Integration of PID-MRAC and Novel GCC-C2C for Developing Adaptive Deterministic MPPT

Authors

DOI:

https://doi.org/10.18196/jrc.v6i4.26794

Keywords:

Gradual Capacitor Charging (GCC), Capacitor-to-Capacitor (C2C), Adaptive, Deterministic MPPT, PID-MRAC

Abstract

This article proposes a new photovoltaic (PV) Maximum Power Point Tracker (MPPT) using PID-MRAC with a novel tracker of Gradual Capacitor-Charging (GCC) and Capacitor-to-Capacitor charge transfer (C2C). The research contribution is omitting the power fluctuation of optimisation-based MPPT and discontinuity or power loss of I-V sweep-based MPPT. GCC regularly and deterministically locates the maximum PV power voltage (Vmpp) by connecting a parallel capacitor to PV only when the PV is isolated from the converter. If one cycle of I-V sweeping is completed, C2C empties the capacitor by transferring its charge to a power supply capacitor to avoid the power-loss problem. A PID and non-inverting buck–boost converter was assigned to regulate the PV output voltage (Vpv) at Vmpp, thus enabling maximum energy harvesting. The Model Reference Adaptive Control (MRAC) adjusts the PID parameters to maintain the MPPT performance. Simulation results show that the MPPT worked well against load and irradiance changes, Iph=2.0A for 0.6s and Iph=3.8A for 1.4s. The GCC-C2C successfully locates Vmpp within 410ms. The PID could regulate Vpv to Vmpp with a settling time of 200ms at the initial stage or less than 10ms at the next stages. The MRAC also successfully tuned the PID parameters during operation. The superiority of this method over the P&O MPPT is its capability to deliver more power at various load power rates. Harvesting efficiency of the proposed MPPT at 5 ohm and 50 ohm loads is 96% and 82%, respectively, while P&O is only 84% and 21%.

References

IEA, “World Final Energy,” worldenergydata. Accessed: Oct. 29, 2023. [Online]. Available: https://www.worldenergydata.org/world-final-energy

J. D. Jenkins, M. Luke, and S. Thernstrom, “Getting to zero carbon emissions in the electric power sector,” Joule, vol. 2, no. 12, pp. 2498–2510, 2018.

Y. Zhao et al., “Have those countries declaring ‘zero carbon’ or ‘carbon neutral’ climate goals achieved carbon emissions-economic growth decoupling?,” J Clean Prod, vol. 363, p. 132450, 2022.

L. Wang et al., “Carbon emissions and reduction performance of photovoltaic systems in China,” Renewable and Sustainable Energy Reviews, vol. 200, p. 114603, 2024.

B. Li, Y. Tian, F. Chen, and T. Jin, “Toward net-zero carbon manufacturing operations: an onsite renewables solution,” Journal of the Operational Research Society, vol. 68, no. 3, pp. 308–321, 2017.

A. Urbina, “Sustainability of photovoltaic technologies in future net-zero emissions scenarios,” Progress in Photovoltaics: Research and Applications, vol. 31, no. 12, pp. 1255–1269, 2023.

H. M. H. Farh, A. Fathy, A. A. Al-Shamma’a, S. Mekhilef, and A. M. Al-Shaalan, “Global research trends on photovoltaic maximum power extraction: Systematic and scientometric analysis,” Sustainable Energy Technologies and Assessments, vol. 61, p. 103585, 2024, doi: 10.1016/j.seta.2023.103585.

D. Mazumdar, C. Sain, P. K. Biswas, P. Sanjeevikumar, and B. Khan, “Overview of Solar Photovoltaic MPPT Methods: A State of the Art on Conventional and Artificial Intelligence Control Techniques,” International Transactions on Electrical Energy Systems, vol. 2024, 2024, doi: 10.1155/2024/8363342.

M. A. B. Siddique, D. Zhao, A. U. Rehman, K. Ouahada, and H. Hamam, “An adapted model predictive control MPPT for validation of optimum GMPP tracking under partial shading conditions,” Sci Rep, vol. 14, no. 1, p. 9462, 2024.

R. B. Bollipo, S. Mikkili, and P. K. Bonthagorla, “Hybrid, optimal, intelligent and classical PV MPPT techniques: A review,” CSEE Journal of Power and Energy Systems, vol. 7, no. 1, pp. 9–33, 2020.

