Á. Denche-zamorano et al., “Science Mapping : A Bibliometric Analysis on Cyberbullying and the Psychological Dimensions of the Self,” Int. J. Environ. Res. Public Health, vol. 20, no. 209, pp. 2–14, 2023, doi: 10.3390/ ijerph20010209.

A. Ollagnier, E. Cabrio, S. Villata, and S. Tonelli, “BiRDy: Bullying Role Detection in Multi-Party Chats,” in Proceedings of the 37th AAAI Conference on Artificial Intelligence, AAAI 2023, vol. 37, 2023, doi: 10.1609/aaai.v37i13.27080.

F. B. Shaikh, M. Rehman, S. Member, M. A. Hashmani, and S. Member, “Cyberbullying Behaviour : A Study of Undergraduate University Students,” IEEE Access, vol. 9, pp. 92715–92734, 2021, doi: 10.1109/ACCESS.2021.3086679.

N. A. Abdul Rahman, N. Hussein, S. D. Rusdi, and Z. D. Abd Aziz, “Factors Influencing Cyberbullying Behavior among Malaysian Tertiary Students,” Adv. Bus. Res. Int. J., vol. 6, no. 2, 2020, doi: 10.24191/abrij.v6i2.10594.

A. G. Philipo, D. S. Sarwatt, J. Ding, M. Daneshmand, and H. Ning, "Cyberbullying Detection: Exploring Datasets, Technologies, and Approaches on Social Media Platforms," arXiv preprint arXiv:2407.12154, 2024.

C. Slamet, A. Krismunandar, D. S. Maylawati, Jumadi, A. S. Amin, and M. A. Ramdhani, "Deep Learning Approach for Bullying Classification on Twitter Social Media with Indonesian Language," 2020 6th International Conference on Wireless and Telematics (ICWT), pp. 1-5, 2020, doi: 10.1109/ICWT50448.2020.9243653.

M. Alfi, S. Nasution, and E. B. Setiawan, “Enhancing Cyberbullying Detection on Indonesian Twitter : Leveraging FastText for Feature Expansion and Hybrid Approach Applying CNN and BiLSTM,” Int. Inf. Eng. Technol. Assoc., vol. 37, no. 4, pp. 929–936, 2023, doi: 10.18280/ria.370413.

I. A. Asqolani and E. B. Setiawan, “Hybrid Deep Learning Approach and Word2Vec Feature Expansion for Cyberbullying Detection on Indonesian Twitter,” Int. Inf. Eng. Technol. Assoc., vol. 28, no. 4, pp. 887–895, 2023, doi: 10.18280/isi.280410.

W. Frensh, M. Ablisar, and M. Mulyadi, “Criminal Policy on Cyberbullying of Children in Indonesia,” Int. J. Cyber Criminol., vol. 15, pp. 44–59, 2021, doi: 10.5281/zenodo.4766542.

L. H. Collantes, Y. Martafian, S. N. Khofifah, T. Kurnia Fajarwati, N. T. Lassela, and M. Khairunnisa, "The Impact of Cyberbullying on Mental Health of the Victims," 2020 4th International Conference on Vocational Education and Training (ICOVET), pp. 30-35, 2020, doi: 10.1109/ICOVET50258.2020.9230008.

E. J. ALjohani, W. M. S. Yafooz, and A. Alsaeedi, "Cyberbullying Detection Approaches: A Review," 2023 5th International Conference on Inventive Research in Computing Applications (ICIRCA), pp. 1310-1316, 2023, doi: 10.1109/ICIRCA57980.2023.10220688.

S. Utku and E. Nasibov, “Cyberbullying Detection : Utilizing Social Media Features,” Expert Syst. Appl., vol. 179, pp. 1–12, 2021, doi: 10.1016/j.eswa.2021.115001.

T. K. Balaji, C. Sekhara, R. Annavarapu, and A. Bablani, “Machine Learning Algorithms for Social Media Analysis : A Survey,” Comput. Sci. Rev., vol. 40, no. 100395, pp. 1–32, 2021, doi: 10.1016/j.cosrev.2021.100395.

N. I. Aliyu, M. D. Abdulrahaman, F. O. Ajibade, and T. Abdurauf, “Analysis of Cyber Bullying on Facebook Using Text Mining,” J. Appl. Artif. Intell., vol. 1, pp. 1–12, 2020, doi: 10.48185/jaai.v1i1.30.

