Queen Honey Bee Migration-Based Optimization for Battery Management of Internet of Things Devices in High-Risk Emergency Scenarios
DOI:
https://doi.org/10.18196/jrc.v6i4.27285Keywords:
Battery Optimization, Energy Efficiency, Internet of Things (IoT), Queen Honey Bee Migration (QHBM), Tactical IoT ApplicationsAbstract
Efficient energy management in Internet of Things (IoT) devices is critical in dynamic, resource-constrained operational environments. This study proposes the Queen Honey Bee Migration (QHBM) optimization algorithm for managing Li-ion battery performance in IoT systems, employing the Shepherd battery model to simulate the nonlinear discharge behavior under varying load conditions. Three simulation scenarios of increasing complexity (5, 10, and 20 monitoring points) are used to represent urban operational dynamics. The performance of QHBM is quantitatively compared with four conventional optimization algorithms seperti Particle Swarm Optimization (PSO), Differential Evolution (DE), Genetic Algorithm (GA), and Firefly Algorithm (FA). Results show that QHBM maintains a current range of 3.80–5.20 A and a voltage range of 3.65–3.95 V, with State of Charge (SoC) predictions between 75–98%. It also achieves the fastest computation time (0.42–1.20 seconds) and demonstrates more stable performance under high-load dynamic scenarios compared to the other methods. This approach provides an adaptive and efficient optimization framework to support energy-aware decision-making in IoT systems operating in energy-constrained urban environments.
References
N. B. Gaikwad, H. Ugale, A. Keskar, and N. C. Shivaprakash, “The Internet-of-Battlefield-Things (IoBT)-Based Enemy Localization Using Soldiers Location and Gunshot Direction,” IEEE Internet Things J., vol. 7, no. 12, pp. 11725–11734, Dec. 2020, doi: 10.1109/JIOT.2020.2999542.
B. Mostafa, M. Molnar, M. Saleh, A. Benslimane, and S. Kassem, “Optimal proactive monitor placement & scheduling for IoT networks,” J. Oper. Res. Soc., vol. 73, no. 11, pp. 2431–2450, Nov. 2022, doi: 10.1080/01605682.2021.1992310.
Aripriharta and G. J. Horng, “A New Defect Diameter Prediction using Heart Sound and Possibility to Implement as IoT Healthcare,” Mob. Networks Appl., vol. 28, no. 6, p. 2076, Dec. 2023, doi: 10.1007/S11036-023-02201-y.
S. R. Lalani, A. A. M. Salehi, H. Taghizadeh, B. Safaei, A. M. H. Monazzah, and A. Ejlali, “REFER: A Reliable and Energy-Efficient RPL for Mobile IoT Applications,” in 2020 CSI/CPSSI International Symposium on Real-Time and Embedded Systems and Technologies (RTEST), pp. 1–8, 2020, doi: 10.1109/RTEST49666.2020.9140135.
J. Wang, Y. Gao, W. Liu, A. K. Sangaiah, and H.-J. Kim, “Energy Efficient Routing Algorithm with Mobile Sink Support for Wireless Sensor Networks,” Sensors, vol. 19, no. 7, p. 1494, Mar. 2019, doi: 10.3390/s19071494.
C. Fathy and S. N. Saleh, “Integrating Deep Learning-Based IoT and Fog Computing with Software-Defined Networking for Detecting Weapons in Video Surveillance Systems,” Sensors, vol. 22, no. 14, p. 5075, Jul. 2022, doi: 10.3390/S22145075.
H. Zhou, F. Hu, M. Juras, A. B. Mehta, and Y. Deng, “Real-Time Video Streaming and Control of Cellular-Connected UAV System: Prototype and Performance Evaluation,” IEEE Wirel. Commun. Lett., vol. 10, no. 8, pp. 1657–1661, Aug. 2021, doi: 10.1109/LWC.2021.3076415.
M. D. Phung and Q. P. Ha, “Motion-encoded particle swarm optimization for moving target search using UAVs,” Appl. Soft Comput., vol. 97, p. 106705, Dec. 2020, doi: 10.1016/j.asoc.2020.106705.
