Combining Passivity-Based Control and Linear Quadratic Regulator to Control a Rotary Inverted Pendulum

Minh-Tai Vo, Van-Dong-Hai Nguyen, Hoai-Nghia Duong, Vinh-Hao Nguyen

Abstract


In this manuscript, new combination methodology is proposed, which named combining Passivity-Based Control and Linear Quadratic Regulator (for short, CPBC-LQR), to support the stabilization process as the system is far from equilibrium point. More precisely, Linear Quadratic Regulator (for short, LQR) is used together with Passivity-Based Control (for short, PBC) controller. Though passivity-based control and linear quadratic regulator are two control methods, it is possible to integrate them together. The combination of passivity-based control and linear quadratic regulator is analyzed, designed and implemented on so-called rotary inverted pendulum system (for short, RIP). In this work, CPBC-LQR is validated and discussed on both MATLAB/Simulink environment and real-time experimental setup. The numerical simulation and experimental results reveal the ability of CPBC-LQR control scheme in stabilization problem and achieve a good and stable performance. Effectiveness and feasibility of proposed controller are confirmed via comparative simulation and experiments.

Keywords


Stabilization control; Linear quadratic regulator; Passivity-based control; Rotary inverted pendulum; Combination

Full Text:

PDF

References


F. Katsuhisa, M. Yamakita, and S. Kobayashi, “Swing-up control of inverted pendulum using pseudo-state feedback,” Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, vol. 206, no. 4, pp. 263-269, 2019, doi: 10.1243/PIME PROC 1992 206 341 02.

K. Furuta, Y. Xu and R. Gabasov, “Computation of time optimal swing up control of single pendulum,” IECON’99. Conference Proceedings. 25th Annual Conference of the IEEE Industrial Electronics Society (Cat. No.99CH37029), San Jose, CA, USA, 1999, pp. 1165-1170 vol.3, doi: 10.1109/IECON.1999.819375.

J. Akesson and K. J. Astrom, “Safe manual control of the Furuta pendulum,” Proceedings of the 2001 IEEE International Conference on Control Applications (CCA’01) (Cat. No.01CH37204), Mexico City, Mexico, 2001, pp. 890-895, doi: 10.1109/CCA.2001.973982.

A. S. Shiriaev, L. B. Freidovich, A. Robertsson, R. Johansson and A. Sandberg, “Virtual-Holonomic-Constraints-Based Design of Stable Oscillations of Furuta Pendulum: Theory and Experiments,” IEEE Transactions on Robotics, vol. 23, no. 4, pp. 827-832, Aug. 2007, doi: 10.1109/TRO.2007.900597.

M. Antonio-Cruz, V. M. Hernandez-Guzm ´ an and R. Silva-Ortigoza, ´ “Limit Cycle Elimination in Inverted Pendulums: Furuta Pendulum and Pendubot,” IEEE Access, vol. 6, pp. 30317-30332, 2018, doi: 10.1109/ACCESS.2018.2839642.

A. Wadi, J. -H. Lee and L. Romdhane, “Nonlinear sliding mode control of the Furuta pendulum,” 2018 11th International Symposium on Mechatronics and its Applications (ISMA), Sharjah, United Arab Emirates, 2018, pp. 1-5, doi: 10.1109/ISMA.2018.8330131.

J. Xu, Y. Niu, C. -C. Lim and P. Shi, “Memory Output-Feedback Integral Sliding Mode Control for Furuta Pendulum Systems,” in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 67, no. 6, pp. 2042-2052, June 2020, doi: 10.1109/TCSI.2020.2970090.

F. Muratore, C. Eilers, M. Gienger and J. Peters, “Data-Efficient Domain Randomization With Bayesian Optimization,” IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 911-918, April 2021, doi: 10.1109/LRA.2021.3052391.

A. de Carvalho, J. F. Justo, B. A. Angelico, A. M. de Oliveira and J. I. ´ da Silva Filho, “Rotary Inverted Pendulum Identification for Control by Paraconsistent Neural Network,” IEEE Access, vol. 9, pp. 74155-74167, 2021, doi: 10.1109/ACCESS.2021.3080176.

