Synthesis of LQR Controller Based on BAT Algorithm for Furuta Pendulum Stabilization

Nguyen Xuan Chiem, Le Tran Thang

Abstract


In this study, a controller design method based on the LQR method and BAT algorithm is presented for the Furuta pendulum stabilization system. Determine the LQR controller, it is often based on the designer's experience or using trial and error to find the Q, R matrices. The BAT search algorithm is based on the characteristics of the bat population in the wild. However, there are advantages to finding multivariate objective functions. The BAT algorithm has an improvement for the LQR controller to optimize the linear square function with fast response time, low energy consumption, overshoot, and a small number of oscillations. Swarm optimization algorithms have advantages in finding global extrema of multivariate functions. Therefore, with a large number of elements of the Q and R matrices, they can also be quickly found and these matrices still satisfy the Riccati equation. The controller with optimal parameters is verified through simulation results with different scenarios. The performance of the proposed controller is compared with a conventional LQR controller and implemented on a real system.

Keywords


LQR Method; BAT Algorithm; Furuta Pendulum; Riccati Equation; Controller.

Full Text:

PDF

References


M. Iwase, K. J. Åström, K. Furuta, and J. Åkesson, “Analysis of safe manual control by using Furuta pendulum,” Proceedings of the IEEE International Conference on Control Applications (CCA '06), pp. 568–572, 2006.

K. Furuta, M. Yamakita, and S. Kobayashi. “Swing up control of inverted pendulum using pseudo-state feedback,” Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, vol. 206, no. 4, pp. 263–269, Sep. 1992.

K. Furuta, M. Yamakita, and S. Kobayashi, “Swing up control of inverted pendulum,” Proceedings IECON '91: 1991 International Conference on Industrial Electronics, Control and Instrumentation, vol. 3, pp. 2193-2198, 1991, doi: 10.1109/IECON.1991.239008.

K. J. Astrom and K. Furuta, “Swining up a pendulum by energy control,” Automatica, vol. 36, no. 2, pp. 287–295, 2000.

B. S. Cazzolato and Z. Prime, “On the Dynamics of the Furuta Pendulum,” Journal of Control Science and Engineering, vol. 2011, 2011.

S. K. Mishra and D. Chandra, “Stabilization and Tracking Control of Inverted Pendulum Using Fractional Order PID Controllers,” Journal of Engineering, vol. 2014, 2014.

S. Howimanporn, S. Chookaew, and C. Silawatchananai, “Comparison between PID and Sliding Mode Controllers for Rotary Inverted Pendulum Using PLC,” 2020 4th International Conference on Automation, Control and Robots (ICACR), pp. 122-126, 2020.

E. S. Varghese, A. K. Vincent, and V. Bagyaveereswaran, “Optimal control of inverted pendulum system using PID controller, LQR and MPC,” IOP Conference Series: Materials Science and Engineering, vol. 263, no. 5, p. 052007, 2017.

H. N. Phan and C. X. Nguyen, “Building embedded quasi-time-optimal controller for two-wheeled self-balancing robot,” MATEC Web of Conferences, vol. 132, p. 02005, 2017.

N. X. Chiem and H. N. Phan, “Design controler of the quasi-time optimization approach for stabilizing and trajectory tracking of inverted pendulum,” in MATEC Web of Conferences, vol. 226, p. 02007, 2018.

M. Akhtaruzzaman and A. A. Shafie, “Modeling and control of a rotary inverted pendulum using various methods, comparative assessment and result analysis,” 2010 IEEE International Conference on Mechatronics and Automation, pp. 1342-1347, 2010, doi: 10.1109/ICMA.2010.5589450.

C. X. Nguyen, T. T. Tran, T. X. Pham, and K. M. Le, “Design of control laws for rotary inverted pendulum based on LQR and Lyapunov function,” IOP Conference Series: Materials Science and Engineering, vol. 1029, no. 1, p. 012021, 2021.

J. Wen, Y. Shi, and X. Lu, “Stabilizing a rotary inverted pendulum based on Lyapunov stability theorem,” 2017 29th Chinese Control And Decision Conference (CCDC), pp. 5652-5657, 2017, doi: 10.1109/CCDC.2017.7978173.

S. Irfan, A. Mehmood, M. T. Razzaq, and J. Iqbal, “Advanced sliding mode control techniques for inverted pendulum: Modelling and simulation,” Engineering science and technology, an international journal, vol. 21, no. 4, pp. 753-759, 2018.

