Adaptive Trajectory Control for Quadcopter using Extended Kalman Filter-Based Self-Tuning PID under Gaussian Disturbances

Authors

  • Belgis Ainatul Iza Institut Teknologi Sepuluh Nopember
  • Chairul Imron Institut Teknologi Sepuluh Nopember
  • Mardlijah Mardlijah Institut Teknologi Sepuluh Nopember

DOI:

https://doi.org/10.18196/jrc.v6i5.27955

Keywords:

Self-Tuning PID, Extended Kalman Filter, Quadcopter Control, Trajectory Tracking, Gaussian Disturbance

Abstract

Quadcopters are known for their maneuverability, but their stability is often challenged in changing environments. The PID parameters are adjusted manually so it is less adaptive. This research introduces the combination of Self-Tuning Proportional-Integral-Derivative (PID) and Extended Kalman Filter (EKF). A PID controller adjusts parameters based on errors and state estimates obtained from the EKF in real time. The disturbances used are Gaussian random disturbances on the system and sensors, simulated a normal distribution using the Simulink model. The basic PID parameters are determined through numerical simulations, then adaptively calibrated with a multiplier function based on estimation and error. The contributions of this study are: (1) developing an EKF-based SelfTuning PID control for a quadcopter system; (2) demonstrating an adaptive response to disturbances through simulations; and (3) presenting an efficient tuning strategy suitable for resourcelimited systems. From simulation, z-axis overshoot is successfully decreased from 7.37% to only 2.54%, while the steady-state error remains low under system disturbances. Computational efficiency is achieved because 12 state variables are controlled using a single set of global PID parameters, and the tuning process takes place in real time without relying on complex AI-based optimization methods. The proposed control approach is able to maintain trajectory tracking accuracy in three-dimensional space adaptively and with efficient resource usage. These results demonstrate that the EKF-PID method is effective for UAV control in dynamic and disruptive environments.

References

X. Chang, C. Jin, and Y. Cheng, “Dynamics and advanced active disturbance rejection control of tethered uav,” Applied Mathematical Modelling, vol. 135, pp. 640–665, 2024, doi: 10.1016/j.apm.2024.07.011.

R. Guo, W. Guo, B. Chang, and L. Long, “Safety-critical control of planar quadcopters under dynamic event-triggered mechanism,” Journal of the Franklin Institute, vol. 361, no. 9, 2024, doi: 10.1016/j.jfranklin.2024.106886.

P. C. Yuste, J. A. I. Mart´ınez, and M. A. S. de Miguel, “Simulationbased evaluation of model-free reinforcement learning algorithms for quadcopter attitude control and trajectory tracking,” Neurocomputing, vol. 608, 2024, doi: 10.1016/j.neucom.2024.128362.

A. Modi, N. Joshi, and A. Mehta, “Robust discrete-time super twisting formation protocol for a 6-dof quadcopter swarm,” ISA transactions, vol. 143, pp. 177–187, 2023, doi: 10.1016/j.isatra.2023.09.029.

V. Biazi, J. Nedoma, and C. Marques, “Trajectory tracking and state estimation for quadcopter uavs using particle filters in an inner-outer loops controller,” Expert Systems with Applications, vol. 296, no. Part D, 2026, doi: 10.1016/j.eswa.2025.129245.

F. Ahmad, P. Kumar, P. P. Patil, R. Dobriyal, and S. Avikal, “Comparative analysis of two and four blades quadcopter propellers based on finite element method,” Materials Today: Proceedings, 2023, doi: 10.1016/j.matpr.2023.07.050.

M. E. Guerrero-Sanchez, R. Lozano, P. Castillo, O. Hern ´ andez-Gonz ´ alez, ´ C. Garc´ıa-Beltran, and G. Valencia-Palomo, “Nonlinear control strategies ´ for a uav carrying a load with swing attenuation,” Applied Mathematical Modelling, vol. 91, pp. 709–722, 2021, doi: 10.1016/j.apm.2020.09.027.

M. A. Mafaz, N. Horri, Q. Lu, and M. England, “Robust auto-tuning control of a delivery quadcopter with motor faults, mass and inertia estimation,” IFAC-PapersOnLine, vol. 58, no. 28, pp. 744–749, 2024, doi: 10.1016/j.ifacol.2025.01.055.