L. Yi, H. Shi, J. Liu, D. Zhou, X. Liu, and J. Zhu, “Dynamic multi-peak MPPT for photovoltaic power generation under local shadows based on improved mayfly optimization,” Journal of Electrical Engineering & Technology, vol. 17, pp. 39–50, 2022.

J. Ji, S. Yu, T. Sun, and D. Yu, “A MPPT Method for Photovoltaic System with Multi Output Power Peaks,” in 2019 IEEE 10th International Symposium on Power Electronics for Distributed Generation Systems (PEDG), pp. 401–406, 2019.

A. B. Djilali, A. Yahdou, H. Benbouhenni, A. Alhejji, D. Zellouma, and E. Bounadja, “Enhanced perturb and observe control for addressing power loss under rapid load changes using a buck–boost converter,” Energy Reports, vol. 12, pp. 1503–1516, 2024, doi: 10.1016/j.egyr.2024.07.032.

H. S. Chatterjee and S. N. Mahato, “Modified Perturb and Observe-based MPPT control of MHPCS for single-phase power distribution positioned in remote locations,” Electrical Engineering, vol. 106, no. 6, pp. 6893–6909, 2024, doi: 10.1007/s00202-024-02390-z.

X. Li, Y. He, and M. Li, “Research on Photovoltaic Maximum Power Point Tracking Control Based on Improved Tuna Swarm Algorithm and Adaptive Perturbation Observation Method,” Energies, vol. 17, no. 12, 2024, doi: 10.3390/en17122985.

A. Chellakhi, S. El Beid, Y. Abouelmahjoub, and H. Doubabi, “An Enhanced Incremental Conductance MPPT Approach for PV Power Optimization: A Simulation and Experimental Study,” Arab J Sci Eng, vol. 49, no. 12, pp. 16045–16064, 2024, doi: 10.1007/s13369-024-08804-1.

M. S. Endiz, G. Gökkuş, A. E. Coşgun, and H. Demir, “A Review of Traditional and Advanced MPPT Approaches for PV Systems Under Uniformly Insolation and Partially Shaded Conditions,” Applied Sciences (Switzerland), vol. 15, no. 3, 2025, doi: 10.3390/app15031031.

V. L. Mishra, Y. K. Chauhan, and K. S. Verma, “A critical review on advanced reconfigured models and metaheuristics-based MPPT to address complex shadings of solar array,” Energy Convers Manag, vol. 269, p. 116099, 2022, doi: 10.1016/j.enconman.2022.116099.

R. N. Hasanah, F. Yuniar, O. Setyawati, H. Suyono, D. R. Sawitri, and T. Taufik, “A Modified Perturb-and-Observe Control for Improved Maximum Power Point Tracking Performance on Grid-Connected Photovoltaic System,” International Journal of Technology, vol. 15, no. 1, pp. 99–109, 2024, doi: 10.14716/ijtech.v15i1.5316.

A. Harrison, C. Feudjio, C. Raoul Fotso Mbobda, and N. H. Alombah, “A new framework for improving MPPT algorithms through search space reduction,” Results in Engineering, vol. 22, p. 101998, 2024, doi: 10.1016/j.rineng.2024.101998.

A. Chellakhi, S. El Beid, and Y. Abouelmahjoub, “An improved adaptable step-size P&O MPPT approach for standalone photovoltaic systems with battery station,” Simul Model Pract Theory, vol. 121, Dec. 2022, doi: 10.1016/j.simpat.2022.102655.

S. Rafi Kiran and F. Alsaif, “A novel advanced hybrid fuzzy MPPT controllers for renewable energy systems,” Sci Rep, vol. 14, no. 1, pp. 1–17, 2024, doi: 10.1038/s41598-024-72060-4.

K. Ananda-Rao et al., “MPPT Charge Controller using Fuzzy Logic for Battery Integrated with Solar Photovoltaic System,” Journal of Advanced Research in Applied Sciences and Engineering Technology, vol. 47, no. 2, pp. 171–182, 2025, doi: 10.37934/ARASET.47.2.171182.

S. S. Kumar and K. Balakrishna, “A novel design and analysis of hybrid fuzzy logic MPPT controller for solar PV system under partial shading conditions,” Sci Rep, vol. 14, no. 1, pp. 1–17, 2024, doi: 10.1038/s41598-024-60870-5.

