PENDETEKSIAN POTENSI KECURANGAN PELAPORAN KEUANGAN DENGAN BENEISH MODEL (STUDI PADA PERUSAHAAN BADAN USAHA MILIK NEGARA YANG TERDAFTAR DI BEI)

Authors

  • Rizqa Awalia Rahman Department of Accounting, Ahmad Dahlan University

DOI:

https://doi.org/10.18196/bti.102117

Keywords:

Pendeteksian, Pelaporan Keuangan, Beneish Model

Abstract

As the world is becoming more globalized than before, financial market participants especially in Indonesia face serious risk for dealing with fraudulent financial reporting. This study aims to detect potential fraud reporting by using Beneish M-Score Model. Sample in this studi is Indonesia State Owned Enterprises who listed in Indonesia Stock Exchange from 2016 to 2018. Our evidence conclude that Beneish Model supports effectively in analyzing characteristics of falsified financial statements.

References

ACFE. (2018). Report to Nations. Austin, Texas.

Alfian, F., & Triani, N. N. A. (2019). Fraudulent Financial Reporting Detection Using Beneish M-Score Model in Public Companies in 2012-2016. Asian Pasific Fraud Journal, 4(1), 27–42.

Arens, A. A., Elder, R. J., & Beasley, M. S. (2012). Auditing and assurance services: An integrated approach (14th ed). Boston: Prentice Hall.

Aris, N. A., Othman, R., Arif, S. M. M., & Malek, M. A. A. (2013). Fraud Detection: Benford’s Law vs Beneish Model. IEEE Symposiums on Humanities, Science and Engineering Research, 726–731.

Beneish, M. D., Lee, C. M. C., & Nichols, D. C. (2012). Fraud Detection and Expected Returns. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.1998387

CNN Indonesia. (2019). Membedah Keanehan Laporan Keuangan

Garuda Indonesia 2018. Retrieved September 4, 2019, from https://www.cnnindonesia.com/ekonomi/20190424204726-92-389396/membedah-keanehan-laporan-keuangan-garuda-indonesia-2018

Dbouk, B. (2017). Financial Statements Earnings Manipulation Detection Using a Layer of Machine Learning. International Journal of Innovation, Management and Technology, 8(3), 172–179. https://doi.org/10.18178/ijimt.2017.8.3.723

Ghozali, I. (2016). Aplikasi Analisis Multivariate dengan Program IBM SPSS 23 (8th ed.). Semarang: Universitas Diponegoro.

Jones, K. L., Krishnan, G. V., & Melendrez, K. D. (2008). Do Models of Discretionary Accruals Detect Actual Cases of Fraudulent and Restated Earnings? An Empirical Analysis. Contemporary

Accounting Research, 25(2), 499–531. https://doi.org/10.1506/car.25.2.8

Lotfi, N., & Chadegani, A. A. (2017). Detecting Corporate Financial Fraud using Beneish M-Score Model. International Journal of Finance and Managerial Accounting, 2(8), 29–34.

Mahama, M. (2015). Detecting Corporate Fraud and Financial Distress Using The Altman and Beneish Models. International Journal of Economics, Commerce and Management, 3(1), 1–18.

Omar, N., Koya, R. K., Sanusi, Z. M., & Shafie, N. A. (2014). Financial Statement Fraud: A Case Examination Using Beneish Model and Ratio Analysis. International Journal of Trade, Economics and Finance, 5(2), 184–186.

https://doi.org/10.7763/IJTEF.2014.V5.367

Özcan, A. (2018). The Use of Beneish Model in Forensic Accounting: Evidence from Turkey. Journal of Applied Economics and Business Research, 8(1), 57–67.

Repousis, S. (2016). Using Beneish model to detect corporate financial statement fraud in Greece. Journal of Financial Crime, 23(4), 1063–1073. https://doi.org/10.1108/JFC-11-2014-0055

Tarjo, & Herawati, N. (2015). Application of Beneish M-Score Models and Data Mining to Detect Financial Fraud. Procedia - Social and Behavioral Sciences, 211, 924–930.https://doi.org/10.1016/j.sbspro.2015.11.122

Vivianita, A., & Indudewi, D. (2018). Financial Statement Fraud pada Perusahaan Pertambangan yang Dipengaruhi Oleh Fraud Pentagon Theory (Studi Kasus di Perusahaan Tambang yang Terdaftar di Bei Tahun 2014-2016). Jurnal Dinamika Sosial Budaya, 20(1), 1–15. https://doi.org/10.26623/jdsb.v20i1.1229

Ферулева, Н. В., & Штефан, М. А. (2017). Detecting Financial Statements Fraud: The Evidence from Russia. Journal of Corporate Finance Research / Корпоративные Финансы | ISSN: 2073-0438, 11(2), 32–45. https://doi.org/10.17323/j.jcfr.2073-0438.11.2.2017.32-45

Downloads

Published

2019-11-05