A. Gupta, T. Afrin, E. Scully, and N. Yodo, “Advances of uavs toward future transportation: The state-of-the-art, challenges, and opportunities,” Future transportation, vol. 1, no. 2, pp. 326–350, 2021, doi: 10.3390/futuretransp1020019.

I. Trenev, A. Tkachenko, and A. Kustov, “Movement stabilization of the parrot mambo quadcopter along a given trajectory based on pid controllers,” IFAC-PapersOnLine, vol. 54, no. 13, pp. 227–232, 2021, doi: 10.1016/j.ifacol.2021.10.450.

S. B. Abdi, A. Debilou, L. Guettal, and A. Guergazi, “Robust trajectory tracking control of a quadrotor under external disturbances and dynamic parameter uncertainties using a hybrid p-pid controller tuned with ant colony optimization,” Aerospace Science and Technology, vol. 160, 2025, doi: 10.1016/j.ast.2025.110053.

A. Gun, “Attitude control of a quadrotor using pid controller based on ¨ differential evolution algorithm,” Expert Systems with Applications, vol. 229, 2023, doi: 10.1016/j.eswa.2023.120518.

I. Lopez-Sanchez and J. Moreno-Valenzuela, “Pid control of quadrotor uavs: A survey,” Annual Reviews in Control, vol. 56, 2023, doi: 10.1016/j.arcontrol.2023.100900.

S. Wang, A. Polyakov, and G. Zheng, “Quadrotor stabilization under time and space constraints using implicit pid controller,” Journal of the Franklin Institute, vol. 359, no. 4, pp. 1505–1530, 2022, doi: 10.1016/j.jfranklin.2022.01.002.

J. A. Cardenas, U. E. Carrero, E. C. Camacho, and J. M. Calder ´ on, ´ “Optimal pid ø axis control for uav quadrotor based on multi-objective pso,” IFAC-PapersOnLine, vol. 55, no. 14, pp. 101–106, 2022, doi: 10.1016/j.ifacol.2022.07.590.

M. Jalilian, A. Rastgou, S. Kharrati, and S. Hosseini-Hemati, “Load frequency control resilience of hybrid power system with renewable energy sources and superconducting magnetic energy storage using fo-fuzzy-pid controller,” Results in Engineering, vol. 27, 2025, doi: 10.1016/j.rineng.2025.105961.

X. Guo, Z. Lin, D. Yang, Y. Yang, L. Jiang, and Y. Liu, “Experimental evaluation on pid-based adaptive longitudinal ventilation control of tunnel fire smoke,” Journal of Wind Engineering and Industrial Aerodynamics, vol. 254, 2024, doi: 10.1016/j.jweia.2024.105884.

H. A. Issa, L. M. Abdali, H. Alhusseini, and V. I. Velkin, “Design, modeling, and control of a dual-axis solar tracker using fractional order pid controllers for enhanced energy efficiency,” Results in Engineering, vol. 27, 2025, doi: 10.1016/j.rineng.2025.106073.

J. Yoon and J. Doh, “Optimal pid control for hovering stabilization of quadcopter using long short term memory,” Advanced Engineering Informatics, vol. 53, 2022, doi: 10.1016/j.aei.2022.101679.

K. Liu, Y. Fan, and J. Chen, “A model free adaptive control method based on self-adjusting pid algorithm in ph neutralization process,” Chinese Journal of Chemical Engineering, vol. 76, pp. 227–236, 2024, doi: 10.1016/j.cjche.2024.09.005.

L. Yan, J. L. Webber, A. Mehbodniya, B. Moorthy, S. Sivamani, S. Nazir, and M. Shabaz, “Distributed optimization of heterogeneous uav cluster pid controller based on machine learning,” Computers and Electrical Engineering, vol. 101, 2022, doi: 10.1016/j.compeleceng.2022.108059.

X. Gong, X. Wang, W. Xiong, H. Zhang, and Y. Xin, “An effective pid control method of air conditioning system for electric drive workshop based on ibk-ifnn two-stage optimization,” Journal of Building Engineering, vol. 98, 2024, doi: 10.1016/j.jobe.2024.111028.

J. Zhang, X. Yang, W. Wang, I. Brilakis, D. Davletshina, and H. Wang, “Robust elm-pid tracing control on autonomous mobile robot via transformer-based pavement crack segmentation,” Measurement, vol. 242, 2025, doi: 10.1016/j.measurement.2024.116045.

