Exploring ResNet-18 Estimation Design through Multiple Implementation Iterations and Techniques in Legacy Databases

Nuntachai Thongpance, Pareena Dangyai, Kittipan Roongprasert, Anantasak Wongkamhang, Ratchanee Saosuwan, Rawiphon Chotikunnan, Pariwat Imura, Anuchit Nirapai, Phichitphon Chotikunnan, Manas Sangworasil, Anuchart Srisiriwat

Abstract


In a rapidly evolving landscape where automated systems and database applications are increasingly crucial, there is a pressing need for precise and efficient object recognition methods. This study contributes to this burgeoning field by examining the ResNet-18 architecture, a proven deep learning model, in the context of fruit image classification. The research employs an elaborate experimental setup featuring a diverse fruit dataset that includes Rambutan, Mango, Santol, Mangosteen, and Guava. The efficacy of single versus multiple ResNet-18 models is compared, shedding light on their relative classification accuracy. A unique aspect of this study is the establishment of a 90% decision threshold, introduced to mitigate the risk of incorrect classification. Our statistical analysis reveals a significant performance advantage of multiple ResNet-18 models over single models, with an average improvement margin of 15%. This finding substantiates the study’s central hypothesis. The implemented 90% decision threshold is determined to play a pivotal role in augmenting the system’s overall accuracy by minimizing false positives. However, it’s worth noting that the increased computational complexity associated with deploying multiple models necessitates further scrutiny. In sum, this study provides a nuanced evaluation of single and multiple ResNet-18 models in the realm of fruit image classification, emphasizing their utility in practical, real-world applications. The research opens avenues for future exploration by refining these methodologies and investigating their applicability to broader object recognition tasks.

Keywords


ResNet-18; Multiple ResNet-18; Nutritional Food.

Full Text:

PDF

References


S. Çakmakçı and R. Çakmakçı, “Quality and nutritional parameters of food in agri-food production systems,” Foods, vol. 12, no. 2, p. 351, 2023, doi: 10.3390/foods12020351.

A. S. Roy et al., “Food systems determinants of nutritional health and wellbeing in urban informal settlements: A scoping review in LMICs,” Social Science & Medicine, vol. 115804, 2023, doi: 10.1016/j.socscimed.2023.115804.

H. M. Habib et al., “Palm Fruit (Phoenix dactylifera L.) Pollen Extract Inhibits Cancer Cell and Enzyme Activities and DNA and Protein Damage,” Nutrients, vol. 15, no. 11, p. 2614, 2023, doi: 10.3390/nu15112614.

M. Y. Wani et al., “The phenolic components extracted from mulberry fruits as bioactive compounds against cancer: A review,” Phytotherapy Research, vol. 37, no. 3, pp. 1136-1152, 2023, doi: 10.1002/ptr.7713.

L. Zhao et al., “Specific botanical groups of fruit and vegetable consumption and liver cancer and chronic liver disease mortality: a prospective cohort study,” The American Journal of Clinical Nutrition, vol. 117, no. 2, pp. 278-285, 2023, doi: 10.1016/j.ajcnut.2022.12.004.

H. Huang et al., “Edible and cation-free kiwi fruit derived vesicles mediated EGFR-targeted siRNA delivery to inhibit multidrug resistant lung cancer,” Journal of Nanobiotechnology, vol. 21, no. 1, pp. 1-14, 2023, doi: 10.1186/s12951-023-01766-w.

R. Muwardi, M. Yunita, H. Ghifarsyam, and H. Juliyanto, “Optimize Image Processing Algorithm on ARM Cortex-A72 and A53,” Jurnal Ilmiah Teknik Elektro Komputer Dan Informatika, vol. 8, no. 3, pp. 399-409, 2022, doi: 10.26555/jiteki.v8i3.24457.

D. Sharma and N. Agrawal, “Development of Modified CNN Algorithm for Agriculture Product: A Research Review,” Jurnal Ilmiah Teknik Elektro Komputer Dan Informatika, vol. 8, no. 1, pp. 167-174, 2022, doi: 10.26555/jiteki.v8i1.23722.

R. Bello and C. Oluigbo, “Deep Learning-Based SOLO Architecture for Re-Identification of Single Persons by Locations,” Jurnal Ilmiah Teknik Elektro Komputer Dan Informatika, vol. 8, no. 4, pp. 599-609, 2022, doi: 10.26555/jiteki.v8i4.25059.