A. M. Badea, D. Manaila-Maximean, L. Fara, and D. Craciunescu, “Maximizing solar photovoltaic energy efficiency: MPPT techniques investigation based on shading effects,” Solar Energy, vol. 285, p. 113082, 2025, doi: 10.1016/j.solener.2024.113082.

S. F. Chevtchenko, E. J. Barbosa, M. C. Cavalcanti, G. M. S. Azevedo, and T. B. Ludermir, “Combining PPO and incremental conductance for MPPT under dynamic shading and temperature,” Appl Soft Comput, vol. 131, Dec. 2022, doi: 10.1016/j.asoc.2022.109748.

M. J. Alshareef, “An Enhanced Fractional Open Circuit Voltage MPPT Method for Rapid and Precise MPP Tracking in Standalone Photovoltaic Systems,” IEEE Access, vol. 13, 2025, doi: 10.1109/ACCESS.2025.3543327.

A. B. Tadesse, E. A. Ayele, and A. O. Olonje, “Design and Analysis of Rate Predictive Fractional-Order Sliding Mode Controller (RP-FOSMC) for MPPT and Power Regulation of DFIG-based Wind Energy Conversion System (WECS),” Energy Reports, vol. 8, pp. 11751–11768, Nov. 2022, doi: 10.1016/j.egyr.2022.09.026.

K. Krishnaram, T. S. Padmanabhan, F. Alsaif, and S. Senthilkumar, “Performance optimization of interleaved boost converter with ANN supported adaptable stepped-scaled P&O based MPPT for solar powered applications,” Sci Rep, vol. 14, no. 1, pp. 1–17, 2024, doi: 10.1038/s41598-024-58852-8.

P. R. Bana, S. D’Arco, and M. Amin, “ANN-Based Robust Current Controller for Single-Stage Grid-Connected PV With Embedded Improved MPPT Scheme,” IEEE Access, vol. 12, pp. 100251–100262, 2024, doi: 10.1109/ACCESS.2024.3429347.

M. Mishra, P. Mahajan, and R. Garg, “Implementation and comparison of metaheuristically modified ANN MPPT controllers under varying solar irradiance conditions,” Electrical Engineering, vol. 106, no. 3, pp. 3427–3443, 2024.

T. M. Shami, A. A. El-Saleh, M. Alswaitti, Q. Al-Tashi, M. A. Summakieh, and S. Mirjalili, “Particle Swarm Optimization: A Comprehensive Survey,” IEEE Access, vol. 10, pp. 10031–10061, 2022, doi: 10.1109/ACCESS.2022.3142859.

M. M. Elymany, M. A. Enany, and N. A. Elsonbaty, “Hybrid optimized-ANFIS based MPPT for hybrid microgrid using zebra optimization algorithm and artificial gorilla troops optimizer,” Energy Convers Manag, vol. 299, p. 117809, 2024.

D. Mazumdar, P. K. Biswas, C. Sain, F. Ahmad, and L. Al-Fagih, “A comprehensive analysis of the optimal GWO based FOPID MPPT controller for grid-tied photovoltaics system under atmospheric uncertainty,” Energy Reports, vol. 12, pp. 1921–1935, 2024, doi: https://doi.org/10.1016/j.egyr.2024.08.013.

J. Águila-León, C. Vargas-Salgado, D. Díaz-Bello, and C. Montagud-Montalvá, “Optimizing photovoltaic systems: A meta-optimization approach with GWO-Enhanced PSO algorithm for improving MPPT controllers,” Renew Energy, vol. 230, 2024, doi: 10.1016/j.renene.2024.120892.

J. Li, S. Lu, and J. Yang, “Multi-Stage Cooperative Optimization Control for Photovoltaic MPPT: A High-Efficiency Gray Wolf Optimizer – Incremental Conductance Hybrid Strategy,” Energies, vol. 18, no. 8, p. 1977, 2025.

A. Zemmit et al., “GWO and WOA variable step MPPT algorithms-based PV system output power optimization,” Sci Rep, vol. 15, no. 1, pp. 1–21, 2025, doi: 10.1038/s41598-025-89898-x.

L. Gong, G. Hou, and C. Huang, “A two-stage MPPT controller for PV system based on the improved artificial bee colony and simultaneous heat transfer search algorithm,” ISA Trans, Jan. 2022, doi: 10.1016/j.isatra.2022.06.005.