G. Reynoso-Meza, J. Carrillo-Ahumada, and T. Marques, “Multiobjective machine learning for control performance assessment in pid control loops,” IFAC-PapersOnLine, vol. 58, no. 7, pp. 168–173, 2024, doi: 10.1016/j.ifacol.2024.08.029.

L. Wang, Y. Cheng, G. Parekh, and R. Naidu, “Real-time monitoring and predictive analysis of voc flux variations in soil vapor: Integrating pid sensing with machine learning for enhanced vapor intrusion forecasts,” Science of The Total Environment, vol. 924, 2024, doi: 10.1016/j.scitotenv.2024.171616.

S. Saat, M. A. Ahmad, and M. R. Ghazali, “Data-driven brain emotional learning-based intelligent controller-pid control of mimo systems based on a modified safe experimentation dynamics algorithm,” International Journal of Cognitive Computing in Engineering, vol. 6, pp. 74–99, 2025, doi: 10.1016/j.ijcce.2024.11.005.

N. F. Nanyan, M. A. Ahmad, and B. Hekimoglu, “Optimal pid con- ˘ troller for the dc-dc buck converter using the improved sine cosine algorithm,” Results in Control and Optimization, vol. 14, 2024, doi: 10.1016/j.rico.2023.100352.

M. Moucka and M. Hofreiter, “PID Controller With an Autotuning ˇ Function,” in IEEE Access, vol. 12, pp. 136202-136221, 2024, doi: 10.1109/ACCESS.2024.3462090.

L. Ramos-Velasco, V. Parra-Vega, R. Garc´ıa-Rodr´ıguez, M. VegaNavarrete, C. Trejo-Ramos, and E. Olgu´ın-D´ıaz, “Knowledge-based self-tuning of pid control gains for continuum soft robots,” Engineering Applications of Artificial Intelligence, vol. 133, 2024, doi: 10.1016/j.engappai.2024.108447.

M. Z. M. Tumari, M. A. Ahmad, and M. I. M. Rashid, “A fractional order pid tuning tool for automatic voltage regulator using marine predators algorithm,” Energy Reports, vol. 9, pp. 416–421, 2023, doi: 10.1016/j.egyr.2023.10.044.

R. S. Patil, S. P. Jadhav, and M. D. Patil, “Review of intelligent and nature-inspired algorithms-based methods for tuning pid controllers in industrial applications,” Journal of Robotics and Control (JRC), vol. 5, no. 2, pp. 336–358, 2024, doi: 10.18196/jrc.v5i2.20850.

H. Jiang, F. Xu, X. Wang, and S. Wang, “Active fault-tolerant control based on mpc and reinforcement learning for quadcopter with actuator faults,” IFAC-PapersOnLine, vol. 56, no. 2, pp. 11853–11860, 2023, doi: 10.1016/j.ifacol.2023.10.589.

H. Xiong, L. Xie, C. Hu, and H. Su, “A fuzzy compensation-koopman mpc design for pressure regulation in pem electrolyzer,” Chinese Journal of Chemical Engineering, vol. 76, pp. 251–263, 2024, doi: 10.1016/j.cjche.2024.09.004.

J. Meng, J. Zhao, and Y. Chen, “Reinforcement learning enabled safetycritical tracking of automated vehicles with uncertainties via integrated control-dependent, time-varying barrier function, and control lyapunov function,” IFAC-PapersOnLine, vol. 56, no. 3, pp. 85–90, 2023, doi: 10.1016/j.ifacol.2023.12.005.

A. Mughees, I. Ahmad, N. Mughees, and A. Mughees, “Conditioned adaptive barrier-based double integral super twisting smc for trajectory tracking of a quadcopter and hardware in loop using igwo algorithm,” Expert Systems with Applications, vol. 235, 2024, doi: 10.1016/j.eswa.2023.121141.

M. S. Aslam and H. Bilal, “Modeling a takagi-sugeno (ts) fuzzy for unmanned aircraft vehicle using fuzzy controller,” Ain Shams Engineering Journal, vol. 15, no. 10, 2024, doi: 10.1016/j.asej.2024.102984.

Mardlijah, Y. F. Akbar and B. A. Iza, “Comparative Analysis of SMC and FSMC on Autonomous Underwater Vehicle (AUV) with Active Ballast,” 2023 International Conference on Computer, Control, Informatics and its Applications (IC3INA), pp. 7-12, 2023, doi: 10.1109/IC3INA60834.2023.10285788.