A. Rajasekhar, N. Lynn, S. Das, and P. N. Suganthan, “Computing with the collective intelligence of honey bees – A survey,” Swarm Evol. Comput., vol. 32, pp. 25–48, Feb. 2017, doi: 10.1016/j.swevo.2016.06.001.
L. S. Kumar, S. Ahmad, S. Routray, A. V. Prabu, A. Alharbi, B. Alouffi, and S. Rajasoundaran, “Modern Energy Optimization Approach for Efficient Data Communication in IoT-Based Wireless Sensor Networks,” Wirel. Commun. Mob. Comput., vol. 2022, pp. 1–13, Apr. 2022, doi: 10.1155/2022/7901587.
K. Haseeb, A. Almogren, N. Islam, I. Ud Din, and Z. Jan, “An energy-efficient and secure routing protocol for intrusion avoidance in IoT-based WSN,” Energies, vol. 12, no. 21, p. 4174, 2019, doi: 10.3390/en12214174.
P. S. Mann and S. Singh, “Improved artificial bee colony metaheuristic for energy-efficient clustering in wireless sensor networks,” Artif. Intell. Rev., vol. 51, no. 3, pp. 329–354, Mar. 2019, doi: 10.1007/s10462-017-9564-4.
H. Wang, W. Wang, S. Xiao, Z. Cui, M. Xu, and X. Zhou, “Improving artificial Bee colony algorithm using a new neighborhood selection mechanism,” Inf. Sci. (Ny)., vol. 527, pp. 227–240, Jul. 2020, doi: 10.1016/j.ins.2020.03.064.
B. Shi, L. Huang, and R. Shi, “Pricing in the Competing Auction-Based Cloud Market: A Multi-agent Deep Deterministic Policy Gradient Approach,” in Service-Oriented Computing, pp. 175–186, 2020, doi: 10.1007/978-3-030-65310-1_14.
A. Aripriharta, W. Z. Hao, Muladi, G.-J. Horng, and G.-J. Jong, “A New Bio-Inspired for Cooperative Data Transmission of IoT,” IEEE Access, vol. 8, pp. 161884–161893, 2020, doi: 10.1109/ACCESS.2020.3021507.
R. Kaviarasan, G. Balamurugan, R. Kalaiyarasan and V. R. R. Yarasu, “Effective load balancing approach in cloud computing using Inspired Lion Optimization Algorithm,” e-Prime - Adv. Electr. Eng. Electron. Energy, vol. 6, p. 100326, Dec. 2023, doi: 10.1016/j.prime.2023.100326.
A. Aripriharta et al., “Queen honey bee migration (QHBM) optimization for droop control on DC microgrid under load variation,” J. Mechatronics, Electr. Power, Veh. Technol., vol. 15, no. 1, pp. 12–22, Jul. 2024, doi: 10.55981/j.mev.2024.742.
G. J. Jong, A. Aripriharta, Hendrick, and G. J. Horng, “A Novel Queen Honey Bee Migration (QHBM) Algorithm for Sink Repositioning in Wireless Sensor Network,” Wirel. Pers. Commun., vol. 95, no. 3, pp. 3209–3232, Aug. 2017, doi: 10.1007/S11277-017-3991-Z/METRICS.
K. H. Wibowo, I. Fadlika, Muladi, N. Mufti, M. Diantoro, and G. J. Horng, “The Performance of a New Heuristic Approach for Tracking Maximum Power of PV Systems,” Appl. Comput. Intell. Soft Comput., vol. 2022, pp. 1–13, Nov. 2022, doi: 10.1155/2022/1996410.
S. Bebortta, S. S. Tripathy, U. M. Modibbo, and I. Ali, “An optimal fog-cloud offloading framework for big data optimization in heterogeneous IoT networks,” Decis. Anal. J., vol. 8, p. 100295, Sep. 2023, doi: 10.1016/j.dajour.2023.100295.