R. R. CB, and F. M. U. de Araujo, “Lyapunov-based continuous-time nonlinear control using deep neural network applied to underactuated systems,” Engineering Applications of Artificial Intelligence , vol. 107, pp. 357–374, 2022, doi:https://doi.org/10.1016/j.engappai.2021.104519.

X. Liu, X. Lu and Z. Gao, “A Deep Learning-Based Fault Diagnosis of Leader-Following Systems,” in IEEE Access, vol. 10, pp. 18695-18706, 2022, doi: 10.1109/ACCESS.2022.3151155.

A. K. Pal and T. Nestorovic, “Swing Up and Balance of an In- ´ verted Pendulum Using Reinforced Learning Approach Coupled With a Proportional-Integral-Derivative Controller,” 2022 International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME), Maldives, Maldives, 2022, pp. 1-6, doi: 10.1109/ICECCME55909.2022.9988506.

E. Susanto, B. Rahmat and M. Ishitobi, “Stabilization of Rotary Inverted Pendulum using Proportional Derivative and Fuzzy Controls,” 2022 9th International Conference on Information Technology, Computer, and Electrical Engineering (ICITACEE), Semarang, Indonesia, 2022, pp. 34- 37, doi: 10.1109/ICITACEE55701.2022.9924142.

A. Gutarra, S. Palomino, E. J. Alegria and J. Cisneros, “Fuzzy Controller Design for Rotary Inverted Pendulum System Using Genetic Algorithms,” 2022 IEEE ANDESCON, Barranquilla, Colombia, 2022, pp. 1-6, doi: 10.1109/ANDESCON56260.2022.9989988.

M. Harati, A. A. Ghavifekr and A. R. Ghiasi, “Model Identification of Single Rotary Inverted Pendulum Using Modified Practical Swarm Optimization Algorithm,” 2020 28th Iranian Conference on Electrical Engineering (ICEE), Tabriz, Iran, 2020, pp. 1-5, doi: 10.1109/ICEE50131.2020.9261035.

K. Nath and L. Dewan, “Heuristic optimization based choice of LQR weighting matrices for a rotary inverted pendulum,” 2018 International Conference on Recent Trends in Electrical, Control and Communication (RTECC), Malaysia, Malaysia, 2018, pp. 269-274, doi: 10.1109/RTECC.2018.8625676.

A. Nagarajan and A. A. Victoire, “Optimization Reinforced PID-Sliding Mode Controller for Rotary Inverted Pendulum,” in IEEE Access, vol. 11, pp. 24420-24430, 2023, doi: 10.1109/ACCESS.2023.3254591.

E. Cholodowicz and P. Orlowski, “Optimization of a fractional order controller for the Furuta pendulum with an output disturbance using a genetic algorithm,” 2022 17th International Conference on Control, Automation, Robotics and Vision (ICARCV), Singapore, Singapore, 2022, pp. 373-379, doi: 10.1109/ICARCV57592.2022.10004289.

J. Huang, T. Zhang, Y. Fan and J. -Q. Sun, “Control of Rotary Inverted Pendulum Using Model-Free Backstepping Technique,” IEEE Access, vol. 7, pp. 96965-96973, 2019, doi: 10.1109/ACCESS.2019.2930220.

F. F. M. El-Sousy, K. A. Alattas, O. Mofid, S. Mobayen and A. Fekih, “Robust Adaptive Super-Twisting Sliding Mode Stability Control of Underactuated Rotational Inverted Pendulum With Experimental Validation,” IEEE Access, vol. 10, pp. 100857-100866, 2022, doi: 10.1109/ACCESS.2022.3208412.

Z. Samir, et al., “Adaptive fuzzy fast terminal sliding mode control for inverted pendulum-cart system with actuator faults,” Mathematics and Computers in Simulation, vol. 210, pp. 207–234, 2023, doi: https://doi. org/10.1016/j.matcom.2023.03.005.

