A Comparative Analysis of Numerical Techniques: Euler-Maclaurin vs. Runge-Kutta Methods

Authors

  • Mohammad W. Alomari Jadara University
  • Iqbal M. Batiha Al Zaytoonah University of Jordan
  • Abeer Al-Nana Prince Sattam Bin Abdulaziz University
  • Mohammad Odeh Jouf University
  • Nidal Anakira Sohar University
  • Shaher Momani University of Jordan

DOI:

https://doi.org/10.18196/jrc.v6i2.25566

Keywords:

Euler-Maclaurin Formula, Runge-Kutta Method, Ode, Darboux’s Formula, Approximations

Abstract

This study introduces a novel higher-order implicit correction method derived from the Euler-Maclaurin formula to enhance the approximation of initial value problems. The proposed method surpasses the Runge-Kutta approach in accuracy, stability, and convergence. An error bound is established to demonstrate its theoretical reliability. To validate its effectiveness, numerical experiments are conducted, showcasing its superior performance compared to conventional methods. The results consistently confirm that the proposed method outperforms the Runge-Kutta method across various practical applications.

References

N. R. Anakira, A. Almalki, D. Katatbeh, G. B. Hani, A. F. Jameel, K. S. Al Kalbani, and M. Abu-Dawas, “An algorithm for solving linear and non-linear Volterra integro-differential equations,” International Journal of Advances in Soft Computing and Its Applications, vol. 15, no. 3, pp. 77–83, 2023, doi: 10.15849/IJASCA.231130.05.

G. Farraj, B. Maayah, R. Khalil, and W. Beghami, “An algorithm for solving fractional differential equations using conformable optimized decomposition method,” International Journal of Advances in Soft Computing and Its Applications, vol. 15, no. 1, pp. 187–196, 2023, doi: 10.15849/IJASCA.230320.13.

M. Berir, “Analysis of the effect of white noise on the Halvorsen system of variable-order fractional derivatives using a novel numerical method,” International Journal of Advances in Soft Computing and Its Applications, vol. 16, no. 3, pp. 294–306, 2024, doi: 10.15849/IJASCA.241130.16.

M. W. Alomari, I. M. Batiha, and S. Momani, “New higher-order implicit method for approximating solutions of the initial value problems,” Journal of Applied Mathematics and Computing, vol. 70, pp. 3369–3393, 2024, doi: 10.1007/s12190-024-02087-3.

I. M. Batiha, I. H. Jebril, A. Abdelnebi, Z. Dahmani, S. Alkhazaleh, and N. Anakira, “A new fractional representation of the higher order Taylor scheme,” Computational and Mathematical Methods, vol. 2024, no. 1, 2024, doi: 10.1155/2024/2849717.

I. M. Batiha, I. H. Jebril, S. Alshorm, M. Aljazzazi, and S. Alkhazaleh, “Numerical approach for solving incommensurate higher-order fractional differential equations,” Nonlinear Dynamics and Systems Theory, vol. 24, no. 2, pp. 123–134, 2024.

A. A. Al-Nana, I.M. Batiha, and S. Momani, “A numerical approach for dealing with fractional boundary value problems,” Mathematics, vol. 11, no. 19, 2023, doi: 10.3390/math11194082.

I. M. Batiha, A. A. Abubaker, I. H. Jebril, S. B. Al-Shaikh, and K. Matarneh, “New algorithms for dealing with fractional initial value problems,” Axioms, vol. 12, no. 5, 2023, doi: 10.3390/axioms12050488.

I. M. Batiha, S. Alshorm, A. Al-Husban, R. Saadeh, G. Gharib, and S. Momani, “The n-point composite fractional formula for approximating Riemann–Liouville integrator,” Symmetry, vol. 15, no. 4, 2023, doi: 10.3390/sym15040938.

I. M. Batiha, A. A. Abubaker, I. H. Jebril, S. B. Al-Shaikh, and K. Matarneh, “A numerical approach of handling fractional stochastic differential equations,” Axioms, vol. 12, no. 4, 2023, doi: 10.3390/axioms12040388.

I. M. Batiha, S. Momani, S. Alshorm and A. Ouannas, “Numerical Solutions of Stochastic Differential Equation Using Modified ThreePoint Fractional Formula,” 2023 International Conference on Fractional Differentiation and Its Applications (ICFDA), pp. 1-5, 2023, doi: 10.1109/ICFDA58234.2023.10153192.