D. Irmanto, S. Sujito, A. Aripriharta, D. Widiatmoko, K. Kasiyanto, and S. Omar, “Optimizing the Personnel Position Monitoring System Using the Global Positioning System in Hostage Release,” INTENSIF J. Ilm. Penelit. dan Penerapan Teknol. Sist. Inf., vol. 8, no. 1, pp. 91–107, Feb. 2024, doi: 10.29407/intensif.v8i1.21665.
B. Safaei, A. M. H. Monazzah, and A. Ejlali, “ELITE: An Elaborated Cross-Layer RPL Objective Function to Achieve Energy Efficiency in Internet-of-Things Devices,” IEEE Internet Things J., vol. 8, no. 2, pp. 1169–1182, Jan. 2021, doi: 10.1109/JIOT.2020.3011968.
A. Taneja, N. Saluja, N. Taneja, A. Alqahtani, M. A. Elmagzoub, A. Saikh, and D. Koundal, “Power Optimization Model for Energy Sustainability in 6G Wireless Networks,” Sustainability, vol. 14, no. 12, p. 7310, Jun. 2022, doi: 10.3390/su14127310.
J. Caballero, O. Perez-Mon, M. D. R-Moreno, and J. de O. Filho, “Integral AI-based planning for management of WSNs in military operations,” in 2023 IEEE 35th International Conference on Tools with Artificial Intelligence (ICTAI), pp. 341–348, 2023, doi: 10.1109/ICTAI59109.2023.00056.
P. S. Brar, B. Shah, J. Singh, F. Ali, and D. Kwak, “Using Modified Technology Acceptance Model to Evaluate the Adoption of a Proposed IoT-Based Indoor Disaster Management Software Tool by Rescue Workers,” Sensors, vol. 22, no. 5, p. 1866, Feb. 2022, doi: 10.3390/S22051866.
N. Temene, A. Naoum, C. Sergiou, C. Georgiou, and V. Vassiliou, “A Decentralized Node Placement Algorithm for WSNs and IoT Networks,” in 2022 IEEE 8th World Forum on Internet of Things (WF-IoT), pp. 1–6, 2022, doi: 10.1109/WF-IoT54382.2022.10152262.
X. Yu, K. Ergun, X. Song, L. Cherkasova, and T. Š. Rosing, “Automating and Optimizing Reliability-Driven Deployment in Energy-Harvesting IoT Networks,” IEEE Trans. Netw. Serv. Manag., vol. 20, no. 1, pp. 787–799, Mar. 2023, doi: 10.1109/TNSM.2022.3208083.
A. R. Grubb, S. J. Brown, P. Hall, and E. Bowen, “‘There’s nothing that compares to it’: a grounded theoretical analysis of the experiences of police hostage and crisis negotiators,” Int. J. Confl. Manag., vol. 30, no. 3, pp. 369–394, Jun. 2019, doi: 10.1108/IJCMA-01-2019-0003.
S. Zhang and S. Liu, “A Discrete Improved Artificial Bee Colony Algorithm for 0–1 Knapsack Problem,” IEEE Access, vol. 7, pp. 104982–104991, 2019, doi: 10.1109/ACCESS.2019.2930638.
R. Vijayashree and C. S. G. Dhas, “Energy efficient data collection with multiple mobile sink using artificial bee colony algorithm in large-scale WSN,” Automatika, vol. 60, no. 5, pp. 555–563, Nov. 2019, doi: 10.1080/00051144.2019.1666548.
G.-J. Jong, Z.-H. Wang, Hendrick, K.-S. Hsieh, and G.-J. Horng, “A Novel Adaptive Optimization of Intragrated Network Topology and Transmission Path for IoT System,” IEEE Sens. J., vol. 19, no. 15, pp. 6452–6459, Aug. 2019, doi: 10.1109/JSEN.2019.2908702.
Y. Zhang and D. Xin, “Dynamic Optimization Long Short-Term Memory Model Based on Data Preprocessing for Short-Term Traffic Flow Prediction,” IEEE Access, vol. 8, pp. 91510–91520, 2020, doi: 10.1109/ACCESS.2020.2994655.