H. V. Nghi, D. P. Nhien, D. X. Ba, “A lqr neural network control approach for fast stabilizing rotary inverted pendulums,” International Journal of Precision Engineering and Manufacturing, vol. 23, pp. 45–56, 2022, doi: 10.1007/s12541-021-00606-x.

C. A. Villasenor-Rios and O. Gutierrez-Frias, “Stabilization Control ˜ of Rotary Base Inverted Pendulum by Combination of Lyapunov-base controller and Linear PD controller,” 2022 8th International Conference on Control, Decision and Information Technologies (CoDIT), Istanbul, Turkey, 2022, pp. 141-145, doi: 10.1109/CoDIT55151.2022.9804012.

M. K. Habib and S. A. Ayankoso, “Hybrid Control of a Double Linear Inverted Pendulum using LQR-Fuzzy and LQR-PID Controllers,” 2022 IEEE International Conference on Mechatronics and Automation (ICMA), Guilin, Guangxi, China, 2022, pp. 1784-1789, doi: 10.1109/ICMA54519.2022.9856235.

V. Kumar and R. Agarwal, “Modeling and Control of Inverted Pendulum cart system using PID-LQR based Modern Controller,” 2022 IEEE Students Conference on Engineering and Systems (SCES), Prayagraj, India, 2022, pp. 01-05, doi: 10.1109/SCES55490.2022.9887706.

Ubaid Asif Farooqui, Dr.Chinta Mani Tiwari, “A dynamical model of a mobile inverted pendulum with linear and non linear controllers with time difference”., MSEA, vol. 71, no. 4, pp. 1044–1062, Aug. 2022.

M. Alfian, et al, “Backstepping sliding mode control for inverted pendulum system with disturbance and parameter uncertainty,” Journal of Robotics and Control (JRC) , vol. 3, no. 1, pp. 86-92, 2022, doi: 10.18196/jrc.v3i1.12739.

N. P. Nguyen, H. Oh, Y. Kim, J. Moon, J. Yang and W. -H. Chen, “Fuzzy-Based Super-Twisting Sliding Mode Stabilization Control for Under-Actuated Rotary Inverted Pendulum Systems,” in IEEE Access, vol. 8, pp. 185079-185092, 2020, doi: 10.1109/ACCESS.2020.3029095.

L. Antonio, and H. Nijmeijer, “Passivity based control” in Control Systems, Robotics And Automation, vol. XIII, EOLSS Publications, pp. 206-226, 2009.

N. Chopra, M. Fujita, R. Ortega and M. W. Spong, “Passivity-Based Control of Robots: Theory and Examples from the Literature,” in IEEE Control Systems Magazine, vol. 42, no. 2, pp. 63-73, April 2022, doi: 10.1109/MCS.2021.3139722.

S. Hao, Y. Yamashita, K. Kobayashi, “Robust passivity-based control design for active nonlinear suspension system,” International Journal of Robust and Nonlinear Control, vol. 31, no. 1, pp. 373-392, 2022, doi: 10.1002/rnc.5827.

N. Moeini, M. Bahrami-Fard, M. Shahabadini, S. M. Azimi and H. Iman-Eini, “Passivity-Based Control of Single-Phase Cascaded HBridge Grid-Connected Photovoltaic Inverter,” in IEEE Transactions on Industrial Electronics, vol. 70, no. 2, pp. 1512-1520, Feb. 2023, doi: 10.1109/TIE.2022.3165266.

C. Zhang, Y. Jiang, X. Xing, X. Li, C. Qin and B. Zhang, “PassivityBased Control Method for Three-Level Photovoltaic Inverter to Mitigate Common-Mode Resonant Current,” in IEEE Transactions on Industrial Informatics, doi: 10.1109/TII.2023.3234025.

K. Fujimoto, T. Baba, N. Sakata and I. Maruta, “A Passivity-Based Sliding Mode Controller for a Class of Electro-Mechanical Systems,” in IEEE Control Systems Letters, vol. 6, pp. 1208-1213, 2022, doi: 10.1109/LCSYS.2021.3089541.

