Design of Adaptive Synergetic Controller for One Degree of Freedom Robotic ARM Under External Disturbance
DOI:
https://doi.org/10.18196/jrc.v6i1.25207Keywords:
Synergetic Control, Adaptive Synergetic Control, Robotic ARM, Stability AnalysisAbstract
In order to manage a one-link robot arm, this research proposes a unique control architecture based on the Synergetic Control (SC) principle. The synergetic control design is initially developed using known system parameters and subjected to external disturbances. However, in practical robotic systems, uncertainties are inherent in the system parameters. As a result, an algorithm known as Adaptive Synergetic Control (ASC) is presented and developed for a robot arm that encounters parameters uncertainty. To estimate disturbances and guarantee the asymptotic stability of the monitored system, adaptive synergetic laws are developed. The adaptive laws and control of the ASC were established to ensure the stability of the controlled robotic arm. The recommended controller addresses the tracking problem of a single-degree-of-freedom (SDOF) robot arm, and disturbance control scenario was conducted and simulated. Additionally, the paper compares the ASC method with the adaptive backstepping control technique to evaluate the effectiveness of ASC, this comparison demonstrated the efficiency of the recommended strategy in terms of maximum tracking error and maximum control effort. The performance of both SC, ASC is demonstrated through computer simulations, showing that the adaptive controller can handle uncertainties as well as disturbance and maintain system stability.
References
E. Oumaymah, O. Abdellah, B. Omar, and E. B. Lhoussain, “Backstepping Design Control Applied to the Wind PMSG Generator and Grid Connection Using A Multilevel Inverter,” in 2021 8th International Conference on Electrical and Electronics Engineering (ICEEE), pp. 136–141, 2021, doi: 10.1109/ICEEE52452.2021.9415945.
P. Badoniya, “Two Link Planar Robot Manipulator Mechanism Analysis with MATLAB,” Int. J. Res. Appl. Sci. Eng. Technol., vol. 6, no. 7, pp. 778–788, Jul. 2018, doi: 10.22214/ijraset.2018.7132.
B. Mahboub and D. Stephen, “A Two-Link Robot Manipulator: Simulation and Control Design,” Int. J. Robot. Eng., vol. 5, no. 2, Dec. 2020, doi: 10.35840/2631-5106/4128.
M. T. Vo et al., “Back-stepping control for rotary inverted pendulum,” J. Tech. Educ. Sci., vol. 15, no. 4, pp. 93–101, 2020.
H. Al-Khazraji, R. M. Naji, and M. K. Khashan, “Optimization of Sliding Mode and Back-Stepping Controllers for AMB Systems Using Gorilla Troops Algorithm,” J. Eur. des Systèmes Autom., vol. 57, no. 2, pp. 417–424, Apr. 2024, doi: 10.18280/jesa.570211.
N. A. Elkhateeb and R. I. Badr, “Novel PID Tracking Controller for 2DOF Robotic Manipulator System Based on Artificial Bee Colony Algorithm,” Electr. Control Commun. Eng., vol. 13, no. 1, pp. 55–62, Dec. 2017, doi: 10.1515/ecce-2017-0008.
P. Chotikunnan and R. Chotikunnan, “Dual design PID controller for robotic manipulator application,” Journal of Robotics and Control (JRC), vol. 4, no. 1, pp. 23-34, 2023.
A. A. Okubanjo, O. K. Oyetola, M. O. Osifeko, O. O. Olaluwoye, and P. O. Alao, “Modeling of 2-DOF robot arm and control,” Futo J Ser., vol. 3, no. 2, pp. 80–92, 2017.
W. Scaff, O. Horikawa, and M. de S. Guerra Tsuzuki, “Pneumatic Artificial Muscle Optimal Control with Simulated Annealing,” IFAC-PapersOnLine, vol. 51, no. 27, pp. 333–338, 2018, doi: 10.1016/j.ifacol.2018.11.618.
K. Bai, G. Jiang, G. Jiang, and Z. Liu, “Based on fuzzy-approximation adaptive backstepping control method for dual-arm of humanoid robot with trajectory tracking,” Int. J. Adv. Robot. Syst., vol. 16, no. 3, May 2019, doi: 10.1177/1729881419831904.