D. Qian, J. Yi, and D. Zhao, “Hierarchical sliding mode control for a class of SIMO under-actuated systems,” Control and cybernetics, vol. 37, no. 1, pp. 159-175, 2008.

F. Adıgüzel and Y. Yalçın, “Discrete-time backstepping control with nonlinear adaptive disturbance attenuation for the inverted-pendulum system,” Transactions of the Institute of Measurement and Control, vol. 43, no.5, pp. 1068-1076, 2021.

A. Ma'arif, M. A. M. Vera, M. S. Mahmoud, S. Ladaci, A. Çakan, and J. N. Parada, “Backstepping sliding mode control for inverted pendulum system with disturbance and parameter uncertainty,” Journal of Robotics and Control (JRC), vol. 3, no. 1, pp. 86-92, 2022.

X. Miao, H. Zhu, S. Li, X. Xu, H. Ouyang, and H. Xi, “Adaptive-back-stepping-based controller design for double-pendulum rotary cranes,” ISA transactions, vol. 136, pp. 676-686, 2023.

C. Xia, I. Qaisar, and M. S. Aslam, “Design of Hybrid Controller using Qualitative Simulation Internal Modeling for Inverted Pendulum,” International Journal of Robotics & Control Systems, vol. 2, no. 4, pp. 638-651, 2022.

M. S. Mahmoud, R. A. Saleh, and A. Ma’arif, “Stabilizing of inverted pendulum system using Robust sliding mode control,” International Journal of Robotics and Control Systems, vol. 2, no. 2, pp. 230-239, 2022.

N. Gupta and L. Dewan, “Trajectory tracking and balancing control of rotary inverted pendulum system using quasi-sliding mode control,” Mechatronic Systems and Control, vol. 50, no. 1, 2022

C. Eilers, J. Eschmann, R. Menzenbach, B. Belousov, F. Muratore, and J. Peters, “Underactuated Waypoint Trajectory Optimization for Light Painting Photography,” 2020 IEEE International Conference on Robotics and Automation (ICRA), pp. 1505-1510, 2020, doi: 10.1109/ICRA40945.2020.9196516.

K. Albert, K. S. Phogat, F. Anhalt, R. N. Banavar, D. Chatterjee, and B. Lohmann, “Structure-Preserving Constrained Optimal Trajectory Planning of a Wheeled Inverted Pendulum,” in IEEE Transactions on Robotics, vol. 36, no. 3, pp. 910-923, June 2020, doi:10.1109/TRO.2020.2985579.

G. Demirkıran, Ö. Erdener, Ö. Akpınar, P. Demirtaş, M. Y. Arık, and E. Güler, “Control of an Inverted Pendulum by Reinforcement Learning Method in PLC Environment,” 2020 Innovations in Intelligent Systems and Applications Conference (ASYU), pp. 1-5, 2020, doi: 10.1109/ASYU50717.2020.9259890.

L. Rónai and T. Szabó, “Application of Rexroth Controlling for Inverted Pendulum,” International Journal of Engineering and Management Sciences, vol. 4, no. 1, pp. 174-179, 2019.

M. T. Vo, M. T. Nguyen, T. T. H. Le, V. Do Tran, D. T. Tran, T. M. N. Nguyen, and V. T. Ngo, “Back-stepping control for rotary inverted pendulum,” Journal of Technical Education Science, no. 59, pp. 93-101, 2020.

X. Yang and X. Zheng, “Swing-Up and Stabilization Control Design for an Underactuated Rotary Inverted Pendulum System: Theory and Experiments,” in IEEE Transactions on Industrial Electronics, vol. 65, no. 9, pp. 7229-7238, Sept. 2018, doi: 10.1109/TIE.2018.2793214.

A. De Carvalho, B. A. Angelico, J. F. Justo, A. M. De Oliveira, and J. I. Da Silva Filho, “Model reference control by recurrent neural network built with paraconsistent neurons for trajectory tracking of a rotary inverted pendulum,” Applied Soft Computing, vol. 133, p. 109927, Jan. 2023, doi:10.1016/j.asoc.2022.109927.

H. Ouyang, X. Xu, and G. Zhang, “Energy-shaping-based nonlinear controller design for rotary cranes with double-pendulum effect considering actuator saturation,” Automation in construction, vol. 111, p. 103054, 2020.

A. de Carvalho Junior, B. A. Angelico, J. F. Justo, A. M. de Oliveira, and J. I. da Silva Filho, “Model reference control by recurrent neural network built with paraconsistent neurons for trajectory tracking of a rotary inverted pendulum,” Applied Soft Computing, vol. 133, p. 109927, 2023.

