Direct Comparison using Coulomb Counting and Open Circuit Voltage Method for the State of Health Li-Po Battery
Abstract
Keywords
Full Text:
PDFReferences
K. Ranasinghe et al., “Advances in Integrated System Health Management for mission-essential and safety-critical aerospace applications,” Prog. Aerosp. Sci., vol. 128, no. September 2021, p. 100758, 2022, doi: 10.1016/j.paerosci.2021.100758.
Z. Gong et al., “Distributed Control of Active Cell Balancing and Low-Voltage Bus Regulation in Electric Vehicles Using Hierarchical Model-Predictive Control,” IEEE Trans. Ind. Electron., vol. 67, no. 12, pp. 10464–10473, 2020, doi: 10.1109/TIE.2019.2956396.
Y. Shang, C. Zhu, Y. Fu, and C. C. Mi, “An Integrated Heater Equalizer for Lithium-Ion Batteries of Electric Vehicles,” IEEE Trans. Ind. Electron., vol. 66, no. 6, pp. 4398–4405, 2019, doi: 10.1109/TIE.2018.2863187.
X. Kuang et al., “Research on Control Strategy for a Battery Thermal Management System for Electric Vehicles Based on Secondary Loop Cooling,” IEEE Access, vol. 8, pp. 73475–73493, 2020, doi: 10.1109/ACCESS.2020.2986814.
M. Mussi, L. Pellegrino, M. Restelli, and F. Trovò, “A voltage dynamic-based state of charge estimation method for batteries storage systems,” J. Energy Storage, vol. 44, no. September, 2021, doi: 10.1016/j.est.2021.103309.
M. Corno and G. Pozzato, “Active adaptive battery aging management for electric vehicles,” IEEE Trans. Veh. Technol., vol. 69, no. 1, pp. 258–269, 2020, doi: 10.1109/TVT.2019.2940033.
S. M. Qaisar and M. Alqathanii, “Event-driven sampling based li-ion batteries SoH estimation in the 5G framework,” Procedia Comput. Sci., vol. 182, pp. 109–114, 2021, doi: 10.1016/j.procs.2021.02.015.
S. Dey, Y. Shi, K. Smith, A. Colclasure, and X. Li, “From Battery Cell to Electrodes: Real-Time Estimation of Charge and Health of Individual Battery Electrodes,” IEEE Trans. Ind. Electron., vol. 67, no. 3, pp. 2167–2175, 2020, doi: 10.1109/TIE.2019.2907514.
W. Liu and Y. Xu, “A Comprehensive Review of Health Indicators of Li-ion Battery for Online State of Health Estimation,” 2019 3rd IEEE Conf. Energy Internet Energy Syst. Integr. Ubiquitous Energy Netw. Connect. Everything, EI2 2019, pp. 1203–1208, 2019, doi: 10.1109/EI247390.2019.9062037.
N. Khan, F. U. M. Ullah, Afnan, A. Ullah, M. Y. Lee, and S. W. Baik, “Batteries State of Health Estimation via Efficient Neural Networks with Multiple Channel Charging Profiles,” IEEE Access, vol. 9, pp. 7797–7813, 2021, doi: 10.1109/ACCESS.2020.3047732.
N. Chen, P. Zhang, J. Dai, and W. Gui, “Estimating the State-of-Charge of Lithium-Ion Battery Using an H-Infinity Observer Based on Electrochemical Impedance Model,” IEEE Access, vol. 8, pp. 26872–26884, 2020, doi: 10.1109/ACCESS.2020.2971002.
S. Rahimifard, R. Ahmed, and S. Habibi, “Interacting Multiple Model Strategy for Electric Vehicle Batteries State of Charge/Health/ Power Estimation,” IEEE Access, vol. 9, pp. 109875–109888, 2021, doi: 10.1109/ACCESS.2021.3102607.
J. H. Lee, H. S. Kim, and I. S. Lee, “State of charge estimation and state of health diagnostic method using multilayer neural networks,” 2021 Int. Conf. Electron. Information, Commun. ICEIC 2021, pp. 15–18, 2021, doi: 10.1109/ICEIC51217.2021.9369782.
