A Comparative Analysis of Numerical Techniques: Euler-Maclaurin vs. Runge-Kutta Methods
DOI:
https://doi.org/10.18196/jrc.v6i2.25566Keywords:
Euler-Maclaurin Formula, Runge-Kutta Method, Ode, Darboux’s Formula, ApproximationsAbstract
This study introduces a novel higher-order implicit correction method derived from the Euler-Maclaurin formula to enhance the approximation of initial value problems. The proposed method surpasses the Runge-Kutta approach in accuracy, stability, and convergence. An error bound is established to demonstrate its theoretical reliability. To validate its effectiveness, numerical experiments are conducted, showcasing its superior performance compared to conventional methods. The results consistently confirm that the proposed method outperforms the Runge-Kutta method across various practical applications.
References
N. R. Anakira, A. Almalki, D. Katatbeh, G. B. Hani, A. F. Jameel, K. S. Al Kalbani, and M. Abu-Dawas, “An algorithm for solving linear and non-linear Volterra integro-differential equations,” International Journal of Advances in Soft Computing and Its Applications, vol. 15, no. 3, pp. 77–83, 2023, doi: 10.15849/IJASCA.231130.05.
G. Farraj, B. Maayah, R. Khalil, and W. Beghami, “An algorithm for solving fractional differential equations using conformable optimized decomposition method,” International Journal of Advances in Soft Computing and Its Applications, vol. 15, no. 1, pp. 187–196, 2023, doi: 10.15849/IJASCA.230320.13.
M. Berir, “Analysis of the effect of white noise on the Halvorsen system of variable-order fractional derivatives using a novel numerical method,” International Journal of Advances in Soft Computing and Its Applications, vol. 16, no. 3, pp. 294–306, 2024, doi: 10.15849/IJASCA.241130.16.
M. W. Alomari, I. M. Batiha, and S. Momani, “New higher-order implicit method for approximating solutions of the initial value problems,” Journal of Applied Mathematics and Computing, vol. 70, pp. 3369–3393, 2024, doi: 10.1007/s12190-024-02087-3.
I. M. Batiha, I. H. Jebril, A. Abdelnebi, Z. Dahmani, S. Alkhazaleh, and N. Anakira, “A new fractional representation of the higher order Taylor scheme,” Computational and Mathematical Methods, vol. 2024, no. 1, 2024, doi: 10.1155/2024/2849717.
I. M. Batiha, I. H. Jebril, S. Alshorm, M. Aljazzazi, and S. Alkhazaleh, “Numerical approach for solving incommensurate higher-order fractional differential equations,” Nonlinear Dynamics and Systems Theory, vol. 24, no. 2, pp. 123–134, 2024.
A. A. Al-Nana, I.M. Batiha, and S. Momani, “A numerical approach for dealing with fractional boundary value problems,” Mathematics, vol. 11, no. 19, 2023, doi: 10.3390/math11194082.
I. M. Batiha, A. A. Abubaker, I. H. Jebril, S. B. Al-Shaikh, and K. Matarneh, “New algorithms for dealing with fractional initial value problems,” Axioms, vol. 12, no. 5, 2023, doi: 10.3390/axioms12050488.
I. M. Batiha, S. Alshorm, A. Al-Husban, R. Saadeh, G. Gharib, and S. Momani, “The n-point composite fractional formula for approximating Riemann–Liouville integrator,” Symmetry, vol. 15, no. 4, 2023, doi: 10.3390/sym15040938.
I. M. Batiha, A. A. Abubaker, I. H. Jebril, S. B. Al-Shaikh, and K. Matarneh, “A numerical approach of handling fractional stochastic differential equations,” Axioms, vol. 12, no. 4, 2023, doi: 10.3390/axioms12040388.
I. M. Batiha, S. Momani, S. Alshorm and A. Ouannas, “Numerical Solutions of Stochastic Differential Equation Using Modified ThreePoint Fractional Formula,” 2023 International Conference on Fractional Differentiation and Its Applications (ICFDA), pp. 1-5, 2023, doi: 10.1109/ICFDA58234.2023.10153192.
I. M. Batiha, A. Bataihah, A. A. Al-Nana, S. Alshorm, I.H. Jebril, and A. Zraiqat, “A numerical scheme for dealing with fractional initial value problem,” International Journal of Innovative Computing, Information & Control, vol. 19, no. 3, pp. 763–774, 2023, doi: 10.24507/ijicic.19.03.763.