A. Muneer, “A Comparative Analysis of Machine Learning Techniques for Cyberbullying Detection on Twitter,” Electron. J., vol. 10, no. 22, pp. 1–20, 2020, doi: 10.3390/fi1211018.

M. Mohamad and A. Al-quran, “Sentiment Analysis Technique and Neutrosophic Set Theory for Mining and Ranking Big Data From Online Reviews,” IEEE Access, vol. 9, no. 3, pp. 47338–47353, 2021, doi: 10.1109/ACCESS.2021.3067844.

T. Hasan, A. E. Hossain, S. H. Mukta, A. Akter, M. Ahmed, and S. Islam, “A Review on Deep-Learning-Based Cyberbullying Detection,” Future Internet, vol. 15, no. 5, p. 179, 2023, doi: 10.3390/fi15050179.

P. Kumar, R. Pamula, and G. Srivastava, “A Systematic Literature Review On Machine Learning Applications For Consumer Sentiment Analysis Using Online Reviews,” Elsevier - Comput. Sci. Rev., vol. 41, pp. 1–12, 2021, doi: 10.1016/j.cosrev.2021.100413.

S. Kumar, M. Gahalawat, P. P. Roy, D. P. Dogra, and B.-G. Kim, “Exploring Impact of Age and Gender on Sentiment Analysis Using Machine Learning,” Electronics, vol. 9, no. 374, pp. 1–14, 2020, doi: 10.3390/electronics9020374.

K. Thavasimani and N. K. Srinath, “Hyperparameter Optimization Using Custom Genetic Algorithm For Classification Of Benign And Malicious Traffic On Internet Of Things – 23 Dataset,” Int. J. Electr. Comput. Eng., vol. 12, no. 4, pp. 4031–4041, 2022, doi: 10.11591/ijece.v12i4.pp4031-4041.

P. Das and D. H. Mazumder, “An Extensive Survey on The Use of Supervised Machine Learning Techniques in The Past Two Decades for Prediction of Drug Side Effects,” Artif. Intell. Rev., vol. 56, no. 9, pp. 9809–9836, 2023, doi: 10.1007/s10462-023-10413-7.

P. C. Sen, M. Hajra, and M. Ghosh, “Supervised Classification Algorithms in Machine Learning: A Survey and Review,” in Advances in Intelligent Systems and Computing, vol. 937, pp. 99–111, 2020, doi: 10.1007/978-981-13-7403-6.

A. Ma and D. Rifaldi, “Application of Machine Learning in Healthcare and Medicine : A Review,” J. Robot. Control, vol. 4, no. 5, pp. 621–631, 2023, doi: 10.18196/jrc.v4i5.19640.

A. A. Aziz and A. Starkey, “Predicting Supervise Machine Learning Performances for Sentiment Analysis Using Contextual-Based Approaches,” IEEE Access, vol. 8, pp. 17722–17733, 2020, doi: 10.1109/ACCESS.2019.2958702.

N. Nandal, R. Tanwar, and J. Pruthi, “Machine Learning Based Aspect Level Sentiment Analysis For Amazon Products,” Springer - Spat. Inf. Res., vol. 28, pp. 601–607, 2020, doi: 10.1007/s41324-020-00320-2.

A. Poornima and K. S. Priya, “A Comparative Sentiment Analysis Of Sentence Embedding Using Machine Learning Techniques,” in 2020 6th International Conference on Advanced Computing & Communication Systems (ICACCS), pp. 493–496, 2020, doi: 10.1109/ICACCS48705.2020.9074312.

N. F. Baarir and A. Djeffal, "Fake News detection Using Machine Learning," 2020 2nd International Workshop on Human-Centric Smart Environments for Health and Well-being (IHSH), pp. 125-130, 2021, doi: 10.1109/IHSH51661.2021.9378748.

M. Al-hashedi, L. Soon, H. Goh, A. H. L. Lim, and E.-G. Siew, “Cyberbullying Detection Based on Emotion,” IEEE Access, pp. 1–9, 2023, doi: 10.1109/ACCESS.2023.3280556.