M. Megrini, A. Gaga, Y. Mehdaoui, and J. Khyat, “Design and pil test of extended kalman filter for pmsm field oriented control,” Results in Engineering, vol. 24, 2024, doi: 10.1016/j.rineng.2024.102843.

L. Rosafalco, P. Conti, A. Manzoni, S. Mariani, and A. Frangi, “Ekf– sindy: Empowering the extended kalman filter with sparse identification of nonlinear dynamics,” Computer Methods in Applied Mechanics and Engineering, vol. 431, 2024, doi: 10.1016/j.cma.2024.117264.

H. Shiri, P. Zimroz, A. Wyłomanska, and R. Zimroz, “Estimation of ´ machinery’s remaining useful life in the presence of non-gaussian noise by using a robust extended kalman filter,” Measurement, vol. 235, 2024, doi: 10.1016/j.measurement.2024.114882.

L. Jiang and L. Wu, “Enhanced yolov8 network with extended kalman filter for wildlife detection and tracking in complex environments,” Ecological Informatics, vol. 84, 2024, doi: 10.1016/j.ecoinf.2024.102856.

R. Sajedi, J. Faraji, F. Kowsary, and A. Kahrbaeiyan, “Estimation of thermal parameters of a locomotive brake disc using an adaptive type 1 and type 2 fuzzy kalman filter,” International Communications in Heat and Mass Transfer, vol. 157, 2024, doi: 10.1016/j.icheatmasstransfer.2024.107825.

D. Liu, S. Wang, Y. Fan, C. Fernandez, and F. Blaabjerg, “A novel multi-factor fuzzy membership function-adaptive extended kalman filter algorithm for the state of charge and energy joint estimation of electricvehicle lithium-ion batteries,” Journal of Energy Storage, vol. 86, 2024, doi: 10.1016/j.est.2024.111222.

C. Xu, E. Zhang, K. Jiang, and K. Wang, “Dual fuzzy-based adaptive extended kalman filter for state of charge estimation of liquid metal battery,” Applied Energy, vol. 327, 2022, doi: 10.1016/j.apenergy.2022.120091.

H. Taghavifar, “Ekf estimation based pid type-2 fuzzy control of electric cars,” Measurement, vol. 173, 2021, doi: 10.1016/j.measurement.2020.108557.

D. C. dos Santos Gomes and G. L. de Oliveira Serra, “Interval type-2 evolving fuzzy kalman filter for processing of unobservable spectral components from uncertain experimental data,” Journal of the Franklin Institute, vol. 361, no. 2, pp. 637–669, 2024, doi: 10.1016/j.jfranklin.2023.12.017.

H. Samet, S. Ketabipour, and N. Vafamand, “Ekf-based ts fuzzy prediction for eliminating the extremely fast reactive power variations in manjil wind farm,” Electric Power Systems Research, vol. 199, 2021, doi: 10.1016/j.epsr.2021.107422.

S. Mokhtari and K. K. Yen, “Dynamic state estimation with additive noise for load frequency control using bilateral fuzzy adaptive unscented kalman filter,” Electric Power Systems Research, vol. 220, 2023, doi: 10.1016/j.epsr.2023.109363.

M. Kumar and S. Mondal, “Advancements and prospects of fuzzy-based adaptive unscented kalman filters for nonlinear systems: A review,” Applied Soft Computing, vol. 177, 2025, doi: 10.1016/j.asoc.2025.113297.

J. Faraji, J. Keighobadi, and F. Janabi-Sharifi, “Design and implementation of an adaptive unscented kalman filter with interval type-3 fuzzy set for an attitude and heading reference system considering gyroscope bias,” Mechanical Systems and Signal Processing, vol. 223, 2025, doi: 10.1016/j.ymssp.2024.111870.

M. A. A. Varzaneh and M. Mohammadi, “A novel fuzzy adaptive unscented kalman filter for model updating using biased measurements,” Mechanical Systems and Signal Processing, vol. 230, 2025, doi: 10.1016/j.ymssp.2025.112519.

D. Acharya, A. Rai, and D. K. Das, “Optimal rule based fuzzy-pi controller for core power control of nuclear reactor,” Annals of Nuclear Energy, vol. 194, 2023, doi: 10.1016/j.anucene.2023.110118.