Y. Pan, H. Wang, X. Li, and H. Yu, “Adaptive Command-Filtered Backstepping Control of Robot Arms With Compliant Actuators,” IEEE Trans. Control Syst. Technol., vol. 26, no. 3, pp. 1149–1156, May 2018, doi: 10.1109/TCST.2017.2695600.
M. R. Junaid, L. M. Beebi, and C. R. Ashima, “Backstepping and adaptive backstepping control on robotic ARM,” in 2015 International Conference on Control Communication & Computing India (ICCC), IEEE, Nov. 2015, pp. 1–6. doi: 10.1109/ICCC.2015.7432860.
P. Neto, J. N. Pires, and A. P. Moreira, “Accelerometer-based control of an industrial robotic arm,” in RO-MAN 2009 - The 18th IEEE International Symposium on Robot and Human Interactive Communication, IEEE, Sep. 2009, pp. 1192–1197. doi: 10.1109/ROMAN.2009.5326285.
A. Carron, E. Arcari, M. Wermelinger, L. Hewing, M. Hutter, and M. N. Zeilinger, “Data-Driven Model Predictive Control for Trajectory Tracking With a Robotic Arm,” IEEE Robot. Autom. Lett., vol. 4, no. 4, pp. 3758–3765, Oct. 2019, doi: 10.1109/LRA.2019.2929987.
K. Liu, C.-H. Xiong, L. He, W.-B. Chen, and X.-L. Huang, “Postural synergy based design of exoskeleton robot replicating human arm reaching movements,” Rob. Auton. Syst., vol. 99, no. 4, pp. 84–96, Jan. 2018, doi: 10.1016/j.robot.2017.10.003.
L. Khames and A. Al-Jodah, “Second order sliding mode controller design for pneumatic artificial muscle,” J. Eng., vol. 24, no. 1, pp. 159–172, 2018.
J. H. Lilly and Liang Yang, “Sliding mode tracking for pneumatic muscle actuators in opposing pair configuration,” IEEE Trans. Control Syst. Technol., vol. 13, no. 4, pp. 550–558, Jul. 2005, doi: 10.1109/TCST.2005.847333.
J. Rubio, “Sliding mode control of robotic arms with deadzone,” IET Control Theory Appl., vol. 11, no. 8, pp. 1214–1221, May 2017, doi: 10.1049/iet-cta.2016.0306.
S. Xu, M. Zhang, and C. Lu, “Research on Intelligent Multimodal Gesture-Guided Control of Robotic Arms,” Research Square, 2024, doi: 10.21203/rs.3.rs-4538013/v1.
K. Chenchireddy, R. Dora, G. B. Mulla, V. Jegathesan, and S. A. Sydu, “Development of robotic arm control using Arduino controller,” IAES Int. J. Robot. Autom., vol. 13, no. 3, pp. 264-271, Sep. 2024.
A. Al-Naib, “Design an Industrial Robot Arm Controller Based on PLC,” Przegląd Elektrotechniczny, vol. 1, no. 7, pp. 107–111, Jul. 2022, doi: 10.15199/48.2022.07.18.
H. I. Abdulameer and M. J. Mohamed, “Fractional Order Fuzzy PID Controller Design for 2-Link Rigid Robot Manipulator.,” Int. J. Intell. Eng. Syst., vol. 15, no. 3, 2022.
H. I. Abdulameer and Mohamed J. Mohamed, “Fractional Order Fuzzy Like PID Controller Design for Three Links Rigid Robot Manipulator,” Iraqi J. Comput. Commun. Control Syst. Eng., pp. 80–98, Dec. 2022, doi: 10.33103/uot.ijccce.22.4.7.
S. S. Husain and T. MohammadRidha, “Integral Sliding Mode Control for Seismic Effect Regulation on Buildings Using ATMD and MRD,” J. Eur. des Systèmes Autom., vol. 55, no. 4, pp. 541–548, Aug. 2022, doi: 10.18280/jesa.550414.