B. Suprapto, A. Wahyudin, H. Hikmarika, and S. Dwijayanti, “The Detection System of Helipad for Unmanned Aerial Vehicle Landing Using YOLO Algorithm,” Jurnal Ilmiah Teknik Elektro Komputer Dan Informatika, vol. 7, no. 2, pp. 193-206, 2021, doi: 10.26555/jiteki.v7i2.20684.

R. Bello, C. Oluigbo, and O. Moradeyo, “Motorcycling-Net: A Segmentation Approach for Detecting Motorcycling Near Misses,” Jurnal Ilmiah Teknik Elektro Komputer Dan Informatika, vol. 9, no. 1, pp. 96-106, 2023, doi: 10.26555/jiteki.v9i1.25614.

A. Kamilaris and F. X. Prenafeta-Boldú, “A review of the use of convolutional neural networks in agriculture,” The Journal of Agricultural Science, vol. 156, no. 3, pp. 312-322, Mar. 2018, doi: 10.1017/S0021859618000436.

R. H. Abiyev and M. K. S. Ma’aitaH, “Deep convolutional neural networks for chest diseases detection,” Journal of Healthcare Engineering, vol. 2018, pp. 1-16, Nov. 2018, doi: 10.1155/2018/4168538.

F. Schwendicke, T. Golla, M. Dreher, and J. Krois, “Convolutional neural networks for dental image diagnostics: A scoping review,” Journal of Dentistry, vol. 91, pp. 103226, Mar. 2019, doi: 10.1016/j.jdent.2019.103226.

G. N. Nguyen, N. H. Le Viet, M. Elhoseny, K. Shankar, B. B. Gupta, and A. A. Abd El-Latif, “Secure blockchain enabled Cyber–physical systems in healthcare using deep belief network with ResNet model,” Journal of parallel and distributed computing, vol. 153, pp. 150-160, 2021, doi: 10.1016/j.jpdc.2021.03.011.

C. D. Vo, D. A. Dang, and P. H. Le, “Development of Multi-Robotic Arm System for Sorting System Using Computer Vision,” Journal of Robotics and Control (JRC), vol. 3, no. 5, pp. 690-698, 2022, doi: 10.18196/jrc.v3i5.15661.

A. N. Hidayah, S. A. Radzi, N. A. Razak, W. H. M. Saad, Y. C. Wong, and A. A. Naja, “Disease Detection of Solanaceous Crops Using Deep Learning for Robot Vision,” Journal of Robotics and Control (JRC), vol. 3, no. 6, pp. 790-799, 2022, doi: 10.18196/jrc.v3i6.15948.

Z. Zou, K. Chen, Z. Shi, Y. Guo, and J. Ye, “Object Detection in 20 Years: A Survey,” in Proceedings of the IEEE, vol. 111, no. 3, pp. 257-276, March 2023, doi: 10.1109/JPROC.2023.3238524.

P. Rosyady and R. Sumiharto, “Highway Visual Tracking System using Thresholding and Hough Transform,” Jurnal Ilmiah Teknik Elektro Komputer Dan Informatika, vol. 4, no. 2, pp. 93-99, 2019, doi: 10.26555/jiteki.v4i2.12016.

T. Agrawal and P. Choudhary, “Segmentation and classification on chest radiography: a systematic survey,” The Visual Computer, vol. 39, no. 3, pp. 875-913, 2023, doi: 10.1007/s00371-021-02352-7.

S. Saha Roy, S. Roy, P. Mukherjee, and A. Halder Roy, “An automated liver tumour segmentation and classification model by deep learning based approaches,” Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization, vol. 11, no. 3, pp. 638–650, 2023, doi: 10.1080/21681163.2022.2099300.

M. Xu, K. Huang, and X. Qi, “A Regional-Attentive Multi-Task Learning Framework for Breast Ultrasound Image Segmentation and Classification,” IEEE Access, vol. 11, pp. 5377–5392, 2023, doi: 10.1109/ACCESS.2023.3236693.

A. Iqbal and M. Sharif, “BTS-ST: Swin transformer network for segmentation and classification of multimodality breast cancer images,” Knowledge-Based Systems, vol. 267, p. 110393, 2023, doi: 10.1016/j.knosys.2023.110393.

