Underwater Resurrection Routing Synergy using Astucious Energy Pods
Abstract
The accomplishment of sustainable communication among source and destination sink node is a rigors challenge and even establishing bodacious communication link between these nodes is nothing short of a miracle because data routes are governed by the underwater environment. Energy consumption has a significant influence as all active devices rely on the battery. As cost-effective data packet transmission is established as a norm, no charging or replacement can be achieved. Hop link evaluation and shrewd connection discovery by way of a resurrecting linking element were just a genuinely grim task, and only feasible to create the extra powered energy pods (URR-SAEP) that had never been carried out before after detailed study. After packet transfer, the sensor node performs the link inspection process, and when a link is deemed shaky at less than or equivalent to 50 percent of capacity, the target node incorporates its residual capacity status and returns it to the source node that attaches other unoptimizable energy pods to improve only the targeted node link from 50 percent to 90 percent. Performance evaluation using NS2 with Aqua-Sim 2.0 simulator has been obtained comparing with DBR and EEDBR protocols in terms of point-to-point delay, Packet dissemination ratio, Network lifespan and Energy Diminution.
Keywords
Full Text:
PDFReferences
Guan, Q., Ji, F., Liu, Y., Yu, H., & Chen, W. (2019). Distance-Vector-Based Opportunistic Routing for Underwater Acoustic Sensor Networks. IEEE Internet of Things Journal, 6(2), 3831–3839. doi:10.1109/jiot.2019.2891910
Su, Y., Fan, R., Fu, X., & Jin, Z. (2019). DQELR: An Adaptive Deep Q-Network-Based Energy- and Latency-Aware Routing Protocol Design for Underwater Acoustic Sensor Networks. IEEE Access, 7, 9091–9104. doi:10.1109/access.2019.2891590
Ashraf, S., Gao, M., Chen, Z., Kamran, S., & Raza, Z. (2017). Efficient Node Monitoring Mechanism in WSN using Contikimac Protocol. International Journal of Advanced Computer Science and Applications, 8(11). doi:10.14569/ijacsa.2017.081152
Qu, J., Zhang, Z., Cui, Y., Wang, J., & Mastorakis, G. (2019). Research and Application of Multi-Node Communication and Energy Consumption Prediction Control in Underwater Acoustic Network. IEEE Access, 7, 41220–41229. doi:10.1109/access.2019.2907376
Ashraf, S., Ahmed, T., Raza, A., & Naeem, H. (2020). Design of Shrewd Underwater Routing Synergy Using Porous Energy Shells. Smart Cities, 3(1), 74–92. https://doi.org/10.3390/smartcities3010005
Tilwari, V., Maheswar, R., Jayarajan, P., Sundararajan, T. V. P., Hindia, M. N., Dimyati, K., Amiri, I. S. (2020). MCLMR: A Multicriteria Based Multipath Routing in the Mobile Ad Hoc Networks. Wireless Personal Communications. https://doi.org/10.1007/s11277-020-07159-8
Qureshi, U., Shaikh, F., Aziz, Z., Shah, S., Sheikh, A., Felemban, E., & Qaisar, S. (2016). RF Path and Absorption Loss Estimation for Underwater Wireless Sensor Networks in Different Water Environments. Sensors, 16(6), 890. https://doi.org/10.3390/s16060890
Somani, Arun K., et al. Smart Systems and IoT: Innovations in Computing: Proceeding of SSIC 2019. Springer, 2020.
Coutinho, R. W. L., Boukerche, A., Vieira, L. F. M., & Loureiro, A. A. F. (2018). Underwater Wireless Sensor Networks. ACM Computing Surveys, 51(1), 1–36. https://doi.org/10.1145/3154834
Yang, H., Zhou, Y., Hu, Y. H., Wang, B., & Kung, S. Y. (2018, May). Cross-layer design for network lifetime maximization in underwater wireless sensor networks. In 2018 IEEE International Conference on Communications (ICC) IEEE. Doi: 10.1109/ICC.2018.8422176
Ahmed, S.H.; Lee, S.; Park, J.; Kim, D.; Rawat, D.B. iDFR:
Intelligent directional flooding‐based routingprotocols for underwater sensor networks. (CCNC), Las Vegas, NV, USA
(2017); doi.org/10.1109/ccnc.2017.7983168.
Vijayalakshmi, P.; Noorunnisa, N.; Rajendran, V. Performance analysis of VBF protocol for position tracking of moving nodes in underwater communications. In Proceedings of the 2017 International Conference (ICCSP), Wuhan, China, 17‐19 March 2017; doi:10.1109/iccsp.2017.8286708.
Khasawneh, A.; Latiff MS, B.A.; Kaiwartya, O.; Chizari, H. A reliable energy‐efficient pressure‐based routing protocol for underwater wireless sensor network. Wirel. Netw. 2017, 24, 2061–2075, doi:10.1007/s11276‐017‐1461‐x.