K. Xia, Y. Li, and B. Zhu, “Improved Photovoltaic MPPT Algorithm Based on Ant Colony Optimization and Fuzzy Logic Under Conditions of Partial Shading,” IEEE Access, vol. 12, pp. 44817–44825, 2024, doi: 10.1109/ACCESS.2024.3381345.

K. Kayisli, “Super twisting sliding mode-type 2 fuzzy MPPT control of solar PV system with parameter optimization under variable irradiance conditions,” Ain Shams Engineering Journal, vol. 14, no. 1, Feb. 2023, doi: 10.1016/j.asej.2022.101950.

N. Vázquez, Y. Azaf, I. Cervantes, E. Vázquez, and C. Hernández, “Maximum Power Point Tracking Based on Sliding Mode Control,” International Journal of Photoenergy, vol. 2015, 2015, doi: 10.1155/2015/380684.

L. gang Kong, B. Wang, D. jin Fan, S. Shi, X. Ouyang, and M. Xu, “Optimize photovoltaic MPPT with improved snake algorithm,” Energy Reports, vol. 11, pp. 5033–5045, 2024, doi: 10.1016/j.egyr.2024.04.064.

R. B. Bollipo, S. Mikkili, and P. K. Bonthagorla, “Critical Review on PV MPPT Techniques: Classical, Intelligent and Optimisation,” IET Renewable Power Generation, vol. 14, no. 9, pp. 1433–1452, Jul. 2020, doi: 10.1049/iet-rpg.2019.1163.

J. Li, Y. Wu, S. Ma, M. Chen, B. Zhang, and B. Jiang, “Analysis of photovoltaic array maximum power point tracking under uniform environment and partial shading condition: A review,” Energy Reports, vol. 8, pp. 13235–13252, 2022, doi: 10.1016/j.egyr.2022.09.192.

J. Ahmed, Z. Salam, Y. L. Then, Y. L. Then, S. Kashem, and S. B. A. Kashem, “A fast MPPT technique based on I-V curve characteristics under partial shading,” IEEE Region 10 Conference, 2017, doi: 10.1109/tencon.2017.8228132.

C. Meira Amaral da Luz, Í. Ferreira Silva, P. dos Santos Vicente, E. Moreira Vicente, F. L. Tofoli, and E. R. Ribeiro, “Maximum power point tracking technique based on sweeping the characteristic curve of the photovoltaic module,” Sustainable Computing: Informatics and Systems, vol. 33, p. 100638, Jan. 2022, doi: 10.1016/J.SUSCOM.2021.100638.

F. Soltanian, “A Stable Power Reserve Control Method in Photovoltaic Systems Using I-V Curve Characteristics,” in 2019 10th International Power Electronics, Drive Systems and Technologies Conference (PEDSTC), pp. 487–491, 2019, doi: 10.1109/PEDSTC.2019.8697261.

I. F. Silva, F. Lessa Tofoli, P. dos Santos Vicente, and E. Moreira Vicente, “Maximum Power Point Tracking Based on The Curve Sweep Method,” in 2021 14th IEEE International Conference on Industry Applications (INDUSCON), pp. 38–45, 2021, doi: 10.1109/INDUSCON51756.2021.9529667.

J. Park, Y. C. Im, and Y. S. Kim, “I-V Curve Tracer Based Intermittent Maximum Power Point Tracking for Photovoltaic System,” in 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2202–2205, 2022, doi: 10.1109/ISCAS48785.2022.9937647.

Y. Zhu and W. Xiao, “A comprehensive review of topologies for photovoltaic I–V curve tracer,” Solar Energy, vol. 196, pp. 346-357, 2020, doi: 10.1016/j.solener.2019.12.020.

S. Tay, L. H. I. Lim, and Z. Ye, “Modelling and Parameter Identification Using Reduced I-V Data,” University of Glasgow, 2017.

A. N. Suresh, B. Naveen, and K. Dusarlapudi, “Design and Implementation of Cost-Effective PV String IV and PV curve tracer by using IGBT as a Power Electronic Load,” in 2024 6th International Conference on Energy, Power and Environment (ICEPE), pp. 1–7, 2024.