I. M. Batiha, A. Bataihah, A. A. Al-Nana, S. Alshorm, I.H. Jebril, and A. Zraiqat, “A numerical scheme for dealing with fractional initial value problem,” International Journal of Innovative Computing, Information & Control, vol. 19, no. 3, pp. 763–774, 2023, doi: 10.24507/ijicic.19.03.763.

I. M. Batiha, S. Alshorm, I. Jebril, A. Zraiqat, Z. Momani, and S. Momani, “Modified 5-point fractional formula with Richardson extrapolation,” AIMS Mathematics, vol. 8, no. 4, pp. 9520–9534, 2023, doi: 10.3934/math.2023480.

I. M. Batiha, S. Alshorm, A. Ouannas, S. Momani, O. Y. Ababneh, and M. Albdareen, “Modified three-point fractional formulas with Richardson extrapolation,” Mathematics, vol. 10, no. 19, 2022, doi: 10.3390/math10193489.

R. B. Albadarneh, I. M. Batiha, A. Adwai, N. Tahat, and A. K. Alomari, “Numerical approach of Riemann-Liouville fractional derivative operator,” International Journal of Electrical and Computer Engineering, vol. 11, no. 6, pp. 5367–5378, 2021, doi: 10.11591/ijece.v11i6.pp5367-5378.

R. B. Albadarneh, I. M. Batiha, A. K. Alomari, and N. Tahat, “Numerical approach for approximating the Caputo fractional-order derivative operator,” AIMS Mathematics, vol. 6, no. 11, pp. 12743–12756, 2021, doi:10.11591/ijece.v11i6.pp5367-5378.

R. B. Albadarneh, I. M. Batiha, and M. Zurigat, “Numerical solutions for linear fractional differential equations of order 1 < α < 2 using finite difference method (FFDM),” International Journal of Mathematics and Computer Science, vol. 16, no. 1, pp. 103–111, 2016.

R.B. Albadarneh, M. Zerqat, and I.M. Batiha, “Numerical solutions for linear and non-linear fractional differential equations,” International Journal of Pure and Applied Mathematics, vol. 106, no. 3, pp. 859–871, 2016, doi: 10.12732/ijpam.v106i3.12.

I. M. Batiha, O. Ogilat, I. Bendib, A. Ouannas, I. H. Jebril, and N. Anakira, “Finite-time dynamics of the fractional-order epidemic model: Stability, synchronization, and simulations,” Chaos, Solitons & Fractals: X, vol. 13, 2024, doi: 10.1016/j.csfx.2024.100118.

I. M. Batiha, I. Bendib, A. Ouannas, I. H. Jebril, S. Alkhazaleh, and S. Momani, “On new results of stability and synchronization in finite-time for FitzHugh-Nagumo model using Gronwall inequality and Lyapunov ¨ function,” Journal of Robotics and Control (JRC), vol. 5, no. 6, pp. 1897– 1909, 2024, doi: 10.18196/jrc.v5i6.23211.

O. A. Almatroud, A. Hioual, A. Ouannas, and I. M. Batiha, “Asymptotic stability results of generalized discrete time reaction diffusion system applied to Lengyel-Epstein and Dagn Harrison models,” Computers & Mathematics with Applications, vol. 170, pp. 25–32, 2024, doi: 10.1016/j.camwa.2024.06.028.

S. Momani and I. M. Batiha, “Tuning of the fractional-order PID controller for some real-life industrial processes using particle swarm optimization,” Progress in Fractional Differentiation and Applications, vol. 8, no. 3, pp. 377–391, 2022, doi: 10.18576/pfda/PFDA-60-20.

T. Hamadneh, A. Zraiqat, H. Al-Zoubi, and M. Elbes, “Sufficient conditions and bounding properties for control functions using Bernstein expansion,” Applied Mathematics and Information Sciences, vol. 14, pp. 1–9, 2020, doi: 10.18576/amis/paper.

I. M. Batiha, M. W. Alomari, I. H. Jebril, T. Abdeljawad, N. Anakira, and S. Momani, “New higher-order implicit method for approximating solutions of boundary-value problems,” Journal of Applied Mathematics and Computing, vol. 70, pp. 3369–3393, 2024, doi: 10.1007/s12190-024- 02087-3.