M. K. Hasan, M. A. Ahamad, C. H. Yap, and G. Yang, “A survey, review, and future trends of skin lesion segmentation and classification,” Computers in Biology and Medicine, p. 106624, 2023, doi: 10.1016/j.compbiomed.2023.106624.

T. Dang and H. Tran, “A Secured, Multilevel Face Recognition based on Head Pose Estimation, MTCNN and FaceNet,” Journal of Robotics and Control (JRC), vol. 4, no. 4, pp. 431–437, 2023, doi: 10.18196/jrc.v4i4.18780.

M. I. Rusydi et al., “Autonomous Movement Control of Coaxial Mobile Robot based on Aspect Ratio of Human Face for Public Relation Activity Using Stereo Thermal Camera,” Journal of Robotics and Control (JRC), vol. 3, no. 3, pp. 361-373, 2022, doi: 10.18196/jrc.v3i3.14750.

X. Zheng, Q. Lei, R. Yao, Y. Gong, and Q. Yin, “Image segmentation based on adaptive K-means algorithm,” EURASIP Journal on Image and Video Processing, vol. 2018, no. 1, pp. 1-10, 2018, doi: 10.1186/s13640-018-0309-3.

R. Srikanth and K. Bikshalu, “Multilevel thresholding image segmentation based on energy curve with harmony Search Algorithm,” Ain Shams Engineering Journal, vol. 12, no. 1, pp. 1-20, 2021, doi: 10.1016/j.asej.2020.09.003.

G. Aletti, A. Benfenati, and G. Naldi, “A semiautomatic multi-label color image segmentation coupling Dirichlet problem and colour distances,” Journal of Imaging, vol. 7, no. 10, pp. 208, 2021, doi: 10.3390/jimaging7100208.

C. Suguna and S. P. Balamurugan, “Computer Aided Diagnosis for Cervical Cancer Screening using Monarch Butterfly Optimization with Deep Learning Model,” in 2023 5th International Conference on Smart Systems and Inventive Technology (ICSSIT), pp. 1059-1064, January 2023, doi: 10.1109/ICSSIT55814.2023.10060959.

G. Sun, X. Jia, and T. Geng, “Plant diseases recognition based on image processing technology,” Journal of Electrical and Computer Engineering, vol. 2018, 2018, doi: 10.1155/2018/6070129.

A. Mohan and S. Poobal, “Crack detection using image processing: A critical review and analysis,” Alexandria Engineering Journal, vol. 57, no. 2, pp. 787-798, 2018, doi: 10.1016/j.aej.2017.01.020.

B. Li and Y. He, “An improved ResNet based on the adjustable shortcut connections,” IEEE Access, vol. 6, pp. 18967-18974, 2018, doi: 10.1109/ACCESS.2018.2814605.

D. Marmanis, K. Schindler, J. D. Wegner, S. Galliani, M. Datcu, and U. Stilla, “Classification with an edge: Improving semantic image segmentation with boundary detection,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 135, pp. 158-172, 2018, doi: 10.48550/arXiv.1612.01337.

J. Duan, T. Shi, H. Zhou, J. Xuan, and S. Wang, “A novel ResNet-based model structure and its applications in machine health monitoring,” Journal of Vibration and Control, vol. 27, no. 9-10, pp. 1036-1050, 2021, doi: 10.1177/107754632093650.

H. Yu, H. Sun, J. Tao, C. Qin, D. Xiao, Y. Jin, and C. Liu, “A multi-stage data augmentation and AD-ResNet-based method for EPB utilization factor prediction,” Automation in Construction, vol. 147, p. 104734, 2023, doi: 10.1016/j.autcon.2022.104734.

S. Ayyachamy, V. Alex, M. Khened, and G. Krishnamurthi, “Medical image retrieval using Resnet-18,” in Medical Imaging 2019: Imaging Informatics for Healthcare, Research, and Applications, vol. 10954, pp. 233-241, 2019, doi: 10.1117/12.2515588.

M. Gao, D. Qi, H. Mu, and J. Chen, “A transfer residual neural network based on ResNet-34 for detection of wood knot defects,” Forests, vol. 12, no. 2, p. 212, 2021, doi: 10.3390/f12020212.