D. Pilakkat and S. Kanthalakshmi, “An improved P&O algorithm integrated with artificial bee colony for photovoltaic systems under partial shading conditions,” Sol. Energy, vol. 178, pp. 37–47, Jan. 2019, doi: 10.1016/j.solener.2018.12.008.
A. Jaiswal, P. Kashyap, and S. Kumar, “Green Communication: Optimal Charger Deployment based on TBM (OCD-TBM) in IoT,” in 2021 IEEE 4th International Conference on Computing, Power and Communication Technologies (GUCON), pp. 1–6, 2021, doi: 10.1109/GUCON50781.2021.9573775.
D. Vorobyova et al., “IoT Network Model with Multimodal Node Distribution and Data-Collecting Mechanism Using Mobile Clustering Nodes,” Electronics, vol. 12, no. 6, p. 1410, Mar. 2023, doi: 10.3390/electronics12061410.
A. Sebastian and S. Sivagurunathan, “Load balancing optimization for rpl based emergency response using q-learning,” MATTER Int. J. Sci. Technol., vol. 4, no. 2, pp. 74–92, Aug. 2018, doi: 10.20319/mijst.2018.42.7492.
C. Dudeja, “Fuzzy-based modified particle swarm optimization algorithm for shortest path problems,” Soft Comput., vol. 23, no. 17, pp. 8321–8331, Sep. 2019, doi: 10.1007/s00500-019-04112-1.
A. Afzal and M. K. Ramis, “Multi-objective optimization of thermal performance in battery system using genetic and particle swarm algorithm combined with fuzzy logics,” J. Energy Storage, vol. 32, p. 101815, Dec. 2020, doi: 10.1016/j.est.2020.101815.
B. Jones, A. Tang, and C. Neustaedter, “Remote Communication in Wilderness Search and Rescue,” in Proceedings of the ACM on Human-Computer Interaction, pp. 1–26, 2020, doi: 10.1145/3375190.
V. Sokolović and G. Marković, “Internet of Things in military applications,” Vojnoteh. Glas., vol. 71, no. 4, pp. 1148–1171, 2023, doi: 10.5937/vojtehg71-46785.
X. Xiong, K. Zheng, L. Lei, and L. Hou, “Resource Allocation Based on Deep Reinforcement Learning in IoT Edge Computing,” IEEE J. Sel. Areas Commun., vol. 38, no. 6, pp. 1133–1146, Jun. 2020, doi: 10.1109/JSAC.2020.2986615.
Y. Liu, M. G. M. Johar, and A. I. Hajamydeen, “IoT-Based Real Time Greenhouse Monitoring and Controlling System,” ITEGAM- J. Eng. Technol. Ind. Appl., vol. 10, no. 48, pp. 1–7, 2024, doi: 10.5935/jetia.v10i48.895.
M. Tortonesi, K. Wrona, and N. Suri, “Secured Distributed Processing and Dissemination of Information in Smart City Environments,” IEEE Internet Things Mag., vol. 2, no. 2, pp. 38–43, Jun. 2019, doi: 10.1109/IOTM.001.1900019.
B. Mostafa, M. Molnar, M. Saleh, A. Benslimane, and S. Kassem, “Dynamic Distributed Monitoring for 6LoWPAN-based IoT Networks,” Infocommunications J., vol. 15, no. 1, pp. 64–76, 2023, doi: 10.36244/ICJ.2023.1.7.
J. Yao, X. Li, Y. Zhang, J. Ji, Y. Wang, and Y. Liu, “Path Planning of Unmanned Helicopter in Complex Environment Based on Heuristic Deep Q-Network,” Int. J. Aerosp. Eng., vol. 2022, pp. 1–15, Jun. 2022, doi: 10.1155/2022/1360956.