R. Ahmad, A. F. Murtaza, U. T. Shami, Zulqarnain, and F. Spertino, “An MPPT technique for unshaded/shaded photovoltaic array based on transient evolution of series capacitor,” Solar Energy, vol. 157, pp. 377–389, 2017, doi: 10.1016/j.solener.2017.08.025.

M. M. Mahmoud, “Transient analysis of a PV power generator charging a capacitor for measurement of the I–V characteristics,” Renew Energy, vol. 31, no. 13, pp. 2198–2206, Oct. 2006, doi: 10.1016/j.renene.2005.09.019.

Y. C. Im, S. S. Kwak, J. Park, and Y. S. Kim, “Intermittent FOCV Using an I-V Curve Tracer for Minimizing Energy Loss,” Applied Sciences, vol. 11, no. 19, p. 9006, Sep. 2021, doi: 10.3390/app11199006.

F. Spertino, J. Ahmad, A. Ciocia, P. Di Leo, A. F. Murtaza, and M. Chiaberge, “Capacitor charging method for I–V curve tracer and MPPT in photovoltaic systems,” Solar Energy, vol. 119, pp. 461–473, Sep. 2015, doi: 10.1016/j.solener.2015.06.032.

A. Raj, S. R. Arya, and J. Gupta, “Solar PV array-based DC–DC converter with MPPT for low power applications,” Renewable Energy Focus, vol. 34, pp. 109–119, 2020, doi: 10.1016/j.ref.2020.05.003.

S. Selvakumar, M. Madhusmita, C. Koodalsamy, S. P. Simon, and Y. R. Sood, “High-Speed Maximum Power Point Tracking Module for PV Systems,” IEEE Transactions on Industrial Electronics, vol. 66, no. 2, pp. 1119–1129, 2019, doi: 10.1109/TIE.2018.2833036.

R. Ahmad, A. F. Murtaza, and H. A. Sher, “Power tracking techniques for efficient operation of photovoltaic array in solar applications – A review,” Renewable and Sustainable Energy Reviews, vol. 101, pp. 82-102, 2019, doi: 10.1016/j.rser.2018.10.015.

S. Manna et al., “Design and implementation of a new adaptive MPPT controller for solar PV systems,” Energy Reports, vol. 9, pp. 1818–1829, Dec. 2023, doi: 10.1016/j.egyr.2022.12.152.

S. Nurcahyo, “Development of Digital PI-MRAC on Eight-Bit Microcontroller for DC-DC Boost Converter,” 2024 International Conference on Electrical and Information Technology (IEIT), pp. 114–120, 2024, doi: 10.1109/IEIT64341.2024.10763198.

I. A. Abbas and K. Mustafa, “A review of adaptive tuning of PID-controller: Optimization techniques and applications,” Int. J. Nonlinear Anal. Appl. In Press, vol. 6822, pp. 2008–6822, 2023, doi: 10.22075/ijnaa.2023.21415.4024

J. L. Guzmán and T. Hägglund, “Tuning rules for feedforward control from measurable disturbances combined with PID control: a review,” Int J Control, vol. 97, no. 1, pp. 2–15, 2024.

D. Gupta, A. Kumar, and V. K. Giri, “Effect of adaptation gain and reference model in MIT and Lyapunov rule--based model reference adaptive control for first-and second-order systems,” Transactions of the Institute of Measurement and Control, p. 01423312231203483, 2024.

K. Talapiden, Y. Shakhin, N. G. M. Thao, and T. Duc Do, “Digital Disturbance Observer Design With Comparison of Different Discretization Methods for Permanent Magnet Motor Drives,” IEEE Access, vol. 12, pp. 100892–100907, 2024, doi: 10.1109/ACCESS.2024.3428860.

M. R. Mojallizadeh et al., “Control design for thrust generators with application to wind turbine wave-tank testing: A sliding-mode control approach with Euler backward time-discretization,” Control Eng Pract, vol. 146, p. 105894, 2024, doi: 10.1016/j.conengprac.2024.105894.

T.-D. Ngo, M.-H. Nguyen, and S. Ngo, “Modeling and Simulation of Solar Energy MPPT for Arduino Using Proteus Software,” in 2024 7th International Conference on Green Technology and Sustainable Development (GTSD), pp. 119–123, 2024.