L. Wen, X. Li, and L. Gao, “A transfer convolutional neural network for fault diagnosis based on ResNet-50,” Neural Computing and Applications, vol. 32, pp. 6111-6124, 2020, doi: 10.1007/s00521-019-04097-w.

B. Yu, L. Yang, and F. Chen, “Semantic segmentation for high spatial resolution remote sensing images based on convolution neural network and pyramid pooling module,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 11, no. 9, pp. 3252-3261, Sep. 2018, doi: 10.1109/JSTARS.2018.2860989.

F. Tabassum, M. I. Islam, R. T. Khan, and M. R. Amin, “Human face recognition with combination of DWT and machine learning,” Journal of King Saud University-Computer and Information Sciences, vol. 34, no. 3, pp. 546-556, 2022, doi: 10.1016/j.jksuci.2020.02.002.

M. Sajjad et al., “Raspberry Pi assisted face recognition framework for enhanced law-enforcement services in smart cities,” Future Generation Computer Systems, vol. 108, pp. 995-1007, 2020, doi: 10.1016/j.future.2017.11.013.

L. Li, X. Mu, S. Li, and H. Peng, “A review of face recognition technology,” IEEE Access, vol. 8, pp. 139110-139120, 2020, doi: 10.1109/ACCESS.2020.3011028.

H. Ling, J. Wu, L. Wu, J. Huang, J. Chen, and P. Li, “Self residual attention network for deep face recognition,” IEEE Access, vol. 7, pp. 55159-55168, 2019, doi: 10.1109/ACCESS.2019.2913205.

A. Jha, “Classroom attendance system using facial recognition system,” The International Journal of Mathematics, Science, Technology, and Management, vol. 2, no. 3, pp. 4-7, 2007, doi: 10.1051/itmconf/20203202001.

R. I. Bendjillali, M. Beladgham, K. Merit, and A. Taleb-Ahmed, “Illumination-robust face recognition based on deep convolutional neural networks architectures,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 18, no. 2, pp. 1015-1027, 2020, doi: 10.11591/ijeecs.v18.i2.pp1015-1027.

M. Z. Khan, S. Harous, S. U. Hassan, M. U. G. Khan, R. Iqbal, and S. Mumtaz, “Deep unified model for face recognition based on convolution neural network and edge computing,” IEEE Access, vol. 7, pp. 72622-72633, 2019, doi: 10.1109/ACCESS.2019.2918275.

A. Alzu’bi, F. Albalas, T. Al-Hadhrami, L. B. Younis, and A. Bashayreh, “Masked face recognition using deep learning: A review,” Electronics, vol. 10, no. 21, p. 2666, 2021, doi: 10.3390/electronics10212666.

Y. Tang et al., “Recognition and localization methods for vision-based fruit picking robots: A review,” Frontiers in Plant Science, vol. 11, p. 510, 2020, doi: 10.3389/fpls.2020.00510.

H. A. Williams et al., “Robotic kiwifruit harvesting using machine vision, convolutional neural networks, and robotic arms,” Biosystems Engineering, vol. 181, pp. 140-156, 2019, doi: 10.1016/j.biosystemseng.2019.03.007.

S. D. Kumar et al., “A microcontroller based machine vision approach for tomato grading and sorting using SVM classifier,” Microprocessors and Microsystems, vol. 76, p. 103090, 2020, doi: 10.1016/j.micpro.2020.103090.

M. Halstead, C. McCool, S. Denman, T. Perez, and C. Fookes, “Fruit quantity and ripeness estimation using a robotic vision system,” IEEE Robotics and Automation Letters, vol. 3, no. 4, pp. 2995-3002, 2018, doi: 10.1109/LRA.2018.2849514.

S. Wan and S. Goudos, “Faster R-CNN for multi-class fruit detection using a robotic vision system,” Computer Networks, vol. 168, p. 107036, 2020, doi: 10.1016/j.comnet.2019.107036.

M. T. Habib et al., “Machine vision based papaya disease recognition,” Journal of King Saud University-Computer and Information Sciences, vol. 32, no. 3, pp. 300-309, 2020, doi: 10.1016/j.jksuci.2018.06.006.