V. Utkin, A. Poznyak, Y. V Orlov, and A. Polyakov, Road map for sliding mode control design. Springer, 2020.
V. Utkin, A. Poznyak, Y. Orlov, and A. Polyakov, “Conventional and high order sliding mode control,” J. Franklin Inst., vol. 357, no. 15, pp. 10244–10261, Oct. 2020, doi: 10.1016/j.jfranklin.2020.06.018.
S. S. Husain and T. MohammadRidha, “Integral Sliding Mode Controlled ATMD for Buildings under Seismic Effect,” Int. J. Saf. Secur. Eng., vol. 12, no. 4, pp. 413–420, Aug. 2022, doi: 10.18280/ijsse.120401.
Z. Li, F. Wang, D. Ke, J. Li, and W. Zhang, “Robust Continuous Model Predictive Speed and Current Control for PMSM With Adaptive Integral Sliding-Mode Approach,” IEEE Trans. Power Electron., vol. 36, no. 12, pp. 14398–14408, Dec. 2021, doi: 10.1109/TPEL.2021.3086636.
D. Al-hadithy and A. Hammoudi, “Two-Link Robot Through Strong and Stable Adaptive Sliding Mode Controller,” in 2020 13th International Conference on Developments in eSystems Engineering (DeSE), IEEE, Dec. 2020, pp. 121–127. doi: 10.1109/DeSE51703.2020.9450762.
A. M. Hameed and A. K. Hamoudi, “A 2-Link Robot with Adaptive Sliding Mode Controlled by Barrier Function,” J. Eur. des Systèmes Autom., vol. 56, no. 6, pp. 1105–1113, Dec. 2023, doi: 10.18280/jesa.560620.
A. F. Abd and S. A. Al-Samarraie, “Integral Sliding Mode Control Based on Barrier Function for Servo Actuator with Friction,” Eng. Technol. J., vol. 39, no. 2A, pp. 248–259, Feb. 2021, doi: 10.30684/etj.v39i2A.1826.
M. R. Hassan and S. A. Al-Samarraie, “Robust Nonlinear Control Design for the HVAC System Based on Adaptive Sliding Mode Control,” J. Eur. des Systèmes Autom., vol. 55, no. 5, pp. 593–601, Nov. 2022, doi: 10.18280/jesa.550504.
K. Erenturk, A. Draou, and A. AlKassem, “Design and Comparison of Different Types of Synergetic Controllers for Islanded DC Microgrids,” Sustainability, vol. 14, no. 14, p. 8792, Jul. 2022, doi: 10.3390/su14148792.
S. M. Mahdi, N. Q. Yousif, A. A. Oglah, M. E. Sadiq, A. J. Humaidi, and A. T. Azar, “Adaptive Synergetic Motion Control for Wearable Knee-Assistive System: A Rehabilitation of Disabled Patients,” Actuators, vol. 11, no. 7, p. 176, Jun. 2022, doi: 10.3390/act11070176.
M. Nicola and C.-I. Nicola, “Improved Performance in the Control of DC-DC Three-Phase Power Electronic Converter Using Fractional-Order SMC and Synergetic Controllers and RL-TD3 Agent,” Fractal Fract., vol. 6, no. 12, p. 729, Dec. 2022, doi: 10.3390/fractalfract6120729.
M. Nicola, C.-I. Nicola, and D. Selișteanu, “Improvement of PMSM Sensorless Control Based on Synergetic and Sliding Mode Controllers Using a Reinforcement Learning Deep Deterministic Policy Gradient Agent,” Energies, vol. 15, no. 6, p. 2208, Mar. 2022, doi: 10.3390/en15062208.
F. R. Al-Ani, O. F. Lutfy, and H. Al-Khazraji, “Optimal Synergetic and Feedback Linearization Controllers Design for Magnetic Levitation Systems: A Comparative Study,” J. Robot. Control, vol. 6, no. 1, pp. 22–30, 2025.