D. Bendib and M. Laour, “Modified incremental conductance MPPT using SEPIC converter for PV system, simulation and arduino implementation,” Studies in Engineering and Exact Sciences, vol. 5, no. 2, pp. e6614--e6614, 2024.

F. Moulahcene, D. Mahsoudi, A. Merazga, H. Laib, and K. Rostom, “Modeling of 100W-18V Solar Panel Using MATLAB/Simulink and Proteus Simulation,” in 2024 International Conference on Electrical, Computer and Energy Technologies (ICECET), pp. 1–6, 2024.

A. Chellakhi, S. El Beid, M. El Marghichi, E. M. Bouabdalli, A. Harrison, and H. Abouobaida, “Implementation of a low-cost current perturbation-based improved PO MPPT approach using Arduino board for photovoltaic systems,” e-Prime - Advances in Electrical Engineering, Electronics and Energy, vol. 10, p. 100807, Dec. 2024, doi: 10.1016/J.PRIME.2024.100807.

A. A. Azi, D. Saigaa, M. Drif, and A. Loukriz, “Development of generalized photovoltaic model using ISIS-PROTEUS,” Studies in Engineering and Exact Sciences, vol. 5, no. 2, p. e5546, Jul. 2024, doi: 10.54021/seesv5n2-015.

C. Restrepo, C. Gonzalez-Castano, J. Munoz, A. Chub, E. Vidal-Idiarte, and R. Giral, “An MPPT Algorithm for PV Systems Based on a Simplified Photo-Diode Model,” IEEE Access, vol. 9, pp. 33189–33202, 2021, doi: 10.1109/ACCESS.2021.3061340.

I. Saady et al., “Improving photovoltaic water pumping system performance with PSO-based MPPT and PSO-based direct torque control using real-time simulation,” Scientific Reports, vol. 15, no. 1, pp. 1–24, May 2025, doi: 10.1038/s41598-025-00297-8.

H. Ahessab, A. Gaga, and B. EL Hadadi, “Revolutionizing photovoltaic power: An enhanced Grey Wolf Optimizer for ultra-efficient MPPT under partial shading conditions,” Sci Afr, vol. 27, p. e02586, Mar. 2025, doi: 10.1016/J.SCIAF.2025.E02586.

S. M. Belhadj et al., “Control of three-level quadratic DC-DC boost converters for energy systems using various technique-based MPPT methods,” Scientific Reports, vol. 15, no. 1, pp. 1–25, Apr. 2025, doi: 10.1038/s41598-025-99551-2.

A. El Aroudi, G. Zhang, and M. Al-Numay, “Performance evaluation for an hourglass-shaped impedance-network-based high step-up converter in a photovoltaic system using PSIM© simulation,” International Journal of Circuit Theory and Applications, vol. 49, no. 9, pp. 2670–2685, Sep. 2021.

L. Alkhawaldeh, M. A. Bhuiya, M. Eid, and M. Z. Youssef, “An Enhanced EPP-MPPT Algorithm with Modified Control Technique in Solar-Based Inverter Applications: Analysis and Experimentation,” IEEE Access, vol. 9, pp. 8158–8166, 2021, doi: 10.1109/ACCESS.2021.3049517.

S. Manna et al., “Design and implementation of a new adaptive MPPT controller for solar PV systems,” Energy Reports, vol. 9, pp. 1818–1829, Dec. 2023, doi: 10.1016/J.EGYR.2022.12.152.

S. Motahhir, A. Chalh, A. El Ghzizal, and A. Derouich, “Development of a low-cost PV system using an improved INC algorithm and a PV panel Proteus model,” J Clean Prod, vol. 204, pp. 355–365, 2018.

A. Ahmed Azi, D. Saigaa, M. Drif, A. Loukriz, A. Bendib, and M. Kichene, “Improved PV module model for dynamic and nonuniform climatic conditions in ISIS-proteus,” Electrical Engineering, vol. 107, no. 2, pp. 2369–2389, 2024, doi: 10.1007/s00202-024-02639-7.

Downloads

Published

2025-06-21

How to Cite

[1]
S. Nurcahyo, H. Suyono, R. N. Hasanah, and M. A. Muslim, “Integration of PID-MRAC and Novel GCC-C2C for Developing Adaptive Deterministic MPPT”, J Robot Control (JRC), vol. 6, no. 4, pp. 1636–1647, Jun. 2025.

Issue

Section

Articles