I. M. Batiha, S. Alshorm, I. Jebril, A. Zraiqat, Z. Momani, and S. Momani, “Modified 5-point fractional formula with Richardson extrapolation,” AIMS Mathematics, vol. 8, no. 4, pp. 9520–9534, 2023, doi: 10.3934/math.2023480.
I. M. Batiha, S. Alshorm, A. Ouannas, S. Momani, O. Y. Ababneh, and M. Albdareen, “Modified three-point fractional formulas with Richardson extrapolation,” Mathematics, vol. 10, no. 19, 2022, doi: 10.3390/math10193489.
R. B. Albadarneh, I. M. Batiha, A. Adwai, N. Tahat, and A. K. Alomari, “Numerical approach of Riemann-Liouville fractional derivative operator,” International Journal of Electrical and Computer Engineering, vol. 11, no. 6, pp. 5367–5378, 2021, doi: 10.11591/ijece.v11i6.pp5367-5378.
R. B. Albadarneh, I. M. Batiha, A. K. Alomari, and N. Tahat, “Numerical approach for approximating the Caputo fractional-order derivative operator,” AIMS Mathematics, vol. 6, no. 11, pp. 12743–12756, 2021, doi:10.11591/ijece.v11i6.pp5367-5378.
R. B. Albadarneh, I. M. Batiha, and M. Zurigat, “Numerical solutions for linear fractional differential equations of order 1 < α < 2 using finite difference method (FFDM),” International Journal of Mathematics and Computer Science, vol. 16, no. 1, pp. 103–111, 2016.
R.B. Albadarneh, M. Zerqat, and I.M. Batiha, “Numerical solutions for linear and non-linear fractional differential equations,” International Journal of Pure and Applied Mathematics, vol. 106, no. 3, pp. 859–871, 2016, doi: 10.12732/ijpam.v106i3.12.
I. M. Batiha, O. Ogilat, I. Bendib, A. Ouannas, I. H. Jebril, and N. Anakira, “Finite-time dynamics of the fractional-order epidemic model: Stability, synchronization, and simulations,” Chaos, Solitons & Fractals: X, vol. 13, 2024, doi: 10.1016/j.csfx.2024.100118.
I. M. Batiha, I. Bendib, A. Ouannas, I. H. Jebril, S. Alkhazaleh, and S. Momani, “On new results of stability and synchronization in finite-time for FitzHugh-Nagumo model using Gronwall inequality and Lyapunov ¨ function,” Journal of Robotics and Control (JRC), vol. 5, no. 6, pp. 1897– 1909, 2024, doi: 10.18196/jrc.v5i6.23211.
O. A. Almatroud, A. Hioual, A. Ouannas, and I. M. Batiha, “Asymptotic stability results of generalized discrete time reaction diffusion system applied to Lengyel-Epstein and Dagn Harrison models,” Computers & Mathematics with Applications, vol. 170, pp. 25–32, 2024, doi: 10.1016/j.camwa.2024.06.028.
S. Momani and I. M. Batiha, “Tuning of the fractional-order PID controller for some real-life industrial processes using particle swarm optimization,” Progress in Fractional Differentiation and Applications, vol. 8, no. 3, pp. 377–391, 2022, doi: 10.18576/pfda/PFDA-60-20.
T. Hamadneh, A. Zraiqat, H. Al-Zoubi, and M. Elbes, “Sufficient conditions and bounding properties for control functions using Bernstein expansion,” Applied Mathematics and Information Sciences, vol. 14, pp. 1–9, 2020, doi: 10.18576/amis/paper.
I. M. Batiha, M. W. Alomari, I. H. Jebril, T. Abdeljawad, N. Anakira, and S. Momani, “New higher-order implicit method for approximating solutions of boundary-value problems,” Journal of Applied Mathematics and Computing, vol. 70, pp. 3369–3393, 2024, doi: 10.1007/s12190-024- 02087-3.
I. M. Batiha, M. W. Alomari, N. Anakira, S. Meqdad, I. H. Jebril, and S. Momani, “Numerical advancements: A duel between EulerMaclaurin and Runge-Kutta for initial value problem,” International Journal of Neutrosophic Science, vol. 25, no. 3, pp. 76–91, 2025, doi: 10.54216/IJNS.250308.
N. Allouch, I. Batiha, I. H. Jebril, A. Al-Khateeb, and S. Hamani, “A new fractional approach for the higher-order q-Taylor method,” Image Analysis and Stereology, vol. 43, no. 3, pp. 249–257, 2024, doi: 10.5566/ias.3286.