A. Gutarra, S. Palomino, E. J. Alegria, and J. Cisneros, “Fuzzy Controller Design for Rotary Inverted Pendulum System Using Genetic Algorithms,” 2022 IEEE ANDESCON, pp. 1-6, 2022, doi: 10.1109/ANDESCON56260.2022.9989988.

M. A. Fairus, Z. Mohamed, and M. N. Ahmad, “Fuzzy modeling and control of rotary inverted pendulum system using LQR technique,” in IOP Conference Series: Materials Science and Engineering, vol. 53, no. 1, p. 012009, 2013.

M. Ul Hassan, M. B. Kadri, and I. Amin, “Proficiency of fuzzy logic controller for stabilization of rotary inverted pendulum based on LQR mapping,” in Fuzzy Logic and Applications: 10th International Workshop, pp. 201-211, 2013.

J. Wu and W. Zhang, “Design of fuzzy logic controller for two-wheeled self-balancing robot,” Proceedings of 2011 6th International Forum on Strategic Technology, pp. 1266-1270, 2011, doi: 10.1109/IFOST.2011.6021250.

Q. Yong, L. Yanlong, Z. Xizhe, and L. Ji, “Balance control of two-wheeled self-balancing mobile robot based on TS fuzzy model,” Proceedings of 2011 6th International Forum on Strategic Technology, pp. 406-409, 2011, doi: 10.1109/IFOST.2011.6021051.

M. Park, Y. J. Kim, and J. J. Lee, “Swing-up and LQR stabilization of a rotary inverted pendulum,” Artificial Life and Robotics, vol. 16, pp. 94-97, 2011.

R. Xiaogang, L. Jiang, D. Haijiang, and L. Xinyuan, “Design and LQ Control of a two-wheeled self-balancing robot,” 2008 27th Chinese Control Conference, pp. 275-279, 2008, doi: 10.1109/CHICC.2008.4605775.

M. T. Vo, H. N. Duong, and V. H. Nguyen, “Combining Passivity-Based Control and Linear Quadratic Regulator to Control a Rotary Inverted Pendulum,” Journal of Robotics and Control (JRC), vol. 4, no. 4, pp. 479-490, 2023.

D. Handaya and R. Fauziah, “Proportional-integral-derivative and linear quadratic regulator control of direct current motor position using multi-turn based on LabView,” Journal of Robotics and Control (JRC), vol. 2, no. 4, pp. 332-336, 2021.

M. Auzan, D. Lelono, and A. Dharmawan, “Humanoid Walking Control Using LQR and ANFIS,” Journal of Robotics and Control (JRC), vol. 4, no. 4, pp. 548-556, 2023.

U. Önen and A. Çakan, “Multibody modeling and balance control of a reaction wheel inverted pendulum using lqr controller,” International Journal of Robotics and Control Systems, vol. 1, no. 1, pp. 84-89, 2021.

G. P. Dos Santos, A. Kossoski, J. M. Balthazar, and A. M. Tusset, “SDRE and LQR Controls Comparison Applied in High-Performance Aircraft in a Longitudinal Flight,” International Journal of Robotics and Control Systems, vol. 1, no. 2, pp. 131-144, 2021.

D. T. Tran, N. M. Hoang, N. H. Loc, Q. T. Truong, and N. T. Nha, “A Fuzzy LQR PID Control for a Two-Legged Wheel Robot with Uncertainties and Variant Height,” Journal of Robotics and Control (JRC), vol. 4, no. 5, pp. 612-620, 2023.

I. Chawla and A. Singla, “Real-time stabilization control of a rotary inverted pendulum using LQR-based sliding mode controller,” Arabian Journal for Science and Engineering, vol. 46, pp. 2589-2596, 2021.

P. Duan, L. He, Z. Duan, and L. Shi, “Distributed Cooperative LQR Design for Multi-Input Linear Systems,” in IEEE Transactions on Control of Network Systems, vol. 10, no. 2, pp. 680-692, June 2023, doi: 10.1109/TCNS.2022.3203933.

S. Savin, S. Jatsun, and L. Vorochaeva, “Modification of constrained LQR for control of walking in-pipe robots,” 2017 Dynamics of Systems, Mechanisms and Machines (Dynamics), pp. 1-6, 2017, doi: 10.1109/Dynamics.2017.8239502.

E. E. Vlahakis, L. D. Dritsas, and G. D. Halikias, “Distributed LQR-based suboptimal control for coupled linear systems,” IFAC-PapersOnLine, vol. 52, no. 20, pp. 109-114, 2019.