N. Sakata, K. Fujimoto, and I. Maruta, “New potential functions for passivity based sliding mode control,” in IFAC-PapersOnLine, vol. 56, no. 1, pp. 150-155, 2022, doi: 10.1016/j.ifacol.2023.02. 026.

W. Liu and Y. Wang, “Passivity-Based Sliding Mode Control for Lur’e Singularly Perturbed Time-Delay Systems with Input Nonlinearity,” in Circuits Syst Signal Process, vol. 41 pp. 6007–6030, 2022, doi: 10.1007/s00034-022-02086-4.

M. B. Olyaei, M. Reza, J. Keighobadi, A. Ghanbari, and A. O. Zekiy, “Passivity-based hierarchical sliding mode control/observer of underactuated mechanical systems,” in Journal of Vibration and Control, vol. 0, no. 0, 2022, doi: 10.1177/10775463221091035.

H. Du, C. Jing, B. Yan, and C. Liu, “Passivity-based adaptive robust super-twisting nonlinear control for electro-hydraulic system with uncertainties and disturbances,” in Mechanika / Mechanics, vol. 29, no. 1, 2023, doi: 10.5755/j02.mech.32405.

C. Chan-Zheng, P. Borja and J. M. A. Scherpen, “Tuning of PassivityBased Controllers for Mechanical Systems,” in IEEE Transactions on Control Systems Technology, doi: 10.1109/TCST.2023.3260995.

A. Bakeer, M. Alhasheem and H. M. Elhelw, “Uninterruptible Power Supply: An Optimal Passivity-Based Control Scheme,” 2023 IEEE Power and Energy Society Innovative Smart Grid Technologies Conference (ISGT), Washington, DC, USA, 2023, pp. 1-5, doi: 10.1109/ISGT51731.2023.10066406.

P. Borja, R. Ortega and J. M. A. Scherpen, “New Results on Stabilization of Port-Hamiltonian Systems via PID Passivity-Based Control,” in IEEE Transactions on Automatic Control, vol. 66, no. 2, pp. 625-636, Feb. 2021, doi: 10.1109/TAC.2020.2986731.

M. Cucuzzella, R. Lazzari, Y. Kawano, K. C. Kosaraju and J. M. A. Scherpen, “Robust Passivity-Based Control of Boost Converters in DC Microgrids,” 2019 IEEE 58th Conference on Decision and Control (CDC), Nice, France, 2019, pp. 8435-8440, doi: 10.1109/CDC40024.2019.9029657.

D. Handaya, R. Fauziah, “Proportional-Integral-Derivative and Linear Quadratic Regulator Control of Direct Current Motor Posi tion using Multi-Turn Based on LabView,” in Journal of Robotics and Control (JRC), vol. 2, no. 4, pp. 332-336, 2021, doi: 10.18196/jrc.24102.

J. Ma, Z. Cheng, X. Zhang, Z. Lin, F. L. Lewis and T. H. Lee, “Local Learning Enabled Iterative Linear Quadratic Regulator for Constrained Trajectory Planning,” in IEEE Transactions on Neural Networks and Learning Systems, doi: 10.1109/TNNLS.2022.3165846.

L. Ye, H. Zhu and V. Gupta, “On the Sample Complexity of Decentralized Linear Quadratic Regulator with Partially Nested Information Structure,” in IEEE Transactions on Automatic Control, 2022, doi: 10.1109/TAC.2022.3215940.

J. Ma, Z. Cheng, X. Li, W. Wang, M. Tomizuka and T. H. Lee, “Data-Driven Linear Quadratic Optimization for Controller Synthesis With Structural Constraints,” in IEEE Transactions on Cybernetics, doi: 10.1109/TCYB.2022.3233865.

Y. Yang, B. Kiumarsi, H. Modares and C. Xu, “Model-Free Policy Iteration for Discrete-Time Linear Quadratic Regulation,” in IEEE Transactions on Neural Networks and Learning Systems, vol. 34, no. 2, pp. 635-649, Feb. 2023, doi: 10.1109/TNNLS.2021.3098985.