A. J. Humaidi and A. F. Hasan, “Particle swarm optimization–based adaptive super-twisting sliding mode control design for 2-degree-of-freedom helicopter,” Meas. Control, vol. 52, no. 9–10, pp. 1403–1419, Nov. 2019, doi: 10.1177/0020294019866863.
F. H. Ajeil, I. K. Ibraheem, A. T. Azar, and A. J. Humaidi, “Grid-Based Mobile Robot Path Planning Using Aging-Based Ant Colony Optimization Algorithm in Static and Dynamic Environments,” Sensors, vol. 20, no. 7, p. 1880, Mar. 2020, doi: 10.3390/s20071880.
Z. N. Mahmood, H. Al-Khazraji, and S. M. Mahdi, “Adaptive Control and Enhanced Algorithm for Efficient Drilling in Composite Materials,” J. Eur. des Systèmes Autom., vol. 56, no. 3, pp. 507–512, Jun. 2023, doi: 10.18280/jesa.560319.
R. A. Kadhim, M. Q. Kadhim, H. Al-Khazraji, and A. J. Humaidi, “Bee Algorithm Based Control Design for Two-links Robot Arm Systems,” IIUM Eng. J., vol. 25, no. 2, pp. 367–380, Jul. 2024, doi: 10.31436/iiumej.v25i2.3188.
H. AL-Khazraji, C. Cole, and W. Guo, “Analysing the impact of different classical controller strategies on the dynamics performance of production-inventory systems using state space approach,” J. Model. Manag., vol. 13, no. 1, pp. 211–235, Feb. 2018, doi: 10.1108/JM2-08-2016-0071.
H. Al-Khazraji, K. Albadri, R. Almajeez, and A. J. Humaidi, “Synergetic control-based sea lion optimization approach for position tracking control of ball and beam system,” Int. J. Robot. Control Syst., vol. 4, no. 4, pp. 1547–1560, 2024.
A. F. Mutlak and A. J. Humaidi, “A Comparative Study of Synergetic and Sliding Mode Controllers for Pendulum Systems,” J. Eur. des Systèmes Autom., vol. 56, no. 5, pp. 871–877, Oct. 2023, doi: 10.18280/jesa.560518.
H. Benbouhenni, “Synergetic control theory scheme for asynchronous generator based dual-rotor wind power,” J. Electr. Eng. Electron. Control Comput. Sci., vol. 7, no. 3, pp. 19–28, 2021.
S. Zhen, C. Meng, X. Liu, and Y. Chen, “Robust trajectory tracking control design for the robotic arm with uncertainty and experimental validation,” J. Vib. Control, vol. 30, no. 19–20, pp. 4351–4367, Oct. 2024, doi: 10.1177/10775463231209394.
A. F. Mutlak and A. J. Humaidi, “Adaptive synergetic control for electronic throttle valve system,” Int. Rev. Appl. Sci. Eng., vol. 15, no. 2, pp. 211–220, Jun. 2024, doi: 10.1556/1848.2023.00706.
L. Cao, J. Liu, J. Zhang, C. Jiang, and D. Zhang, “Positioning Accuracy Reliability Analysis of Industrial Robots Considering Epistemic Uncertainty and Correlation,” J. Mech. Des., vol. 145, no. 2, Feb. 2023, doi: 10.1115/1.4055926.
H. P. H. Anh and C. Van Kien, “Hybrid Fuzzy Sliding Mode Control for Uncertain PAM Robot Arm Plant Enhanced with Evolutionary Technique,” Int. J. Comput. Intell. Syst., vol. 14, no. 1, p. 594, 2021, doi: 10.2991/ijcis.d.210107.001.
A. K. Hamoudi and L. T. Rasheed, “Design of an Adaptive Integral Sliding Mode Controller for Position Control of Electronic Throttle Valve,” J. Eur. des Systèmes Autom., vol. 57, no. 3, pp. 729–735, Jun. 2024, doi: 10.18280/jesa.570310.
S. J. Abbas, S. S. Husain, S. Al-Wais, and A. J. Humaidi, “Adaptive Integral Sliding Mode Controller (SMC) Design for Vehicle Steer-by-Wire System,” SAE Int. J. Veh. Dyn. Stability, NVH, vol. 8, no. 3, pp. 10-08-03–0021, Jun. 2024, doi: 10.4271/10-08-03-0021.