J. J. Zhuang et al., “Detection of orchard citrus fruits using a monocular machine vision-based method for automatic fruit picking applications,” Computers and Electronics in Agriculture, vol. 152, pp. 64-73, 2018, doi: 10.1016/j.compag.2018.07.004.

A. Gongal, M. Karkee, and S. Amatya, “Apple fruit size estimation using a 3D machine vision system,” Information Processing in Agriculture, vol. 5, no. 4, pp. 498-503, 2018, doi: 10.1016/j.inpa.2018.06.002.

Z. Wang, J. Underwood, and K. B. Walsh, “Machine vision assessment of mango orchard flowering,” Computers and Electronics in Agriculture, vol. 151, pp. 501-511, 2018, doi: 10.1016/j.compag.2018.06.040.

X. Zhao, P. Sun, Z. Xu, H. Min and H. Yu, “Fusion of 3D LIDAR and Camera Data for Object Detection in Autonomous Vehicle Applications,” IEEE Sensors Journal, vol. 20, no. 9, pp. 4901-4913, 2020, doi: 10.1109/JSEN.2020.2966034.

W. Zhao, W. Ma, L. Jiao, P. Chen, S. Yang and B. Hou, “Multi-Scale Image Block-Level F-CNN for Remote Sensing Images Object Detection,” IEEE Access, vol. 7, pp. 43607-43621, 2019, doi: 10.1109/ACCESS.2019.2908016.

T. Zhou, D. P. Fan, M. M. Cheng, J. Shen and L. Shao, “RGB-D Salient Object Detection: A Survey,” Computational Visual Media, vol. 7, pp. 37-69, 2021, doi: 10.48550/arXiv.2008.00230.

M. Shirpour, N. Khairdoost, M. A. Bauer and S. S. Beauchemin, “Traffic Object Detection and Recognition Based on the Attentional Visual Field of Drivers,” in IEEE Transactions on Intelligent Vehicles, vol. 8, no. 1, pp. 594-604, Jan. 2023, doi: 10.1109/TIV.2021.3133849.

S. S. A. Zaidi, M. S. Ansari, A. Aslam, N. Kanwal, M. Asghar and B. Lee, “A Survey of Modern Deep Learning Based Object Detection Models,” Digital Signal Processing, vol. 115, p. 103514, 2022, doi: 10.48550/arXiv.2104.11892.

A. Kuznetsova et al., “The Open Images Dataset V4: Unified Image Classification, Object Detection, and Visual Relationship Detection at Scale,” International Journal of Computer Vision, vol. 128, no. 7, pp. 1956-1981, 2020, doi: 10.48550/arXiv.1811.00982.

X. Chen, H. Li, Q. Wu, K. N. Ngan and L. Xu, “High-Quality R-CNN Object Detection Using Multi-Path Detection Calibration Network,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 31, no. 2, pp. 715-727, 2021, doi: 10.1109/TCSVT.2020.2987465.

S. Zhang, Y. Wu, C. Men and X. Li, “Tiny YOLO Optimization Oriented Bus Passenger Object Detection,” Chinese Journal of Electronics, vol. 29, no. 1, pp. 132-138, 2020, doi: 10.1049/cje.2019.11.002.

A. Suhail, M. Jayabalan and V. Thiruchelvam, “Convolutional Neural Network Based Object Detection: A Review,” Journal of Critical Reviews, vol. 7, no. 11, pp. 786-792, 2020, doi: 10.48550/arXiv.1905.01614.

M. D. Hossain and D. Chen, “Segmentation for Object-Based Image Analysis (OBIA): A review of algorithms and challenges from remote sensing perspective,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 150, pp. 115-134, 2019, doi: 10.1016/j.isprsjprs.2019.02.009.

H. Costa, G. M. Foody, and D. S. Boyd, “Supervised methods of image segmentation accuracy assessment in land cover mapping,” Remote Sensing of Environment, vol. 205, pp. 338-351, 2018, doi: 10.1016/j.rse.2017.11.024.

Y. Xiao, L. Daniel, and M. Gashinova, “Image segmentation and region classification in automotive high-resolution radar imagery,” IEEE Sensors Journal, vol. 21, no. 5, pp. 6698-6711, 2020, doi: 10.1109/JSEN.2020.3043586.