X. Yang and X. Zheng, “Swing-Up and Stabilization Control Design for an Underactuated Rotary Inverted Pendulum System: Theory and Experiments,” in IEEE Transactions on Industrial Electronics, vol. 65, no. 9, pp. 7229-7238, Sept. 2018, doi: 10.1109/TIE.2018.2793214.

M. Svec, ˇ S. Ile ˇ s and J. Matu ˇ sko, “Sliding Mode Control of Custom Built ˇ Rotary Inverted Pendulum,” 2020 43rd International Convention on Information, Communication and Electronic Technology (MIPRO), Opatija, Croatia, 2020, pp. 943-947, doi: 10.23919/MIPRO48935.2020.9245135.

T. T. Sarkar, L. Dewan and C. Mahanta, “Real Time Swing up and Stabilization of Rotary Inverted Pendulum System,” 2020 International Conference on Computational Performance Evaluation (ComPE), Shillong, India, 2020, pp. 517-522, doi: 10.1109/ComPE49325.2020.9200152.

B. Sut¨ o and Z. Lendek, “Switching control of a rotary inverted pen- ¨ dulum,” 2022 26th International Conference on System Theory, Control and Computing (ICSTCC), Sinaia, Romania, 2022, pp. 111-116, doi: 10.1109/ICSTCC55426.2022.9931817.

R. Ganganath, C. Ranganath and B. Annasiwaththa, “Remotely Operated Rotary Inverted Pendulum System for Online Control Engineering Education,” 2022 3rd International Conference on Electrical Engineering and Informatics (ICon EEI), Pekanbaru, Indonesia, 2022, pp. 137-142, doi: 10.1109/IConEEI55709.2022.9972285.

Z. B. Hazem and Z. Bingul, “Comprehensive Review of Different ¨ Pendulum Structures in Engineering Applications,” in IEEE Access, vol. 11, pp. 42862-42880, 2023, doi: 10.1109/ACCESS.2023.3269580.

H. -R. Li, Z. -Y. Nie, E. -Z. Zhu, W. -X. He and Y. -M. Zheng, “Double Loop DR-PID Control of A Rotary Inverted Pendulum,” 2021 IEEE International Conference on Networking, Sensing and Control (ICNSC), Xiamen, China, 2021, pp. 1-5, doi: 10.1109/ICNSC52481.2021.9702192.

M. Ryalat and D. S. Laila, “IDA-PBC for a class of underactuated mechanical systems with application to a rotary inverted pendulum,” 52nd IEEE Conference on Decision and Control, Firenze, Italy, 2013, pp. 5240-5245, doi: 10.1109/CDC.2013.6760713.

Y. Xu, M. Iwase, and K. Furuta, “Time optimal swing-upcontrol of single pendulum,” Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, vol. 123,no. 3, pp. 518–527, 2001, doi: 10.1115/1.1383027.

K. Furuta and M. Iwase, “An adaptive swing-up sliding mode controller design for a real inverted pendulum system based on Culture-Bees algorithm,” European Journal of Control, vol. 49, no. 3, pp. 45-56, 2019, doi: 10.1016/j.ejcon.2018.12.001.

M. Iwase, K.J. Astrom, K. Furuta, and J. Akesson, “Analysis of safe manual control by using Furuta pendulum,” in Proceedings of the IEEE International Conference on Control Applications (CCA ’06), pp. 568–572, October 2006, doi: 10.1109/CACSD-CCAISIC.2006.4776708.

V.-A. Nguyen, D.-B. Pham, D.-T. Pham, N.-T. Bui, and Q. T. Dao, “A Hybrid Energy Sliding Mode Controller for the Rotary Inverted Pendulum,” in Lecture notes in networks and systems, Springer International Publishing, 2022, pp. 34–41. doi: 10.1007/978-3-031-22200-9-4.