S. Gadde, A. Lakshmanarao, and S. Satyanarayana, "SMS Spam Detection using Machine Learning and Deep Learning Techniques," 2021 7th International Conference on Advanced Computing and Communication Systems (ICACCS), pp. 358-362, 2021, doi: 10.1109/ICACCS51430.2021.9441783.

K. S. Alam, S. Bhowmik, and P. R. K. Prosun, “Cyberbullying Detection : An Ensemble Based Machine Learning Approach,” in Proceedings of the Third International Conference on Intelligent Communication Technologies and Virtual Mobile Networks (ICICV 2021), pp. 710–715, 2021, doi: 10.1109/ICICV50876.2021.9388499.

S. Jain, S. K. Jain, and S. Vasal, "An Effective TF-IDF Model to Improve the Text Classification Performance," 2024 IEEE 13th International Conference on Communication Systems and Network Technologies (CSNT), pp. 1-4, 2024, doi: 10.1109/CSNT60213.2024.10545818.

M. Khairy, T. M. Mahmoud, and T. Abd-El-Hafeez, “The effect of rebalancing techniques on the classification performance in cyberbullying datasets,” Neural Comput. Appl., vol. 36, no. 3, pp. 1049–1065, 2024, doi: 10.1007/s00521-023-09084-w.

S. Garg, “Drug Recommendation System based on Sentiment Analysis of Drug Reviews using Machine Learning,” in International Conference on Cloud Computing, Data Science & Engineering, pp. 175–181, 2021, doi: 10.1109/confluence51648.2021.9377188.

R. Phann, C. Soomlek, and P. Seresangtakul, “Multi-Class Text Classification on Khmer News Using Ensemble Method in Machine Learning Algorithms,” Acta Inform. Pragensia, vol. 12, no. 2, pp. 1–17, 2023, doi: 10.18267/j.aip.210.

A. Radhakrishnan, G. S. Member, and D. Mahapatra, “Consumer Document Analytical Accelerator Hardware,” IEEE Access, vol. 11, pp. 5161–5167, 2023, doi: 10.1109/ACCESS.2023.3237463.

Z. Zhang and Z. Wu, "Improved TF-IDF Algorithm Combined with Multiple Factors," 2021 3rd International Conference on Applied Machine Learning (ICAML), pp. 492-495, 2021, doi: 10.1109/ICAML54311.2021.00109.

R. Annamalai, S. A. Rasool, D. S, K. Venkatraman, and S. Y, "Sentiment Analysis using VADER: Unveiling Customer Sentiment and Predicting Buying Behavior in the Airline Industry," 2024 IEEE International Conference for Women in Innovation, Technology & Entrepreneurship (ICWITE), pp. 277-282, 2024, doi: 10.1109/ICWITE59797.2024.10503389.

D. A. Kristiyanti, S. A. Sanjaya, V. C. Tjokro, and J. Suhali, “Dealing Imbalance Dataset Problem in Sentiment Analysis of Recession in Indonesia,” IAES Int. J. Artif. Intell., vol. 13, no. 2, pp. 2060–2072, 2024, doi: 10.11591/ijai.v13.i2.pp2060-2072.

Y. Qi and Z. Shabrina, “Sentiment analysis using Twitter data : a comparative application of lexicon ‑ and machine ‑ learning ‑ based approach,” Soc. Netw. Anal. Min., vol. 13, no. 1, pp. 1–14, 2023, doi: 10.1007/s13278-023-01030-x.

M. Suyal and P. Goyal, “A Review on Analysis of K-Nearest Neighbor Classification Machine Learning Algorithms based on Supervised Learning,” Int. J. Eng. Trends Technol., vol. 70, no. 7, pp. 43–48, 2022, doi: 10.14445/22315381/IJETT-V70I7P205.

N. Burkart and M. F. Huber, “A Survey on the Explainability of Supervised Machine Learning,” J. Artif. Intell. Res., vol. 70, pp. 245–317, 2021, doi: 10.1613/jair.1.12228.

Y. Zheng, T. Deng, and Y. Wang, “Autism Classification Based On Logistic Regression Model,” in 2nd International Conference on Big Data, Artificial Intelligence and Internet of Things Engineering (ICBAIE 2021) Autism, pp. 579–582, 2021, doi: 10.1109/ICBAIE52039.2021.9389914.

