PENDETEKSIAN POTENSI KECURANGAN PELAPORAN KEUANGAN DENGAN BENEISH MODEL (STUDI PADA PERUSAHAAN BADAN USAHA MILIK NEGARA YANG TERDAFTAR DI BEI)
DOI:
https://doi.org/10.18196/bti.102117Keywords:
Pendeteksian, Pelaporan Keuangan, Beneish ModelAbstract
As the world is becoming more globalized than before, financial market participants especially in Indonesia face serious risk for dealing with fraudulent financial reporting. This study aims to detect potential fraud reporting by using Beneish M-Score Model. Sample in this studi is Indonesia State Owned Enterprises who listed in Indonesia Stock Exchange from 2016 to 2018. Our evidence conclude that Beneish Model supports effectively in analyzing characteristics of falsified financial statements.References
ACFE. (2018). Report to Nations. Austin, Texas.
Alfian, F., & Triani, N. N. A. (2019). Fraudulent Financial Reporting Detection Using Beneish M-Score Model in Public Companies in 2012-2016. Asian Pasific Fraud Journal, 4(1), 27–42.
Arens, A. A., Elder, R. J., & Beasley, M. S. (2012). Auditing and assurance services: An integrated approach (14th ed). Boston: Prentice Hall.
Aris, N. A., Othman, R., Arif, S. M. M., & Malek, M. A. A. (2013). Fraud Detection: Benford’s Law vs Beneish Model. IEEE Symposiums on Humanities, Science and Engineering Research, 726–731.
Beneish, M. D., Lee, C. M. C., & Nichols, D. C. (2012). Fraud Detection and Expected Returns. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.1998387
CNN Indonesia. (2019). Membedah Keanehan Laporan Keuangan
Garuda Indonesia 2018. Retrieved September 4, 2019, from https://www.cnnindonesia.com/ekonomi/20190424204726-92-389396/membedah-keanehan-laporan-keuangan-garuda-indonesia-2018
Dbouk, B. (2017). Financial Statements Earnings Manipulation Detection Using a Layer of Machine Learning. International Journal of Innovation, Management and Technology, 8(3), 172–179. https://doi.org/10.18178/ijimt.2017.8.3.723
Ghozali, I. (2016). Aplikasi Analisis Multivariate dengan Program IBM SPSS 23 (8th ed.). Semarang: Universitas Diponegoro.
Jones, K. L., Krishnan, G. V., & Melendrez, K. D. (2008). Do Models of Discretionary Accruals Detect Actual Cases of Fraudulent and Restated Earnings? An Empirical Analysis. Contemporary
Accounting Research, 25(2), 499–531. https://doi.org/10.1506/car.25.2.8
Lotfi, N., & Chadegani, A. A. (2017). Detecting Corporate Financial Fraud using Beneish M-Score Model. International Journal of Finance and Managerial Accounting, 2(8), 29–34.
Mahama, M. (2015). Detecting Corporate Fraud and Financial Distress Using The Altman and Beneish Models. International Journal of Economics, Commerce and Management, 3(1), 1–18.
Omar, N., Koya, R. K., Sanusi, Z. M., & Shafie, N. A. (2014). Financial Statement Fraud: A Case Examination Using Beneish Model and Ratio Analysis. International Journal of Trade, Economics and Finance, 5(2), 184–186.
https://doi.org/10.7763/IJTEF.2014.V5.367
Özcan, A. (2018). The Use of Beneish Model in Forensic Accounting: Evidence from Turkey. Journal of Applied Economics and Business Research, 8(1), 57–67.
Repousis, S. (2016). Using Beneish model to detect corporate financial statement fraud in Greece. Journal of Financial Crime, 23(4), 1063–1073. https://doi.org/10.1108/JFC-11-2014-0055
Tarjo, & Herawati, N. (2015). Application of Beneish M-Score Models and Data Mining to Detect Financial Fraud. Procedia - Social and Behavioral Sciences, 211, 924–930.https://doi.org/10.1016/j.sbspro.2015.11.122
Vivianita, A., & Indudewi, D. (2018). Financial Statement Fraud pada Perusahaan Pertambangan yang Dipengaruhi Oleh Fraud Pentagon Theory (Studi Kasus di Perusahaan Tambang yang Terdaftar di Bei Tahun 2014-2016). Jurnal Dinamika Sosial Budaya, 20(1), 1–15. https://doi.org/10.26623/jdsb.v20i1.1229
Ферулева, Н. В., & Штефан, М. А. (2017). Detecting Financial Statements Fraud: The Evidence from Russia. Journal of Corporate Finance Research / Корпоративные Финансы | ISSN: 2073-0438, 11(2), 32–45. https://doi.org/10.17323/j.jcfr.2073-0438.11.2.2017.32-45
Downloads
Published
Issue
Section
License
JBTI : Jurnal Bisnis : Teori dan Implementasi is licensed under Creative Commons Attribution Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution Attribution-NonCommercial-NoDerivatives 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) before and during the submission process, as it can lead to productive exchanges and earlier and greater citation of published work (See The Effect of Open Access).