S. S. Husain, A. Q. Al-Dujaili, A. A. Jaber, A. J. Humaidi, and R. S. Al-Azzawi, “Design of a Robust Controller Based on Barrier Function for Vehicle Steer-by-Wire Systems,” World Electr. Veh. J., vol. 15, no. 1, p. 17, Jan. 2024, doi: 10.3390/wevj15010017.
S. Mobayen, F. Bayat, S. ud Din, and M. T. Vu, “Barrier function-based adaptive nonsingular terminal sliding mode control technique for a class of disturbed nonlinear systems,” ISA Trans., vol. 134, pp. 481–496, Mar. 2023, doi: 10.1016/j.isatra.2022.08.006.
M. A. Mossa, H. Echeikh, and A. Ma’arif, “Dynamic Performance Analysis of a Five-Phase PMSM Drive Using Model Reference Adaptive System and Enhanced Sliding Mode Observer,” J. Robot. Control, vol. 3, no. 3, pp. 289–308, May 2022, doi: 10.18196/jrc.v3i3.14632.
Y. Fan, B. Qiu, L. Liu, and Y. Yang, “Global fixed-time trajectory tracking control of underactuated USV based on fixed-time extended state observer,” ISA Trans., vol. 132, pp. 267–277, Jan. 2023, doi: 10.1016/j.isatra.2022.06.011.
N. Gu, D. Wang, Z. Peng, J. Wang, and Q.-L. Han, “Disturbance observers and extended state observers for marine vehicles: A survey,” Control Eng. Pract., vol. 123, p. 105158, Jun. 2022, doi: 10.1016/j.conengprac.2022.105158.
L. Qu, W. Qiao, and L. Qu, “Active-Disturbance-Rejection-Based Sliding-Mode Current Control for Permanent-Magnet Synchronous Motors,” IEEE Trans. Power Electron., vol. 36, no. 1, pp. 751–760, Jan. 2021, doi: 10.1109/TPEL.2020.3003666.
A. Alizadeh, F. S. Gharehchopogh, M. Masdari, and A. Jafarian, “An improved hybrid salp swarm optimization and African vulture optimization algorithm for global optimization problems and its applications in stock market prediction,” Soft Comput., vol. 28, no. 6, pp. 5225–5261, Mar. 2024, doi: 10.1007/s00500-023-09299-y.
A. F. Hasan, N. Al-Shamaa, S. S. Husain, A. J. Humaidi, and A. Al-dujaili, “Spotted Hyena Optimizer enhances the performance of Fractional-Order PD controller for Tri-copter drone,” Int. Rev. Appl. Sci. Eng., vol. 15, no. 1, pp. 82–94, Jan. 2024, doi: 10.1556/1848.2023.00659.
A. J. Humaidi, S. K. Kadhim, and A. S. Gataa, “Optimal Adaptive Magnetic Suspension Control of Rotary Impeller for Artificial Heart Pump,” Cybern. Syst., vol. 53, no. 1, pp. 141–167, Jan. 2022, doi: 10.1080/01969722.2021.2008686.
Z. A. Waheed and A. J. Humaidi, “Design of Optimal Sliding Mode Control of Elbow Wearable Exoskeleton System Based on Whale Optimization Algorithm,” J. Eur. des Systèmes Autom., vol. 55, no. 4, pp. 459–466, Aug. 2022, doi: 10.18280/jesa.550404.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Suha S. Husain

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
This journal is based on the work at https://journal.umy.ac.id/index.php/jrc under license from Creative Commons Attribution-ShareAlike 4.0 International License. You are free to:
- Share – copy and redistribute the material in any medium or format.
- Adapt – remix, transform, and build upon the material for any purpose, even comercially.
The licensor cannot revoke these freedoms as long as you follow the license terms, which include the following:
- Attribution. You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- ShareAlike. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
- No additional restrictions. You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
• Creative Commons Attribution-ShareAlike (CC BY-SA)
JRC is licensed under an International License