J. Yu, R. Li, D. Gong, Y. Liu, and P. Liu, “Research on Disturbance of Upright Balance of Biped Humanoid Robot Based on AWPSO-LQR,” 2021 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 907-912, 2021, doi: 10.1109/ROBIO54168.2021.9739491.

N. Kawasaki and E. Shimemura, “Determining quadratic weighting matrices to locate poles in a specified region,” Automatica, vol. 19, no. 5, pp. 557-560, 1983.

N. Kawasaki, E. Shimemura, and J. W. Shin, “On the quadratic weights of an LQ-problem shifting only the specified poles,” Proceedings of the Society of Instrument and Control Engineers, vol. 25, no. 11, pp. 1248–1250, 1989.

F. J. Kraus and V. Kučera, “Linear quadratic and pole placement iterative design,” 1999 European Control Conference (ECC), pp. 653-658, 1999, doi: 10.23919/ECC.1999.7099379.

J. Cigler and V. Kucera, “Pole-by-pole shifting via a linear-quadratic regulation,” in Proc. of the 17th International Conference on Process Control, 2009.

B. D. Anderson and J. B. Moore. Optimal control: linear quadratic methods. Courier Corporation, 2007.

X. S. Yang. Nature-inspired metaheuristic algorithms. Luniver press, 2010.

X. S. Yang, “A new metaheuristic bat-inspired algorithm,” in Nature inspired cooperative strategies for optimization (NICSO 2010), pp. 65-74, 2010.

M. Zadehbagheri, A. Ma'arif, R. Ildarabadi, M. Ansarifard, and I. Suwarno, “Design of Multivariate PID Controller for Power Networks Using GEA and PSO,” Journal of Robotics and Control (JRC), vol. 4, no. 1, pp. 108-117, 2023.

E. S. Rahayu, A. Ma'arif, and A. Çakan, “Particle Swarm Optimization (PSO) Tuning of PID Control on DC Motor,” International Journal of Robotics & Control Systems, vol. 2, no. 2, 2022.

E. S. Varghese, A. K. Vincent, and V. Bagyaveereswaran, “Optimal control of inverted pendulum system using PID controller, LQR and MPC,” in IOP Conference Series: Materials Science and Engineering, vol. 263, no. 5, p. 052007, 2017.

A. Saleem, B. Taha, T. Tutunji, and A. Al-Qaisia, “Identification and cascade control of servo-pneumatic system using particle swarm optimization,” Simulation Modelling Practice and Theory, vol. 52, pp. 164-179, 2015.

M. Chavoshian, M. Taghizadeh, and M. Mazare, “Hybrid dynamic neural network and PID control of pneumatic artificial muscle using the PSO algorithm,” International Journal of Automation and Computing, vol. 17, no. 3, pp. 428-438, 2020.

N. Ali, Y. Ayaz, and J. Iqbal, “Collaborative Position Control of Pantograph Robot Using Particle Swarm Optimization,” International Journal of Control, Automation and Systems, vol. 20, no. 1, pp. 198-207, 2022, https://doi.org/10.1007/s12555-019-0931-6.

C. N. Xuan and T. Le Tran, “Design of State Feedback Controller with Optimal Parameters Using Bat Algorithm for Reaction Wheel Pendulum,” 2021 International Conference on Advanced Technologies for Communications (ATC), pp. 172-177, 2021, doi: 10.1109/ATC52653.2021.9598306.

N. X. Chiem, N. D. Anh, A. D. Lukianov, P. D. Tung, H. D. Long, and N. D. Linh, “Design real-time embedded optimal PD fuzzy controller by PSO algorithm for autonomous vehicle mounted camera,” in AIP Conference Proceedings, vol. 2188, no. 1, 2019.

X. C. Nguyen, D. L. Hoang, X. T. Pham, T. H. Nguyen, M. K. Le, and V. X. Nguyen, “Synthesis of Feedback Linearization Controller with Parameters Optimization Based on Bat Algorithm for a Magnetic Levitation System,” Journal of Science and Technique, vol. 16, no. 3, pp. 123-139, 2021.

C. C. Soon, R. Ghazali, M. F. Ghani, C. M. Shern, Y. M. Sam, Z. Has, “Chattering Analysis of an Optimized Sliding Mode Controller for an Electro-Hydraulic Actuator System,” Journal of Robotics and Control (JRC), vol. 3, no. 2, pp. 160-165, 2022.

R. Alayi, A. Ma'arif, Y. Ebazadeh, F. Gharadaghi, F. Jahanbin, and N. Shafaghatian, “Optimization of Renewable Energy Consumption in Charging Electric Vehicles Using Intelligent Algorithms,” Journal of Robotics and Control (JRC), vol. 3, no. 2, pp. 138-142, 2022.