S. Chowdhury, M. N. Bin Shaheed, and Y. Sozer, “An integrated state of health (SOH) balancing method for lithium-ion battery cells,” 2019 IEEE Energy Convers. Congr. Expo. ECCE 2019, pp. 5759–5763, 2019, doi: 10.1109/ECCE.2019.8912932.
M. Park, M. Seo, Y. Song, and S. Kim, “Capacity Estimation of Li-ion battery using Constant Current Charging Voltage,” Proc. - APCCAS 2019 2019 IEEE Asia Pacific Conf. Circuits Syst. Innov. CAS Towar. Sustain. Energy Technol. Disrupt., pp. 202–204, 2019, doi: 10.1109/APCCAS47518.2019.8953137.
S. Kulkarni, N. Walavalkar, V. Chhatre, P. Singh, and P. Sharma, “Review of optimization of charge on VRLA battery and lithium ion battery operated bike,” 2020 Int. Conf. Converg. to Digit. World - Quo Vadis, ICCDW 2020, no. Iccdw, 2020, doi: 10.1109/ICCDW45521.2020.9318678.
Z. Xia and J. A. Abu Qahouq, “Ageing characterization data of lithium-ion battery with highly deteriorated state and wide range of state-of-health,” Data Br., vol. 40, p. 107727, 2022, doi: 10.1016/j.dib.2021.107727.
D. N. T. How, M. A. Hannan, M. S. Hossain Lipu, and P. J. Ker, “State of Charge Estimation for Lithium-Ion Batteries Using Model-Based and Data-Driven Methods: A Review,” IEEE Access, vol. 7, pp. 136116–136136, 2019, doi: 10.1109/ACCESS.2019.2942213.
J. Kuchly et al., “Li-ion battery SOC estimation method using a neural network trained with data generated by a P2D model,” IFAC-PapersOnLine, vol. 54, no. 10, pp. 336–343, 2021, doi: 10.1016/j.ifacol.2021.10.185.
M. Park, M. Seo, Y. Song, and S. W. Kim, “Capacity Estimation of Li-Ion Batteries Using Constant Current Charging Voltage with Multilayer Perceptron,” IEEE Access, vol. 8, pp. 180762–180772, 2020, doi: 10.1109/ACCESS.2020.3028095.
I. O. Essiet and Y. Sun, “Optimal open-circuit voltage (OCV) model for improved electric vehicle battery state-of-charge in V2G services,” Energy Reports, vol. 7, pp. 4348–4359, 2021, doi: 10.1016/j.egyr.2021.07.029.
C. Chen, R. Xiong, R. Yang, and H. Li, “A Novel Operational Data-Driven Battery Open-Circuit Voltage Characterization mining method for Large-Scale Applications,” Green Energy Intell. Transp., vol. 1, no. 1, p. 100001, 2022, doi: 10.1016/j.geits.2022.100001.
J. Schmitt, M. Schindler, A. Oberbauer, and A. Jossen, “Determination of degradation modes of lithium-ion batteries considering aging-induced changes in the half-cell open-circuit potential curve of silicon–graphite,” J. Power Sources, vol. 532, no. February, p. 231296, 2022, doi: 10.1016/j.jpowsour.2022.231296.
M. S. Ahmed, B. Balasingam, and K. R. Pattipati, “Experimental data on open circuit voltage characterization for Li-ion batteries,” Data Br., vol. 36, p. 107071, 2021, doi: 10.1016/j.dib.2021.107071.
H. Rouhi, E. Karola, R. Serna-Guerrero, and A. Santasalo-Aarnio, “Voltage behavior in lithium-ion batteries after electrochemical discharge and its implications on the safety of recycling processes,” J. Energy Storage, vol. 35, p. 102323, 2021, doi: 10.1016/j.est.2021.102323.
S. M. Qaisar, “Event-driven approach for an efficient coulomb counting based li-ion battery state of charge estimation,” Procedia Comput. Sci., vol. 168, no. 2019, pp. 202–209, 2020, doi: 10.1016/j.procs.2020.02.268.