K. V Osintsev, I. S. Prikhodko, D. P. Korabelnikova, and D. I. Nikitina, “Implementation of neural network algorithms for solving the problem of heat supply regulation,” IOP Conf. Ser. Earth Environ. Sci., vol. 868, no. 1, p. 12019, Oct. 2021, doi: 10.1088/1755-1315/868/1/012019.
M. Stute, P. Agarwal, A. Kumar, A. Asadi, and M. Hollick, “LIDOR: A Lightweight DoS-Resilient Communication Protocol for Safety-Critical IoT Systems,” IEEE Internet Things J., vol. 7, no. 8, pp. 6802–6816, Aug. 2020, doi: 10.1109/JIOT.2020.2985044.
Y. Guo, R. Jena, D. Hughes, M. Lewis, and K. Sycara, “Transfer learning for human navigation and triage strategies prediction in a simulated urban search and rescue task,” in 2021 30th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2021, pp. 784–791, 2021, doi: 10.1109/RO-MAN50785.2021.9515526.
N. Passalis and A. Tefas, “Global Adaptive Input Normalization for Short-Term Electric Load Forecasting,” in 2020 IEEE Symposium Series on Computational Intelligence, SSCI 2020, pp. 871–875, 2020, doi: 10.1109/SSCI47803.2020.9308553.
Y. Yue, L. Cao, and Z. Luo, “Hybrid Artificial Bee Colony Algorithm for Improving the Coverage and Connectivity of Wireless Sensor Networks,” Wirel. Pers. Commun., vol. 108, no. 3, pp. 1719–1732, Oct. 2019, doi: 10.1007/s11277-019-06492-x.
A. F. Mirza et al., “Generalized Regression Neural Network and Fitness Dependent Optimization: Application to energy harvesting of centralized TEG systems,” Articles, vol. 8, pp. 6332–6346, Jan. 2022, doi: 10.1016/j.egyr.2022.05.003.
K. H. Wibowo, A. Aripriharta, I. Fadlika, G. J. Horng, S. Wibawanto, and F. W. Y. Saputra, “A New MPPT based on Queen Honey Bee Migration (QHBM) in Stand-alone Photovoltaic,” in IEEE International Conference on Automatic Control and Intelligent Systems, I2CACIS 2019, pp. 123–128, 2019, doi: 10.1109/I2CACIS.2019.8825025.
M. Shirbeigi, B. Safaei, A. Mohammadsalehi, A. M. H. Monazzah, J. Henkel, and A. Ejlali, “A Cluster-Based and Drop-aware Extension of RPL to Provide Reliability in IoT Applications,” in 2021 IEEE International Systems Conference (SysCon), pp. 1–7, 2021, doi: 10.1109/SysCon48628.2021.9447112.
Z. Fan, “Nodes Deployment Method across Specific Zone of NB-IoT Based Heterogeneous Wireless Sensor Networks,” in 2020 12th International Conference on Communication Software and Networks (ICCSN), pp. 149–152, 2020, doi: 10.1109/ICCSN49894.2020.9139062.
A. K. Sangaiah, A. A. R. Hosseinabadi, M. B. Shareh, S. Y. B. Rad, A. Zolfagharian, and N. Chilamkurti, “IoT Resource Allocation and Optimization Based on Heuristic Algorithm,” Sensors, vol. 20, no. 2, p. 539, Jan. 2020, doi: 10.3390/S20020539.
J. L. G. Gross and C. F. F. R. Geyer, “A cost efficient model for minimizing energy consumption and processing time for IoT tasks in a Mobile Edge Computing environment,” in Anais do Simpósio Brasileiro de Computação Ubíqua e Pervasiva (SBCUP 2020), pp. 41–50, 2020, doi: 10.5753/sbcup.2020.11210.
H. Ohno, “Training data augmentation: An empirical study using generative adversarial net-based approach with normalizing flow models for materials informatics,” Appl. Soft Comput., vol. 86, p. 105932, Jan. 2020, doi: 10.1016/j.asoc.2019.105932.