V. H. Matthias et al., “Physics-informed ensembles of dual extended kalman filters for online state and parameter estimation of mechatronic systems,” Mechanical Systems and Signal Processing, vol. 229, 2025, doi: 10.1016/j.ymssp.2025.112469.

M. A. Sadi, A. Jamali, A. M. N. bin Abang Kamaruddin, and V. Y. S. Jun, “Cascade model predictive control for enhancing uav quadcopter stability and energy efficiency in wind turbulent mangrove forest environment,” e-Prime-Advances in Electrical Engineering, Electronics and Energy, vol. 10, 2024, doi: 10.1016/j.prime.2024.100836.

A. Nikhilraj, H. Simha, and H. Priyadarshan, “Modeling and control of port dynamics of a tilt-rotor quadcopter,” IFAC-PapersOnLine, vol. 55, no. 1, pp. 746–751, 2022, doi: 10.1016/j.ifacol.2022.04.122.

E. Chnib, P. Bagnerini, and A. Zemouche, “Lmi based h∞ observer design for a quadcopter model operating in an adaptive vertical farm,” IFAC-PapersOnLine, vol. 56, no. 2, pp. 10837–10842, 2023, doi: 10.1016/j.ifacol.2023.10.757.

F. Snobar, J. Reinhard, H. Huber, M. Hoffmann, M. Stelzig, M. Vossiek, and K. Graichen, “Fov-based model predictive object tracking for quadcopters,” IFAC-PapersOnLine, vol. 55, no. 27, pp. 13–18, 2022, doi: 10.1016/j.ifacol.2022.10.481.

H. Chen and H. Bai, “Incorporating thrust models for quadcopter wind estimation,” IFAC-PapersOnLine, vol. 55, no. 37, pp. 19–24, 2022, doi: 10.1016/j.ifacol.2022.11.155.

B. A. Iza, Q. A. Fiddina, H. N. Fadhilah, D. K. Arif, and Mardlijah, “Automatic guided vehicle (agv) tracking model estimation with ensemble kalman filter,” in AIP Conference Proceedings, vol. 2641, no. 1, 2022, doi: 10.1063/5.0118817.

R. Yadav, M. Manas, and R. K. Dubey, “Enhanced accuracy in stateof-charge estimation for lithium-ion batteries in electric vehicles using augmented adaptive extended kalman filter,” e-Prime-Advances in Electrical Engineering, Electronics and Energy, vol. 10, 2024, doi: 10.1016/j.prime.2024.100868.

L. Ma, W. Li, C.-J. Wong, J. Bao, M. Skyllas-Kazacos, B. Welch, N. Ahli, M. Faraj, and M. Mahmoud, “h∞-extended kalman filter for the aluminium smelting process with boundness analysis of the estimation error matrix,” Control Engineering Practice, vol. 164, 2025, doi: 10.1016/j.conengprac.2025.106500.

J. Yu, A. K. J. Al-Nussairi, M. H. Chyad, N. S. S. Singh, H. Azarinfar, L. S. Munshid, Y. Liu, and W. Huang, “How can artificial networks enhance second-order hybrid extended kalman filtering for energy management?” Energy Reports, vol. 14, pp. 1368–1391, 2025, doi: 10.1016/j.egyr.2025.07.014.

X. Lu, M. Chen, and Y. Tian, “Accurate state-of-charge estimation of lifepo4 battery: An adaptive extended kalman filter approach using particle swarm optimization,” Energy Reports, vol. 14, pp. 1169–1178, 2025, doi: 10.1016/j.egyr.2025.07.023.

L. E. di Grazia, M. Mattei, and A. Pironti, “An extended kalman filter approach for tokamak plasma equilibrium reconstruction,” Fusion Engineering and Design, vol. 220, 2025, doi: 10.1016/j.fusengdes.2025.115363.

C. O. Omeje, A. O. Salau, and C. U. Eya, “Dynamics analysis of permanent magnet synchronous motor speed control with enhanced state feedback controller using a linear quadratic regulator,” Heliyon, vol. 10, no. 4, 2024.

W. Wang, Y. Ning, Y. Zhang, P. Xu, and B. Li, “Linear active disturbance rejection control with linear quadratic regulator for stewart platform in active wave compensation system,” Applied Ocean Research, vol. 156, 2025, doi: 10.1016/j.apor.2025.104469.