A. Zraiqat, I. M. Batiha, and S. Alshorm, “Numerical comparisons between some recent modifications of fractional Euler methods,” WSEAS Transactions on Mathematics, vol. 23, no. 1, pp. 529–535, 2024, doi: 10.37394/23206.2024.23.55.
I. M. Batiha, I. H. Jebril, N. Anakira, A. A. Al-Nana, R. Batyha, and S. Momani, “Two-dimensional fractional wave equation via a new numerical approach,” International Journal of Innovative Computing, Information & Control, vol. 20, no. 4, pp. 1045–1059, 2024, doi: 10.24507/ijicic.20.04.1045.
I. M. Batiha, R. Saadeh, I. H. Jebril, A. Qazza, A. A. Al-Nana, and S. Momani, “Composite fractional trapezoidal rule with Romberg integration,” Computer Modeling in Engineering & Sciences, vol. 2024, no. 1, pp. 1–17, 2024, doi: 10.32604/cmes.2024.051588.
I. M. Batiha, S. Alshorm, and M. Almuzini, “Solving fractional-order monkeypox model by new numerical methods,” in The International Arab Conference on Mathematics and Computations, vol. 466, pp. 551–561, 2024, doi: 10.1007/978-981-97-4876-1_38.
I. Jebril, S. Alshorm, and I. M. Batiha, “Numerical solution for fractionalorder glioblastoma multiforme model,” in The International Arab Conference on Mathematics and Computations, vol. 466, pp. 599–607, 2024, doi: 10.1007/978-981-97-4876-1_42.
A. Borri, F. Carravetta, and P. Palumbo, “Quadratized Taylor series methods for ODE numerical integration,” Applied Mathematics and Computation, vol. 458, 2023, doi: 10.1016/j.amc.2023.128237.
A. Baeza, S. Boscarino, P. Mulet, G. Russo, and D. Zor´ıo, “Reprint of: Approximate Taylor methods for ODEs,” Computers & Fluids, vol. 169, pp. 87–97, 2018, doi: 10.1016/j.compfluid.2018.03.058.
H. Carrillo, E. Macca, C. Pares, G. Russo, and D. Zor ´ ´ıo, “An orderadaptive compact approximation Taylor method for systems of conservation laws,” Journal of Computational Physics, vol. 438, 2021, doi: 10.1016/j.jcp.2021.110358.
K. L. Narayanan, J. Kavitha, R. U. Rani, M. E. Lyons, and L. Rajendran, “Mathematical modelling of amperometric glucose biosensor based on immobilized enzymes: New approach of Taylor’s series method,” International Journal of Electrochemical Science, vol. 17, no. 10, 2022, doi: 10.20964/2022.10.47.
K. Wang and Q. Wang, “Taylor collocation method and convergence analysis for the Volterra–Fredholm integral equations,” Journal of Computational and Applied Mathematics, vol. 260, pp. 294–300, 2014, doi: 10.1016/j.cam.2013.09.050.
L. Euler, “On the sums of series of reciprocals,” arXiv preprint math/0506415, vol. 7, pp. 123–134, 2005, doi: 10.48550/arXiv.math/0506415.
C. Maclaurin, A Treatise of Fluxions in Two Books, Ruddimans, 2009.
T. M. Apostol, “An elementary view of Euler’s summation formula,” American Mathematical Monthly, vol. 106, no. 5, pp. 409–418, 1999, doi: 10.1080/00029890.1999.12005063.
E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, Cambridge University Press, 1940.
Z. X. Wang and D. R. Guo, Special Functions, World Scientific Connect, 1989, doi: 10.1142/0653.
R. L. Burden and J. D. Faires, Numerical Analysis, Brooks/Cole, Cengage Learning, 2011.
F. W. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark, NIST Handbook of Mathematical Functions, Cambridge University Press, 2010.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Mohammad W. Alomari, Iqbal M. Batiha, Abeer Al-Nana, Mohammad Odeh, Nidal Anakira, Shaher Momani

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
This journal is based on the work at https://journal.umy.ac.id/index.php/jrc under license from Creative Commons Attribution-ShareAlike 4.0 International License. You are free to:
- Share – copy and redistribute the material in any medium or format.
- Adapt – remix, transform, and build upon the material for any purpose, even comercially.
The licensor cannot revoke these freedoms as long as you follow the license terms, which include the following:
- Attribution. You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- ShareAlike. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
- No additional restrictions. You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
• Creative Commons Attribution-ShareAlike (CC BY-SA)
JRC is licensed under an International License