M. F. Ghani, R. Ghazali, H. I. Jaafar, C. C. Soon, Y. M. Sam, and Z. Has, “Improved third order PID sliding mode controller for electrohydraulic actuator tracking control,” Journal of Robotics and Control (JRC), vol. 3, no. 2, pp. 219-226, 2022.

N. S. Abu, W. M. Bukhari, M. H. Adli, S. N. Omar, and S. A. Sohaimeh, “A Comprehensive Overview of Classical and Modern Route Planning Algorithms for Self-Driving Mobile Robots,” Journal of Robotics and Control (JRC), vol. 3, no. 5, pp. 666-678, 2022.

B. AlKhlidi, A. T. Abdulsadda, and A. Al Bakri, “Optimal Robotic Path Planning Using Intelligents Search Algorithms,” Journal of Robotics and Control (JRC), vol. 2, no. 6, pp. 519-526, 2021.

A. Irawan, M. S. Ramli, M. H. Sulaiman, M. I. P. Azahar, and A. H. Adom, “Optimal Pneumatic Actuator Positioning and Dynamic Stability using Prescribed Performance Control with Particle Swarm Optimization: A Simulation Study,” International Journal of Robotics and Control Systems, vol. 3, no. 3, pp. 364-379, 2023.

C. Nagarajan, K. Umadevi, S. Saravanan, and M. Muruganandam, “Performance Analysis of PSO DFFP Based DC-DC Converter with Non Isolated CI using PV Panel,” International Journal of Robotics & Control Systems, vol. 2, no. 2, 2022.

D. Izci and S. Ekinci, “Optimizing Three-Tank Liquid Level Control: Insights from Prairie Dog Optimization,” International Journal of Robotics and Control Systems, vol. 3, no. 3, pp. 599-608, 2023.

E. Samsuria, Y. M. Sam, and F. Hassan, “Enhanced Sliding Mode Control for a Nonlinear Active Suspension Full Car Model,” International Journal of Robotics and Control Systems, vol. 1, no. 4, pp. 501-522, 2021.

O. M. Neda and A. Ma’arif, “Chaotic Particle Swarm Optimization for Solving Reactive Power Optimization Problem,” International Journal of Robotics and Control Systems, vol. 1, no. 4, pp. 523-533, 2022.

N. A. Nor’Azlan, N. A. Selamat, and N. M. Yahya, “Multivariable PID controller design tuning using bat algorithm for activated sludge process,” in IOP Conference Series: Materials Science and Engineering, vol. 342, no. 1, p. 012030, 2018.

D. Li, L. Liu, Q. Jin, and K. Hirasawa, “Maximum sensitivity based fractional IMC–PID controller design for non-integer order system with time delay,” Journal of Process Control, vol. 31, pp. 17-29, 2015.

X. B. Meng, X. Z. Gao, Y. Liu, and H. Zhang, “A novel bat algorithm with habitat selection and Doppler effect in echoes for optimization,” Expert Systems with Applications, vol. 42, no. 17-18, pp. 6350-6364, 2015.

D. Fister, I. Fister Jr, I. Fister, and R. Šafarič, “Parameter tuning of PID controller with reactive nature-inspired algorithms,” Robotics and Autonomous Systems, vol. 84, pp. 64-75, 2016.

M. Sekara, M. Kowalski, A. Byrski, B. Indurkhya, M. Kisiel-Dorohinicki, D. Samson, and T. Lenaerts, “Multi-pheromone ant colony optimization for socio-cognitive simulation purposes,” Procedia Computer Science, vol. 51, pp. 954-963, 2015.

A. Suresh, K. V. Harish, and N. Radhika, “Particle swarm optimization over back propagation neural network for length of stay prediction,” Procedia computer science, vol. 46, pp. 268-275, 2015.




DOI: https://doi.org/10.18196/jrc.v4i5.19661

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Nguyen Xuan Chiem, Le Tran Thang

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 


Journal of Robotics and Control (JRC)

P-ISSN: 2715-5056 || E-ISSN: 2715-5072
Organized by Peneliti Teknologi Teknik Indonesia
Published by Universitas Muhammadiyah Yogyakarta in collaboration with Peneliti Teknologi Teknik Indonesia, Indonesia and the Department of Electrical Engineering
Website: http://journal.umy.ac.id/index.php/jrc
Email: jrcofumy@gmail.com


Kuliah Teknik Elektro Terbaik