Z. Su, H. Yao, J. Peng, Z. Liao, Z. Wang, H. Yu, H. Dai, and T. C. Lueth, “Lqr-based control strategy for improving human–robot companionship and natural obstacle avoidance,” Biomimetic Intelligence and Robotics, vol. 4, no. 4, 2024, doi: 10.1016/j.birob.2024.100185.

E. C¸ inar and T. Abut, “Fuzzy lqr-based control to ensure comfort in hvac system with two different zones,” Case Studies in Thermal Engineering, vol. 73, 2025, doi: 10.1016/j.csite.2025.106544.

J. Vasara and I. Selek, “An analysis of an lqr design for a hybrid power plant’s load-sharing problem,” IFAC Journal of Systems and Control, vol.33, 2025, doi: 10.1016/j.ifacsc.2025.100327.

W. Byrski, M. Drapała, J. Byrski, M. Noack, and J. Reger, “Comparison of lqr with mpc in the adaptive stabilization of a glass conditioning process using soft-sensors for parameter identification and state observation,” Control Engineering Practice, vol. 146, 2024, doi: 10.1016/j.conengprac.2024.105884.

G. Gao, L. Xu, T. Huang, X. Zhao, and L. Huang, “Reduced-order observer-based lqr controller design for rotary inverted pendulum,” Computer Modeling in Engineering & Sciences (CMES), vol. 140, no. 1, 2024, doi: 10.32604/cmes.2024.047899.

S. Vijayakumar and N. Sudhakar, “Design and implementation of golden eagle optimized cascaded pi and lqr controller for pfc sepic converter in ev charging,” Results in Engineering, vol. 24, 2024, doi: 10.1016/j.rineng.2024.102942.

U. Kruthika and S. Paneerselvam, “Enhanced set-point tracking in a boiler turbine system via decoupled mimo linearization and comparative lqr-based control strategy,” Results in Engineering, vol. 25, 2025, doi: 10.1016/j.rineng.2025.103914.

G. Nethaji and J. Kathirvelan, “Performance comparison between pid and fuzzy logic controllers for the hardware implementation of traditional high voltage dc-dc boost converter,” Heliyon, vol. 10, no. 17, 2024.

T. Hagglund and J. L. Guzm ¨ an, “Give us pid controllers and we can ´ control the world,” IFAC-PapersOnLine, vol. 58, no. 7, pp. 103–108, 2024, doi: 10.1016/j.ifacol.2024.08.018.

V. R. Nippatla and S. Mandava, “Performance analysis of permanent magnet synchronous motor based on transfer function model using pid controller tuned by ziegler-nichols method,” Results in Engineering, vol. 26, 2025, doi: 10.1016/j.rineng.2025.105460.

X. Wang, “Oral english pronunciation evaluation system based on pid algorithm,” Procedia Computer Science, vol. 261, pp. 1043–1049, 2025, doi: 10.1016/j.procs.2025.04.683.

G. Si, R. Zhang, and X. Jin, “Path planning of factory handling robot integrating fuzzy logic-pid control technology,” Systems and Soft Computing, vol. 7, 2025, doi: 10.1016/j.sasc.2025.200188.

L. A. Cantera-Cantera, M. C. Maya-Rodr´ıguez, S. I. Palomino-Resendiz, Y. Lozano-Hernandez, and L. Luna, “Level and flow systems iden- ´ tification of an industrial processes module by lsod method for pid controllers design,” Results in Engineering, vol. 25, 2025, doi: 10.1016/j.rineng.2025.104347.

D. Zhan, A.-Q. Tian, and S.-Q. Ni, “Optimizing pid control for multimodel adaptive high-speed rail platform door systems with an improved metaheuristic approach,” International Journal of Electrical Power & Energy Systems, vol. 169, 2025, doi: 10.1016/j.ijepes.2025.110738.

Downloads

Published

2025-09-15

How to Cite

[1]
B. A. Iza, C. Imron, and M. Mardlijah, “Adaptive Trajectory Control for Quadcopter using Extended Kalman Filter-Based Self-Tuning PID under Gaussian Disturbances”, J Robot Control (JRC), vol. 6, no. 5, pp. 2249–2259, Sep. 2025.

Issue

Section

Articles