D. Volgushev and G. Fokin, “Link Level Simulation Model for Vehicles with Location-Aware Beamforming in 5G mm Wave Ultra-Dense Networks,” in 2023 Intelligent Technologies and Electronic Devices in Vehicle and Road Transport Complex (TIRVED), pp. 1–7, 2023, doi: 10.1109/TIRVED58506.2023.10332675.
A. Aripriharta et al., “Comparison of queen honey bee colony migration with various MPPTs on photovoltaic system under shaded conditions,” EUREKA Phys. Eng., no. 4, pp. 52–62, Jul. 2023, doi: 10.21303/2461-4262.2023.002836.
M. Muladi et al., “A new battery management system for self-powered smart shoes,” in Renewable Energy and Its Applications, p. 20005, 2020, doi: 10.1063/5.0001041.
M. Collotta, G. Pau, G. Tesoriere, and S. Tirrito, “Intelligent shoe system: A self-powered wearable device for personal localization,” in AIP Conference Proceedings, 2015, doi: 10.1063/1.4912984/589833.
M. Y. Shams, T. A. E. Hafeez, and E. Hassan, “Acoustic data detection in large-scale emergency vehicle sirens and road noise dataset,” Expert Syst. Appl., vol. 249, p. 123608, Sep. 2024, doi: 10.1016/J.ESWA.2024.123608.
Y. Zhou, A. Ravey, and M. C. Péra, “Real-time cost-minimization power-allocating strategy via model predictive control for fuel cell hybrid electric vehicles,” Energy Convers. Manag., vol. 229, p. 113721, Feb. 2021, doi: 10.1016/J.ENCONMAN.2020.113721.
Y. Hu, Y. Zhang, C. Xu, L. Lin, R. L. Snyder, and Z. L. Wang, “Self-powered system with wireless data transmission,” Nano Lett., vol. 11, no. 6, pp. 2572–2577, Jun. 2011.
S. Aebischer Perone, F. Althaus, F. Chappuis, N. Aguirre Zimerman, E. Martinez, and S. Regel, “Psychological Support Post-Release of Humanitarian Workers Taken Hostage: The Experience of the International Committee of the Red Cross (ICRC),” Br. J. Guid. Counc., vol. 48, no. 3, pp. 360–373, May 2020, doi: 10.1080/03069885.2018.1461193.
T. He, K.-W. Chin, S. Soh, C. Yang, and J. Wen, “On Maximizing Max–Min Source Rate in Wireless-Powered Internet of Things,” IEEE Internet Things J., vol. 7, no. 11, pp. 11276–11289, Nov. 2020, doi: 10.1109/JIOT.2020.2997042.
A. M. Elsergany, A. A. Hussein, A. Wadi, and M. F. Abdel-Hafez, “An Adaptive Autotuned Polynomial-Based Extended Kalman Filter for Sensorless Surface Temperature Estimation of Li-Ion Battery Cells,” IEEE Access, vol. 10, pp. 14038–14048, 2022, doi: 10.1109/ACCESS.2022.3148281.
N. Kolokotronis, K. Limniotis, S. Shiaeles, and R. Griffiths, “Secured by Blockchain: Safeguarding Internet of Things Devices,” IEEE Consum. Electron. Mag., vol. 8, no. 3, pp. 28–34, May 2019, doi: 10.1109/MCE.2019.2892221.
C. A. Kumar, S. Ajmera, B. Kumar, D. Srikar, S. V. S. Prasad, and J. R. Datta, “Real-time Embedded Electronics using Wireless Connection for Soldier Security,” in 2022 International Conference on Advancements in Smart, Secure and Intelligent Computing (ASSIC), pp. 1–5, 2022, doi: 10.1109/ASSIC55218.2022.10088309.
D. J. Neller, T. C. Healy, T. K. Dao, S. Meyer, and D. B. Barefoot, “Situational Predictors of Negotiation and Violence in Hostage and Barricade Incidents,” Crim. Justice Behav., vol. 48, no. 12, pp. 1770–1787, May 2021, doi: 10.1177/00938548211017926.