N. Bu and X. Wang, “Swing-up design of double inverted pendulum by using passive control method based on operator theory,” International Journal of Advanced Mechatronic Systems, vol. 10, no. 1, p. 1, Jan. 2023, doi: 10.1504/ijamechs.2023.128154.

A. Jain, A. Sharma, V. Jately, B. Azzopardi and S. Choudhury, “RealTime Swing-Up Control of Non-Linear Inverted Pendulum Using Lyapunov Based Optimized Fuzzy Logic Control,” in IEEE Access, vol. 9, pp. 50715-50726, 2021, doi: 10.1109/ACCESS.2021.3058645.

M. Abdullah, A. A. Amin, S. Iqbal, and K. Mahmood-Ul-Hasan, “Swing up and stabilization control of rotary inverted pendulum based on energy balance, fuzzy logic, and LQR controllers,” Measurement and Control, vol. 54, no. 9–10, pp. 1356–1370, Nov. 2021, doi: 10.1177/00202940211035406.

E. Susanto, A. Surya Wibowo and E. Ghiffary Rachman, “Fuzzy Swing Up Control and Optimal State Feedback Stabilization for Self-Erecting Inverted Pendulum,” in IEEE Access, vol. 8, pp. 6496-6504, 2020, doi: 10.1109/ACCESS.2019.2963399.

I. Chawla and A. Singla, “Real-Time Stabilization Control of a Rotary Inverted Pendulum Using LQR-Based Sliding Mode Controller,” Arabian Journal for Science and Engineering, vol. 46, no. 3, pp. 2589–2596, Mar. 2021, doi: 10.1007/s13369-020-05161-7.

A. De Carvalho, B. A. Angelico, J. F. Justo, A. M. De Oliveira, and J. I. Da Silva Filho, “Model reference control by recurrent neural network built with paraconsistent neurons for trajectory tracking of a rotary inverted pendulum,” Applied Soft Computing, vol. 133, p. 109927, Jan. 2023, doi: 10.1016/j.asoc.2022.109927.

N. Gupta and L. Dewan, “Trajectory Tracking And Balancing Control Of Rotary Inverted Pendulum System Using Quasi-Sliding Mode Control, 1-8.,” Mechatronic Systems and Control, vol. 50, no. 1, Jan. 2022, doi: 10.2316/j.2022.201-0231.

J. Montoya-Chairez, J. Moreno-Valenzuela, V. Santib ´ a´nez, R. Carelli, ˜ F. G. Rossomando, and R. Perez-Alcocer, “Combined adaptive neural ´ network and regressor-based trajectory tracking control of flexible joint robots,” Iet Control Theory and Applications, vol. 16, no. 1, pp. 31–50, Oct. 2021, doi: 10.1049/cth2.12202.

C. Eilers, J. Eschmann, R. Menzenbach, B. Belousov, F. Muratore and J. Peters, “Underactuated Waypoint Trajectory Optimization for Light Painting Photography,” 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 2020, pp. 1505-1510, doi: 10.1109/ICRA40945.2020.9196516.

K. Albert, K. S. Phogat, F. Anhalt, R. N. Banavar, D. Chatterjee and B. Lohmann, “Structure-Preserving Constrained Optimal Trajectory Planning of a Wheeled Inverted Pendulum,” in IEEE Transactions on Robotics, vol. 36, no. 3, pp. 910-923, June 2020, doi: 10.1109/TRO.2020.2985579.

S. Howimanporn, S. Chookaew and C. Silawatchananai, “Comparison between PID and Sliding Mode Controllers for Rotary Inverted Pendulum Using PLC,” 2020 4th International Conference on Automation, Control and Robots (ICACR), Rome, Italy, 2020, pp. 122-126, doi: 10.1109/ICACR51161.2020.9265510.

G. Demirkıran, O. Erdener, ¨ O. Akpınar, P. Demirtas¸, M. Y. Arık and ¨ E. Guler, “Control of an Inverted Pendulum by Reinforcement Learning ¨ Method in PLC Environment,” 2020 Innovations in Intelligent Systems and Applications Conference (ASYU), Istanbul, Turkey, 2020, pp. 1-5, doi: 10.1109/ASYU50717.2020.9259890.