C. Stolze, P. Rohland, K. Zub, O. Nolte, M. D. Hager, and U. S. Schubert, “A low-cost amperometric sensor for the combined state-of-charge, capacity, and state-of-health monitoring of redox flow battery electrolytes,” Energy Convers. Manag. X, vol. 14, no. January, p. 100188, 2022, doi: 10.1016/j.ecmx.2022.100188.
K. Sarrafan, K. M. Muttaqi, and D. Sutanto, “Real-Time Estimation of Model Parameters and State-of-Charge of Li-Ion Batteries in Electric Vehicles Using a New Mixed Estimation Model,” IEEE Trans. Ind. Appl., vol. 56, no. 5, pp. 5417–5428, 2020, doi: 10.1109/TIA.2020.3002977.
Q. Ouyang, J. Chen, and J. Zheng, “State-of-Charge Observer Design for Batteries with Online Model Parameter Identification: A Robust Approach,” IEEE Trans. Power Electron., vol. 35, no. 6, pp. 5820–5831, 2020, doi: 10.1109/TPEL.2019.2948253.
S. Rahimifard, S. Habibi, and J. Tjong, “Dual estimation strategy for new and aged electric vehicles batteries,” 2020 IEEE Transp. Electrif. Conf. Expo, ITEC 2020, pp. 579–583, 2020, doi: 10.1109/ITEC48692.2020.9161556.
C. Xu, M. Doosthosseini, and H. K. Fathy, “Lithium-Sulfur Battery Discharge Optimization using a Thermally-Coupled Equivalent Circuit Model,” IFAC-PapersOnLine, vol. 54, no. 20, pp. 399–405, 2021, doi: 10.1016/j.ifacol.2021.11.206.
Z. Geng, S. Wang, M. J. Lacey, D. Brandell, and T. Thiringer, “Bridging physics-based and equivalent circuit models for lithium-ion batteries,” Electrochim. Acta, vol. 372, p. 137829, 2021, doi: 10.1016/j.electacta.2021.137829.
Z. A. Arfeen, M. P. Abdullah, U. U. Sheikh, A. Hamza Sule, H. T. Alqali, and R. Kolawole Soremekun, “Rule-based enhanced energy management scheme for electric vehicles fast-charging workplace using battery stacks and solar power,” PECon 2020 - 2020 IEEE Int. Conf. Power Energy, pp. 113–118, 2020, doi: 10.1109/PECon48942.2020.9314614.
D. Rosewater, R. Baldick, and S. Santoso, “Risk-Averse Model Predictive Control Design for Battery Energy Storage Systems,” IEEE Trans. Smart Grid, vol. 11, no. 3, pp. 2014–2022, 2020, doi: 10.1109/TSG.2019.2946130.
D. Chen, L. Xiao, W. Yan, and Y. Guo, “A novel hybrid equivalent circuit model for lithium-ion battery considering nonlinear capacity effects,” Energy Reports, vol. 7, pp. 320–329, 2021, doi: 10.1016/j.egyr.2021.06.051.
Z.-Y. Chen et al., “Benign-to-malignant transition in external short circuiting of lithium-ion batteries,” Cell Reports Phys. Sci., vol. 3, no. 6, p. 100923, 2022, doi: 10.1016/j.xcrp.2022.100923.
H. Yang et al., “Coordinated demand response of rail transit load and energy storage system considering driving comfort,” CSEE J. Power Energy Syst., vol. 6, no. 4, pp. 749–759, 2020, doi: 10.17775/CSEEJPES.2020.02590.
Y. Cui et al., “A high-voltage and stable zinc-air battery enabled by dual-hydrophobic-induced proton shuttle shielding,” Joule, vol. 6, no. 7, pp. 1617–1631, 2022, doi: 10.1016/j.joule.2022.05.019.
C. Vidal, P. Malysz, P. Kollmeyer, and A. Emadi, “Machine Learning Applied to Electrified Vehicle Battery State of Charge and State of Health Estimation: State-of-the-Art,” IEEE Access, vol. 8, pp. 52796–52814, 2020, doi: 10.1109/ACCESS.2020.2980961.