Tran‐Dang, H.; Kim, D.S. Channel aware cooperative
routing in underwater acoustic sensor networks. J.Commun. Netw. 2019, 21, 33 44, doi:10.1109/JCN.2019.000004.
Daudpota, S. (2019). A Comprehensive Survey on the Performance Analysis of Underwater Wireless Sensor Networks (UWSN) Routing Protocols. International Journal of Advanced Computer Science and Applications, 10(5). https://doi.org/10.14569/ijacsa.2019.0100576. https://doi.org/10.13140/RG.2.2.13755.67363
Ashraf, S., Gao, M., Mingchen, Z., Ahmed, T., Raza, A., & Naeem, H. (2020). USPF: Underwater Shrewd Packet Flooding Mechanism through Surrogate Holding Time. Wireless Communications and Mobile Computing, 2020, 1–12.doi:10.1155/2020/9625974
Wang, Z.; Han, G.; Qin, H.; Zhang, S.; Sui, Y. An Energy‐Aware
and Void‐Avoidable Routing Protocol for Underwater Sensor
Networks. Ieee Access 2018, 6, 7792–7801,
doi:10.1109/access.2018.2805804.
Hindu, S.K.; Hyder, W.; Luque‐Nieto, M.‐A.; Poncela, J.; Otero, P. Self‐Organizing and Scalable Routing Protocol (SOSRP) for Underwater Acoustic Sensor Networks. Sensors 2019, 19, 3130, doi:10.3390/s19143130.
Barbeau, M.; Blouin, S.; Cervera, G.; Garcia‐Alfaro, J.; Kranakis, E. (2015). Location‐free link state routing for underwater acoustic sensor networks. In Proceedings of the 2015 IEEE 28th Canadian Conference(CCECE), Halifax, NS, doi:10.1109/ccece.2015.7129510.
Balsamo, S., Marin, A., & Vicario, E. (Eds.). (2018). New Frontiers in Quantitative Methods in Informatics. Communications in Computer and Information Science. Springer International Publishing. doi:10.1007/978-3-319-91632-3
Balas, Valentina Emilia., et al. Data Management, Analytics and Innovation: Proceedings of ICDMAI 2018, Volume 1. Springer Singapore, 2019.
Liu, X., Liu, P., Long, T., Lv, Z., & Tang, R. (2018). An efficient depth-based forwarding protocol for underwater wireless sensor networks. 2018 IEEE 3rd International Conference on Cloud Computing and Big Data Analysis https://doi.org/10.1109/icccbda.2018.8386561
Ali, M., Khan, A., Mahmood, H., & Bhatti, N. (2019). Cooperative, reliable, and stability-aware routing for underwater wireless sensor networks. International Journal of Distributed Sensor Networks. https://doi.org/10.1177/1550147719854249
Coutinho, R. W. L., Boukerche, A., Vieira, L. F. M., & Loureiro, A. A. F. (2016). Geographic and Opportunistic Routing for Underwater Sensor Networks. IEEE Transactions on Computers, 65(2), 548–561. https://doi.org/10.1109/tc.2015.2423677
Dhurandher, S. K., Obaidat, M. S., & Gupta, M. (2011). Providing reliable and link stability-based geocasting model in underwater environment. International Journal of Communication Systems, 25(3), 356–375. https://doi.org/10.1002/dac.1245
Aziz, L., & Aznaoui, H. (2020). Efficient Routing Approach Using a Collaborative Strategy. Journal of Sensors, 2020, 1–17. https://doi.org/10.1155/2020/2547061
Wahid, A.; Kim, D. An Energy Efficient Localization‐Free Routing
Protocol for Underwater Wireless Sensor Networks. Int. J. Distrib.
Sens. Netw. 2012, 8, 307246, doi:10.1155/2012/307246.
Phadke A.G., Thorp J.S. (2017) Electromechanical Wave Propagation. In: Synchronized Phasor Measurements and Their Applications. Power Electronics and Power Systems. Springer, Cham
Qian, L., Zhang, S., Liu, M., & Zhang, Q. (2016). A MACA-based power control MAC protocol for Underwater Wireless Sensor Networks. 2016 IEEE/OES China Ocean Acoustics (COA). Presented at the 2016 IEEE/OES China Ocean Acoustics (COA). https://doi.org/10.1109/coa.2016.7535810
DOI: https://doi.org/10.18196/jrc.1535
Refbacks
Copyright (c) 2020 Journal of Robotics and Control (JRC)
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Journal of Robotics and Control (JRC)
P-ISSN: 2715-5056 || E-ISSN: 2715-5072
Organized by Peneliti Teknologi Teknik Indonesia
Published by Universitas Muhammadiyah Yogyakarta in collaboration with Peneliti Teknologi Teknik Indonesia, Indonesia and the Department of Electrical Engineering
Website: http://journal.umy.ac.id/index.php/jrc
Email: jrcofumy@gmail.com