T. Wong and H. Tsai, “Knowledge-Based Systems Multinomial naïve Bayesian classifier with generalized Dirichlet priors for high-dimensional imbalanced data,” Knowledge-Based Syst., vol. 228, p. 107288, 2021, doi: 10.1016/j.knosys.2021.107288.

P. J. B. Pajila, B. G. Sheena, A. Gayathri, J. Aswini, M. Nalini, and S. S. R, "A Comprehensive Survey on Naive Bayes Algorithm: Advantages, Limitations and Applications," 2023 4th International Conference on Smart Electronics and Communication (ICOSEC), pp. 1228-1234, 2023, doi: 10.1109/ICOSEC58147.2023.10276274.

E. Hossain, O. Sharif, and M. M. Hoque, “Sentiment Polarity Detection on Bengali Book Reviews Using Multinomial Naïve Bayes,” in Proceedings of ICACIE 2020, pp. 281–292, 2020, doi: 10.1007/978-981-33-4299-6.

T. A. Assegie, “An optimized K-Nearest Neighbor based breast cancer detection,” J. Robot. Contro;, vol. 2, no. 3, pp. 115–118, 2020, doi: 10.18196/jrc.2363.

S. Zhang, S. Member, and J. Li, “KNN Classification With One-Step Computation,” IEEE Trans. Knowl. Data Eng., vol. 35, no. 3, pp. 2711–2723, 2023, doi: 10.1109/TKDE.2021.3119140.

A. Lu, Z. Fang, N. Farahpour, and L. Shannon, "CHIP-KNN: A Configurable and High-Performance K-Nearest Neighbors Accelerator on Cloud FPGAs," 2020 International Conference on Field-Programmable Technology (ICFPT), pp. 139-147, 2020, doi: 10.1109/ICFPT51103.2020.00027.

S. Zhang and S. Member, “Challenges in KNN Classification,” IEEE Trans. Knowl. Data Eng., vol. 34, no. 10, pp. 4663–4675, 2022, doi: 10.1109/TKDE.2021.3049250.

A. Sachdeva and D. I. Kashyap, “Empirical Analysis of Support Vector Machine and Multinomial Naive Bayes,” Int. J. Res. Appl. Sci. Eng. Technol., vol. 10, no. 5, 2022, doi: 10.22214/ijraset.2022.42009.

S. Shi, L. Ye, H. Xiao, and T. Luo, "A Comparative Study of Mainstream Machine Learning Algorithms for Spine Health Prediction," 2022 16th ICME International Conference on Complex Medical Engineering (CME), pp. 349-355, 2022, doi: 10.1109/CME55444.2022.10063325.

D. Chaerul, E. Saputra, A. Ma, and K. Sunat, “Optimizing Predictive Performance : Hyperparameter Tuning in Stacked Multi-Kernel Support Vector Machine Random Forest Models for Diabetes Identification,” J. Robot. Control, vol. 4, no. 6, pp. 896–904, 2023, doi: 10.18196/jrc.v4i6.20898.

A. Ma, D. Rifaldi, and A. Azzawagama, “Comparison of Convolutional Neural Networks and Support,” IJRCS-International J. Robot. Control Syst., vol. 4, no. 1, pp. 445–462, 2024, doi: 10.31763/ijrcs.v4i1.1375.

V. Piccialli and M. Sciandrone, “Nonlinear Optimization and Support Vector Machines,” Ann. Oper. Res., vol. 16, 2022, doi: 10.1007/s10479-022-04655-x.

J. Alcaraz, M. Labbé, and M. Landete, “Support Vector Machine with feature selection: A multiobjective approach,” Expert Syst. Appl., vol. 204, 2022, doi: 10.1016/j.eswa.2022.117485.

F. B. Bağci and Ö. Karal, “Exploring Efficient Kernel Functions For Support Vector Clustering,” Mugla J. Sci. Technol., pp. 36–42, 2020, doi: 10.22531/muglajsci.703790.

I. S. Al-mejibli, J. K. Alwan, and D. H. Abd, “The Effect Of Gamma Value On Support Vector Machine Performance With Different Kernels,” Int. J. Electr. Comput. Eng., vol. 10, no. 5, pp. 5497–5506, 2020, doi: 10.11591/ijece.v10i5.pp5497-5506.