M. Z. Alom, C. Yakopcic, M. Hasan, T. M. Taha, and V. K. Asari, “Recurrent residual U-Net for medical image segmentation,” Journal of Medical Imaging, vol. 6, no. 1, pp. 014006-014006, 2019, doi: 10.1117/1.JMI.6.1.014006.

N. Siddique, S. Paheding, C. P. Elkin, and V. Devabhaktuni, “U-net and its variants for medical image segmentation: A review of theory and applications,” IEEE Access, vol. 9, pp. 82031-82057, 2021, doi: 10.1109/ACCESS.2021.3086020.

M. H. Hesamian, W. Jia, X. He, and P. Kennedy, “Deep learning techniques for medical image segmentation: achievements and challenges,” Journal of digital imaging, vol. 32, pp. 582-596, 2019, doi: 10.1007/s10278-019-00227-x.

A. Sinha and J. Dolz, “Multi-scale self-guided attention for medical image segmentation,” IEEE Journal of Biomedical and Health Informatics, vol. 25, no. 1, pp. 121-130, 2021, doi: 10.48550/arXiv.1906.02849.

F. Shi, J. Wang, J. Shi, Z. Wu, Q. Wang, Z. Tang, et al., “Review of artificial intelligence techniques in imaging data acquisition, segmentation, and diagnosis for COVID-19,” IEEE Reviews in Biomedical Engineering, vol. 14, pp. 4-15, 2021, doi: 10.1109/RBME.2020.2987975.

F. Munawar, S. Azmat, T. Iqbal, C. Grönlund, and H. Ali, “Segmentation of lungs in chest X-ray image using generative adversarial networks,” IEEE Access, vol. 8, pp. 153535-153545, 2020, doi: 10.1109/ACCESS.2020.3017915.

S. Wang, D. M. Yang, R. Rong, X. Zhan, and G. Xiao, “Pathology image analysis using segmentation deep learning algorithms,” The American Journal of Pathology, vol. 189, no. 9, pp. 1686-1698, 2019, doi: 10.1016/j.ajpath.2019.05.007.

S. M. Anwar, M. Majid, A. Qayyum, M. Awais, M. Alnowami, and M. K. Khan, “Medical image analysis using convolutional neural networks: a review,” Journal of Medical Systems, vol. 42, pp. 1-13, 2018, doi: 10.1007/s10916-018-1088-1.

Y. Lu et al., “Differentiate Xp11.2 Translocation Renal Cell Carcinoma from Computed Tomography Images and Clinical Data with ResNet-18 CNN and XGBoost,” CMES-Computer Modeling in Engineering & Sciences, vol. 136, no. 1, 2023, doi: 10.32604/cmes.2023.024909.

V. Narayan et al., “Enhance-Net: An Approach to Boost the Performance of Deep Learning Model Based on Real-Time Medical Images,” Journal of Sensors, 2023, doi: 10.1155/2023/8276738.

S. A. El-Feshawy et al., “IoT framework for brain tumor detection based on optimized modified ResNet-18 (OMRES),” The Journal of Supercomputing, vol. 79, no. 1, pp. 1081-1110, 2023, doi: 10.1007/s11227-022-04678-y.

P. Chotikunnan et al., “Evaluation of Single and Dual image Object Detection through Image Segmentation Using ResNet-18 in Robotic Vision Applications,” Journal of Robotics and Control (JRC), vol. 4, no. 3, pp. 263-277, 2023, doi: 10.18196/jrc.v4i3.17932.




DOI: https://doi.org/10.18196/jrc.v4i5.19589

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Nuntachai Thongpance, Pareena Dangyai, Kittipan Roongprasert, Anantasak Wongkamhang, Rawiphon Chotikunnan, Anuchit Nirapai, Pariwat Imura, Phichitphon Chotikunnan, Manas Sangworasil, Anuchart Srisiriwat

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 


Journal of Robotics and Control (JRC)

P-ISSN: 2715-5056 || E-ISSN: 2715-5072
Organized by Peneliti Teknologi Teknik Indonesia
Published by Universitas Muhammadiyah Yogyakarta in collaboration with Peneliti Teknologi Teknik Indonesia, Indonesia and the Department of Electrical Engineering
Website: http://journal.umy.ac.id/index.php/jrc
Email: jrcofumy@gmail.com


Kuliah Teknik Elektro Terbaik