T. Kim, A. Adhikaree, and R. Pandey, “Outlier Mining-Based Fault Diagnosis for Multicell Lithium-Ion Batteries Using a Low-Priced Microcontroller,” pp. 3365–3369.
Z. Hussain et al., “Construction of rechargeable bio-battery cells from electroactive antioxidants extracted from wasted vegetables,” Clean. Eng. Technol., vol. 5, p. 100342, 2021, doi: 10.1016/j.clet.2021.100342.
E. N. Malev and T. H. Papanchev, “Simulation model development for evaluation of battery parameters,” 11th Natl. Conf. with Int. Particip. Electron. 2020 - Proc., pp. 23–26, 2020, doi: 10.1109/ELECTRONICA50406.2020.9305149.
C. G. Cho, Z. Jia, J. B. Ahn, and H. J. Ryoo, “Design of a 5.4 kJ/s three-phase resonant converter based on a lithium polymer battery,” IEEE Trans. Dielectr. Electr. Insul., vol. 26, no. 2, pp. 381–389, 2019, doi: 10.1109/TDEI.2018.007724.
R. Elakya, J. Seth, P. Ashritha, and R. Namith, “Smart parking system using IoT,” Int. J. Eng. Adv. Technol., vol. 9, no. 1, pp. 6091–6095, 2019, doi: 10.35940/ijeat.A1963.109119.
Y. Song, M. Park, M. Seo, and S. W. Kim, “Online state-of-charge estimation for lithium-ion batteries considering model inaccuracies under time-varying current conditions,” IEEE Access, vol. 8, pp. 192419–192434, 2020, doi: 10.1109/ACCESS.2020.3032752.
F. Yang, X. Song, F. Xu, and K. L. Tsui, “State-of-Charge Estimation of Lithium-Ion Batteries via Long Short-Term Memory Network,” IEEE Access, vol. 7, pp. 53792–53799, 2019, doi: 10.1109/ACCESS.2019.2912803.
J. B. Axén, H. Ekström, E. W. Zetterström, and G. Lindbergh, “Evaluation of hysteresis expressions in a lumped voltage prediction model of a NiMH battery system in stationary storage applications,” J. Energy Storage, vol. 48, no. January, 2022, doi: 10.1016/j.est.2022.103985.
I. Ojer, A. Berrueta, J. Pascual, P. Sanchis, and A. Ursua, “Development of energy management strategies for the sizing of a fast charging station for electric buses,” Proc. - 2020 IEEE Int. Conf. Environ. Electr. Eng. 2020 IEEE Ind. Commer. Power Syst. Eur. EEEIC / I CPS Eur. 2020, 2020, doi: 10.1109/EEEIC/ICPSEurope49358.2020.9160716.
M. Kim, K. Kim, and S. Han, “Reliable Online Parameter Identification of Li-Ion Batteries in Battery Management Systems Using the Condition Number of the Error Covariance Matrix,” IEEE Access, vol. 8, pp. 189106–189114, 2020, doi: 10.1109/access.2020.3031500.
X. Liu et al., “Online identification of power battery parameters for electric vehicles using a decoupling multiple forgetting factors recursive least squares method,” CSEE J. Power Energy Syst., vol. 6, no. 3, pp. 735–742, 2020, doi: 10.17775/CSEEJPES.2018.00960.
P. Venegas, D. Gómez, M. Arrinda, M. Oyarbide, H. Macicior, and A. Bermúdez, “Kalman filter and classical Preisach hysteresis model applied to the state of charge battery estimation,” Comput. Math. with Appl., vol. 118, no. May, pp. 74–84, 2022, doi: 10.1016/j.camwa.2022.05.009.
R. Rai, M. Gaglani, S. Das, and T. Panigrahi, “Multi-Level Constant Current Based Fast Li-Ion Battery Charging Scheme with LMS Based Online State of Charge Estimation,” 2020 IEEE Kansas Power Energy Conf. KPEC 2020, pp. 1–6, 2020, doi: 10.1109/KPEC47870.2020.9167541.