K. Shah, H. Patel, D. Sanghvi, and M. Shah, “A Comparative Analysis of Logistic Regression , Random Forest and KNN Models for the Text Classification,” Augment. Hum. Res., vol. 5, no. 12, pp. 1–16, 2020, doi: 10.1007/s41133-020-00032-0.

Y. Fan, J. Bai, X. Lei, Y. Zhang, B. Zhang, and K. Li, “Journal of Network and Computer Applications Privacy preserving based logistic regression on big data,” J. Netw. Comput. Appl., vol. 171, p. 102769, 2020, doi: 10.1016/j.jnca.2020.102769.

R. Fezai, K. Dhibiv, M. Mansouri, and M. Trabelsi, “Effective Random Forest-Based Fault Detection and Diagnosis for Wind Energy,” IEEE Sens. J., vol. 21, no. 5, pp. 6914–6921, 2021, doi: 10.1109/JSEN.2020.3037237.

A. Mardjo and C. Choksuchat, “HyVADRF : Hybrid VADER – Random Forest and GWO for Bitcoin Tweet Sentiment Analysis,” IEEE Access, vol. 10, pp. 101889–101897, 2022, doi: 10.1109/ACCESS.2022.3209662.

K. Dhibi et al., “Reduced Kernel Random Forest Technique for Fault Detection and Classification in Grid-Tied PV Systems,” IEEE J. Photovoltaics, vol. 10, no. 6, pp. 1–8, 2020, doi: 10.1109/JPHOTOV.2020.3011068.

B. T. Jijo and A. M. Abdulazeez, “Classification Based on Decision Tree Algorithm for Machine Learning,” J. Appl. Sci. Technol. TRENDS, vol. 2, no. 1, pp. 20–28, 2021, doi: 10.38094/jastt20165.

L. Cañete-sifuentes, R. Monroy, and M. A. Medina-pérez, “A Review and Experimental Comparison of Multivariate Decision Trees,” IEEE Access, vol. 9, pp. 110451–110479, 2021, doi: 10.1109/ACCESS.2021.3102239.

Z. He, Z. Wu, G. Xu, Y. Liu, and Q. Zou, “Decision Tree for Sequences,” IEEE Trans. Knowl. Data Eng., vol. 7, no. 1041, pp. 1–15, 2020, doi: 10.1109/TKDE.2021.3075023.

J. A. Ilemobayo et al., “Hyperparameter Tuning in Machine Learning: A Comprehensive Review,” J. Eng. Res. Reports, vol. 26, no. 6, pp. 388–395, Jun. 2024, doi: 10.9734/JERR/2024/V26I61188.

E. Elgeldawi, A. Sayed, A. R. Galal, and A. M. Zaki, “Hyperparameter Tuning for Machine Learning Algorithms Used for Arabic Sentiment Analysis,” Informatics, vol. 8, no. 79, pp. 1–21, 2021, doi: 10.3390/informatics8040079.

A. E. Minarno, M. H. C. Mandiri, Y. Munarko, and H. Hariyady, “Convolutional Neural Network with Hyperparameter Tuning for Brain Tumor Classification,” Kinet. Game Technol. Inf. Syst. Comput. Network, Comput. Electron. Control, vol. 6, no. 2, pp. 127–132, May 2021, doi: 10.22219/KINETIK.V6I2.1219.

M. Krček and G. Perin, “Autoencoder-enabled Model Portability for Reducing Hyperparameter Tuning Efforts in Side-channel Analysis,” Journal of Cryptographic Engineering, vol. 14, no. 3, pp. 475-497, 2024, doi: 10.1007/s13389-023-00330-4.

J. Huang, J. Rojas, M. Zimmer, H. Wu, Y. Guan, and P. Weng, “Hyperparameter auto-tuning in self-supervised robotic learning,” IEEE Robot. Autom. Lett., vol. 6, no. 2, pp. 3537–3544, Apr. 2021, doi: 10.1109/LRA.2021.3064509.

S. Mohapatra, S. Sasy, X. He, G. Kamath, and O. Thakkar, “The Role of Adaptive Optimizers for Honest Private Hyperparameter Selection,” Proc. AAAI Conf. Artif. Intell., vol. 36, no. 7, pp. 7806–7813, Jun. 2022, doi: 10.1609/AAAI.V36I7.20749.