I. M. Batiha, M. W. Alomari, N. Anakira, S. Meqdad, I. H. Jebril, and S. Momani, “Numerical advancements: A duel between EulerMaclaurin and Runge-Kutta for initial value problem,” International Journal of Neutrosophic Science, vol. 25, no. 3, pp. 76–91, 2025, doi: 10.54216/IJNS.250308.

N. Allouch, I. Batiha, I. H. Jebril, A. Al-Khateeb, and S. Hamani, “A new fractional approach for the higher-order q-Taylor method,” Image Analysis and Stereology, vol. 43, no. 3, pp. 249–257, 2024, doi: 10.5566/ias.3286.

A. Zraiqat, I. M. Batiha, and S. Alshorm, “Numerical comparisons between some recent modifications of fractional Euler methods,” WSEAS Transactions on Mathematics, vol. 23, no. 1, pp. 529–535, 2024, doi: 10.37394/23206.2024.23.55.

I. M. Batiha, I. H. Jebril, N. Anakira, A. A. Al-Nana, R. Batyha, and S. Momani, “Two-dimensional fractional wave equation via a new numerical approach,” International Journal of Innovative Computing, Information & Control, vol. 20, no. 4, pp. 1045–1059, 2024, doi: 10.24507/ijicic.20.04.1045.

I. M. Batiha, R. Saadeh, I. H. Jebril, A. Qazza, A. A. Al-Nana, and S. Momani, “Composite fractional trapezoidal rule with Romberg integration,” Computer Modeling in Engineering & Sciences, vol. 2024, no. 1, pp. 1–17, 2024, doi: 10.32604/cmes.2024.051588.

I. M. Batiha, S. Alshorm, and M. Almuzini, “Solving fractional-order monkeypox model by new numerical methods,” in The International Arab Conference on Mathematics and Computations, vol. 466, pp. 551–561, 2024, doi: 10.1007/978-981-97-4876-1_38.

I. Jebril, S. Alshorm, and I. M. Batiha, “Numerical solution for fractionalorder glioblastoma multiforme model,” in The International Arab Conference on Mathematics and Computations, vol. 466, pp. 599–607, 2024, doi: 10.1007/978-981-97-4876-1_42.

A. Borri, F. Carravetta, and P. Palumbo, “Quadratized Taylor series methods for ODE numerical integration,” Applied Mathematics and Computation, vol. 458, 2023, doi: 10.1016/j.amc.2023.128237.

A. Baeza, S. Boscarino, P. Mulet, G. Russo, and D. Zor´ıo, “Reprint of: Approximate Taylor methods for ODEs,” Computers & Fluids, vol. 169, pp. 87–97, 2018, doi: 10.1016/j.compfluid.2018.03.058.

H. Carrillo, E. Macca, C. Pares, G. Russo, and D. Zor ´ ´ıo, “An orderadaptive compact approximation Taylor method for systems of conservation laws,” Journal of Computational Physics, vol. 438, 2021, doi: 10.1016/j.jcp.2021.110358.

K. L. Narayanan, J. Kavitha, R. U. Rani, M. E. Lyons, and L. Rajendran, “Mathematical modelling of amperometric glucose biosensor based on immobilized enzymes: New approach of Taylor’s series method,” International Journal of Electrochemical Science, vol. 17, no. 10, 2022, doi: 10.20964/2022.10.47.

K. Wang and Q. Wang, “Taylor collocation method and convergence analysis for the Volterra–Fredholm integral equations,” Journal of Computational and Applied Mathematics, vol. 260, pp. 294–300, 2014, doi: 10.1016/j.cam.2013.09.050.

L. Euler, “On the sums of series of reciprocals,” arXiv preprint math/0506415, vol. 7, pp. 123–134, 2005, doi: 10.48550/arXiv.math/0506415.

C. Maclaurin, A Treatise of Fluxions in Two Books, Ruddimans, 2009.

T. M. Apostol, “An elementary view of Euler’s summation formula,” American Mathematical Monthly, vol. 106, no. 5, pp. 409–418, 1999, doi: 10.1080/00029890.1999.12005063.

E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, Cambridge University Press, 1940.

Z. X. Wang and D. R. Guo, Special Functions, World Scientific Connect, 1989, doi: 10.1142/0653.

R. L. Burden and J. D. Faires, Numerical Analysis, Brooks/Cole, Cengage Learning, 2011.

F. W. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark, NIST Handbook of Mathematical Functions, Cambridge University Press, 2010.

Downloads

Published

2025-04-12

Issue

Section

Articles