Z. Huang, F. Yang, F. Xu, X. Song, and K. L. Tsui, “Convolutional Gated Recurrent Unit-Recurrent Neural Network for State-of-Charge Estimation of Lithium-Ion Batteries,” IEEE Access, vol. 7, pp. 93139–93149, 2019, doi: 10.1109/ACCESS.2019.2928037.
M. Hossain, S. Saha, M. T. Arif, A. M. T. Oo, N. Mendis, and M. E. Haque, “A Parameter Extraction Method for the Li-Ion Batteries with Wide-Range Temperature Compensation,” IEEE Trans. Ind. Appl., vol. 56, no. 5, pp. 5625–5636, 2020, doi: 10.1109/TIA.2020.3011385.
D. M. Rosewater, D. A. Copp, T. A. Nguyen, R. H. Byrne, and S. Santoso, “Battery Energy Storage Models for Optimal Control,” IEEE Access, vol. 7, pp. 178357–178391, 2019, doi: 10.1109/ACCESS.2019.2957698.
G. E. Mejia-ruiz, M. R. Arrieta, F. Rafael, S. Sevilla, and P. Korba, “Fast hierarchical coordinated controller for distributed battery energy storage systems to mitigate voltage and frequency deviations,” Appl. Energy, vol. 323, no. May, p. 119622, 2022, doi: 10.1016/j.apenergy.2022.119622.
M. Schmid and C. Endisch, “Online diagnosis of soft internal short circuits in series-connected battery packs using modified kernel principal component analysis,” J. Energy Storage, vol. 53, no. May, p. 104815, 2022, doi: 10.1016/j.est.2022.104815.
R. Hasan and J. Scott, “Extending Randles’s Battery Model to Predict Impedance, Charge-Voltage, and Runtime Characteristics,” IEEE Access, vol. 8, pp. 85321–85328, 2020, doi: 10.1109/ACCESS.2020.2992771.
H. Ben Sassi, F. Errahimi, N. Es-Sbai, and C. Alaoui, “Comparative study of ANN/KF for on-board SOC estimation for vehicular applications,” J. Energy Storage, vol. 25, Oct. 2019, doi: 10.1016/j.est.2019.100822.
Li-Qing, G. Z. Jie, Chen-Hao, and He-Shuai, “High Precision Voltage Monitoring Technology for Multi-cell Battery Management System,” 2020 IEEE 15th Int. Conf. Solid-State Integr. Circuit Technol. ICSICT 2020 - Proc., pp. 2020–2022, 2020, doi: 10.1109/ICSICT49897.2020.9278338.
T. G. T. A. Bandara, D. Ansean, J. C. Viera, L. Sanchez, and M. Gonzalez, “Fast charging protocols based on pulse-modulation with varying relaxation for electric vehicle li-ion cells,” 2020 IEEE Veh. Power Propuls. Conf. VPPC 2020 - Proc., pp. 1–6, 2020, doi: 10.1109/VPPC49601.2020.9330917.
R. Hemmati and H. Mehrjerdi, “Stochastic linear programming for optimal planning of battery storage systems under unbalanced-uncertain conditions,” J. Mod. Power Syst. Clean Energy, vol. 8, no. 5, pp. 971–980, 2020, doi: 10.35833/MPCE.2019.000324.
P. K. D. Pramanik et al., “Power Consumption Analysis, Measurement, Management, and Issues: A State-of-the-Art Review of Smartphone Battery and Energy Usage,” IEEE Access, vol. 7, pp. 182113–182172, 2019, doi: 10.1109/ACCESS.2019.2958684.
DOI: https://doi.org/10.18196/jrc.v3i4.15515
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 lora Khaula amifia
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Journal of Robotics and Control (JRC)
P-ISSN: 2715-5056 || E-ISSN: 2715-5072
Organized by Peneliti Teknologi Teknik Indonesia
Published by Universitas Muhammadiyah Yogyakarta in collaboration with Peneliti Teknologi Teknik Indonesia, Indonesia and the Department of Electrical Engineering
Website: http://journal.umy.ac.id/index.php/jrc
Email: jrcofumy@gmail.com