R. Hernandez Ronald, A. Bastidas Alejandra, R. Calderon Jaime and T. ´ B. Jose Antonio, “PI tuning based on Bacterial Foraging Algorithm for ´ flow control,” 2020 IX International Congress of Mechatronics Engineering and Automation (CIIMA), Cartagena, Colombia, 2020, pp. 1-6, doi: 10.1109/CIIMA50553.2020.9290289.

L. Ronai and T. Szab ´ o, “Application of Rexroth Controlling for Inverted ´ Pendulum,” International Journal of Engineering and Management Sciences, vol. 4, no. 1, pp. 174–179, https://doi.org/10.21791/IJEMS.2019. 1.22.

J. A. Reshi and R. K, “A Novel Logical Band Approach for BLDC Motor Speed Control,” 2022 1st International Conference on Sustainable Technology for Power and Energy Systems (STPES), SRINAGAR, India, 2022, pp. 1-6, doi: 10.1109/STPES54845.2022.10006435.

A. V. Vyngra, S. G. Chernyi and S. S. Sokolov, “Development an Active Filter Control Software with the Addition of Algorithms for Working at Perturbations,” 2022 Conference of Russian Young Researchers in Electrical and Electronic Engineering (ElConRus), Saint Petersburg, Russian Federation, 2022, pp. 497-499, doi: 10.1109/ElConRus54750.2022.9755540.

I. Polyuschenkov, “Development of Double-motor Electric Drive for Screen Wipers,” 2022 29th International Workshop on Electric Drives: Advances in Power Electronics for Electric Drives (IWED), Moscow, Russian Federation, 2022, pp. 1-6, doi: 10.1109/IWED54598.2022.9722590.

D. Tristan-Rodr ´ ´ıgueza, R. Garridoa and E. Mezura-Montesb, “Optimization of a state feedback controller using a PSO algorithm,” 2022 IEEE 18th International Conference on Automation Science and Engineering (CASE), Mexico City, Mexico, 2022, pp. 729-734, doi: 10.1109/CASE49997.2022.9926501.

G. Hernandez-Melgarejo, A. Luviano-Ju ´ arez and R. Q. Fuentes- ´ Aguilar, “A Framework to Model and Control the State of Presence in Virtual Reality Systems,” in IEEE Transactions on Affective Computing, vol. 13, no. 4, pp. 1854-1867, 1 Oct.-Dec. 2022, doi: 10.1109/TAFFC.2022.3195697.

K. S et al., “Torque control-based induction motor speed control using Anticipating Power Impulse Technique,” The International Journal of Advanced Manufacturing Technology, pp. 1-9, Feb. 2023, doi: 10.1007/s00170-023-10893-5.

B. Mirac and A. Kilic, “Assessment of Several PID Controllers Applied to DC Motors,” 2021 5th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), Ankara, Turkey, 2021, pp. 700-705, doi: 10.1109/ISMSIT52890.2021.9604632.

M. T. Vo, “Back-stepping control for rotary inverted pendulum,” Journal of Technical Education Science, no. 59, pp. 93–101, Aug. 2020, doi: https://jte.edu.vn/index.php/jte/article/view/110.




DOI: https://doi.org/10.18196/jrc.v4i4.18498

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Tai Minh Vo, Hai Van Dong Nguyen, Nghia Hoai Duong, Hao Vinh Nguyen

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 


Journal of Robotics and Control (JRC)

P-ISSN: 2715-5056 || E-ISSN: 2715-5072
Organized by Peneliti Teknologi Teknik Indonesia
Published by Universitas Muhammadiyah Yogyakarta in collaboration with Peneliti Teknologi Teknik Indonesia, Indonesia and the Department of Electrical Engineering
Website: http://journal.umy.ac.id/index.php/jrc
Email: jrcofumy@gmail.com


Kuliah Teknik Elektro Terbaik