W. Lardier, Q. Varo, and J. Yan, “Dynamic Reduced-Round Cryptography for Energy-Efficient Wireless Communication of Smart IoT Devices,” in ICC 2020 - 2020 IEEE International Conference on Communications (ICC), pp. 1–7, 2020, doi: 10.1109/ICC40277.2020.9149305.
K. Ergun, X. Yu, N. Nagesh, L. Cherkasova, P. Mercati, R. Ayoub and T. Rosing, “RelIoT: Reliability Simulator for IoT Networks,” in Internet of Things - ICIOT 2020. ICIOT 2020, pp. 63–81, 2020, doi: 10.1007/978-3-030-59615-6_5.
K. A. Severson et al., “Data-driven prediction of battery cycle life before capacity degradation,” Nat. Energy, vol. 4, no. 5, pp. 383–391, Mar. 2019, doi: 10.1038/s41560-019-0356-8.
S. Motahhir, A. Chouder, A. E. Hammoumi, A. S. Benyoucef, A. E. Ghzizal and S. Kichou, “Optimal Energy Harvesting From a Multistrings PV Generator Based on Artificial Bee Colony Algorithm,” IEEE Syst. J., vol. 15, no. 3, pp. 4137–4144, Sep. 2021, doi: 10.1109/JSYST.2020.2997744.
C. Restrepo, N. Yanẽz-Monsalvez, C. González-Castaño, S. Kouro, and J. Rodriguez, “A Fast Converging Hybrid MPPT Algorithm Based on ABC and P&O Techniques for a Partially Shaded PV System,” Mathematics, vol. 9, no. 18, p. 2228, Sep. 2021, doi: 10.3390/math9182228.
J. J. E. Lopez, A. Abuellil, A. C. Reyes, M. Abouzied, S. Yoon, and E. S. Sinencio, “A Fully Integrated Maximum Power Tracking Combiner for Energy Harvesting IoT Applications,” IEEE Trans. Ind. Electron., vol. 67, no. 4, pp. 2744–2754, Apr. 2020, doi: 10.1109/TIE.2019.2907449.
W. A. Siddique, M. F. Siddiqui, A. K. Jumani, W. Hyder, and A. A. Abro, “Big data analytics for 6G-enabled massive internet of things,” in Low-Power Wide Area Network for Large Scale Internet of Things, pp. 177–202, 2024, doi: 10.1201/9781003426974-10.
I. D. D. Martin, D. Pasqualotto, and F. Tinazzi, “aVsIs: An Analytical-Solution-Based Solver for Model-Predictive Control With Hexagonal Constraints in Voltage-Source Inverter Applications,” IEEE Trans. Power Electron., vol. 37, no. 12, pp. 14375–14383, Dec. 2022, doi: 10.1109/TPEL.2022.3193807.
G. R, R. Shankar, and S. Duraisamy, “Resource Utilization Prediction with Multipath Traffic Routing for Congestion-aware VM Migration in Cloud Computing,” SSRN Electron. J., 2020, doi: 10.2139/ssrn.3744590.
I. Ebrahimi, R. de Castro, V. Tran, A. Stefanopoulou, and S. Feng, “Emergency Battery Discharge under Safety Constraints using Optimization-based Controllers,” in 2024 American Control Conference (ACC), pp. 3498–3503, 2024, doi: 10.23919/ACC60939.2024.10644396.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Dekki Widiatmoko, Aripriharta Aripriharta, Sujito Sujito

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
This journal is based on the work at https://journal.umy.ac.id/index.php/jrc under license from Creative Commons Attribution-ShareAlike 4.0 International License. You are free to:
- Share – copy and redistribute the material in any medium or format.
- Adapt – remix, transform, and build upon the material for any purpose, even comercially.
The licensor cannot revoke these freedoms as long as you follow the license terms, which include the following:
- Attribution. You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- ShareAlike. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
- No additional restrictions. You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
• Creative Commons Attribution-ShareAlike (CC BY-SA)
JRC is licensed under an International License