A. Chaiyana et al., “Leveraging Remotely Sensed and Climatic Data for Improved Crop Yield Prediction in the Chi Basin, Thailand,” Sustain., vol. 16, no. 6, p. 2260, Mar. 2024, doi: 10.3390/SU16062260.

F. Naim, A. E. Cook, and J. Moortgat, “Estimating Compressional Velocity and Bulk Density Logs in Marine Gas Hydrates Using Machine Learning,” Energies, vol. 16, no. 23, p. 7709, Dec. 2023, doi: 10.3390/EN16237709/S1.

H. Darmawan, M. Yuliana, and M. Z. S. Hadi, “GRU and XGBoost Performance with Hyperparameter Tuning Using GridSearchCV and Bayesian Optimization on an IoT-Based Weather Prediction System,” Int. J. Adv. Sci. Eng. Inf. Technol., vol. 13, no. 3, 2023, doi: 10.18517/ijaseit.13.3.18377.

A. Wan et al., “Using Transfer Learning and XGBoost for Early Detection of Fires in Offshore Wind Turbine Units,” Energies, vol. 17, no. 10, p. 2330, May 2024, doi: 10.3390/EN17102330.

H. Niu, Z. Zhang, and M. Luo, “Evaluation and Prediction of Low-Carbon Economic Efficiency in China, Japan and South Korea: Based on DEA and Machine Learning,” Int. J. Environ. Res. Public Heal., vol. 19, no. 19, p. 12709, Oct. 2022, doi: 10.3390/IJERPH191912709.

M. Jha, R. Gupta, and R. Saxena, “Convolutional neural network based detection of lung adenocarcinoma by amalgamating hybrid features,” Int. J. Adv. Technol. Eng. Explor., vol. 11, no. 111, pp. 160–176, 2024, doi: 10.19101/IJATEE.2023.10102196.

T. Alshammari, “Using Artificial Neural Networks with GridSearchCV for Predicting Indoor Temperature in a Smart Home,” Eng. Technol. Appl. Sci. Res., vol. 14, no. 2, pp. 13437–13443, Apr. 2024, doi: 10.48084/ETASR.7008.

Jumanto et al., “Optimizing Support Vector Machine Performance for Parkinson’s Disease Diagnosis Using GridSearchCV and PCA-Based Feature Extraction,” J. Inf. Syst. Eng. Bus. Intell., vol. 10, no. 1, pp. 38–50, Feb. 2024, doi: 10.20473/JISEBI.10.1.38-50.

Z. M. Alhakeem, Y. M. Jebur, S. N. Henedy, H. Imran, L. F. A. Bernardo, and H. M. Hussein, “Prediction of Ecofriendly Concrete Compressive Strength Using Gradient Boosting Regression Tree Combined with GridSearchCV Hyperparameter-Optimization Techniques,” Mater., vol. 15, no. 21, p. 7432, Oct. 2022, doi: 10.3390/MA15217432.

G. Vashisht, “Sentimental study of CAA by location-based tweets,” Int. J. Inf. Technol., vol. 13, no. 4, pp. 1555–1567, 2021, doi: 10.1007/s41870-020-00604-8.

T. Renault, “Sentiment Analysis and Machine Learning In Finance: A Comparison Of Methods And Models On One Million Messages,” Springer - Digit. Financ., pp. 1–13, 2020, doi: 10.1007/s42521-019-00014-x.

P. M. V. P. Vaidya, R. Korde, O. Chaudhari, P. Chirde, S. Deoda, and D. Kadu, “Twitter Sentiment Analysis Using Machine Learning Algorithm,” Int. J. Ingenious Res. Invent. Dev., vol. 3, no. 1, pp. 106–114, 2024, doi: 10.5281/zenodo.10967535.

A. Priya, S. Garg, and N. P. Tigga, “Predicting Anxiety , Depression and Stress in Modern Life using Machine Learning Algorithms,” in Procedia Computer Science - International Conference on Computational Intelligence and Data Science (ICCIDS 2019), vol. 167, pp. 1258–1267, 2020, doi: 10.1016/j.procs.2020.03.442.

Downloads

Published

2024-12-20

Issue

Section

Articles