A Passivity-based Control Combined with Sliding Mode Control for a DC-DC Boost Power Converter
Abstract
Keywords
Full Text:
PDFReferences
R. Ortega, A. Loria, P. J. Nicklasson, and H. Sira-Ramirez. Passivity-based control of Euler-Lagrange systems. London: Springer-Verlag, 1998.
E. Rodriguez, R. Leyva, G. G. Farivar, H. D. Tafti, C. D. Townsend, and J. Pou, “Incremental passivity control in multilevel cascaded H-Bridge converters,” IEEE Transactions on Power electronics, vol. 35, no. 8, pp. 8766-8778, 2020, doi: 10.1109/TPEL.2020.2965164.
H. N. Duong. Control of MIMO systems. Ho Chi Minh City: VNU Press, 2013.
H. K. Khalil. Nonlinear systems. New Jersey: Prentice-Hall 3rd edition, 2002.
M. Li, G. Chesi, and Y. Hong, “Input-Feedforward-passivity-based distributed optimization over jointly connected balanced digraphs,” IEEE Transactions on Automatic Control, vol. 66, no. 9, pp. 4117-4131, 2021, doi: 10.1109/TAC.2020.3028838.
M. N. Huynh, H. N. Duong, and V. H. Nguyen, “Passivity-based control of bicycle robot,” VNUHCM Journal of Engineering and Technology, vol. 5, no. 2, pp. 1520-1527, 2022, doi: 10.32508/stdjet.v5i2.954.
V. Krishnamurthy and G. Yin, “Multikernel passive stochastic gradient algorithms and transfer learning,” IEEE Transactions on Automatic control, vol. 67, no. 4, pp. 1792-1805, 2022, doi: 10.1109/TAC.2021.3079280.
S. Monaco, D. Normand-Cyrot, M. Mattioni, and A. Moreschini, “Nonlinear hamiltonian systems under sampling,” IEEE Transactions on Automatic control, vol. 67, no. 9, pp. 4598-4613, 2022, doi: 10.1109/TAC.2022.3164985.
W. He, S. Li, J. Yang, and Z. Wang, “Incremental passivity-based control for dc-dc boost converter under time-varying disturbances via a generalized proportional integral observer,” Journal of Power Electronics, vol. 18, no. 1, pp. 147-159, 2018.
W.J. Gil-Gonzalez, O.D. Montoya, A. Garces, F.M. Serra, and G. Magaldi, “Output voltage regulation for dc-dc buck converter: a passivity-based PI design,” in 2019 IEEE 10th Latin American Symposium on circuits and systems (LASCAS), pp. 189-192, 2019, doi: 10.1109/LASCAS.2019.8667557.
W. Li, K. Qin, B. Chen, and M. Shi, “Passivity-based distributed tracking control of uncertain agents via a neural network combined UDE,” Journal of Neurocomputing, vol. 449, pp. 342-356, 2021, doi: 10.1016/j.neucom.2021.03.008.
E. Nuno and R. Ortega, “Achieving consensus of euler-lagrange agents with interconnecting delays and without velocity measurements via passivity-based control,” IEEE Transactions on Control systems Technology, vol. 26, no. 1, pp. 222-232, 2018, doi: 10.1109/TCST.2017.2661822.
F. Zhang et al., “Passivity-based control of buck-boost converter for different loads research,” Journal of Electrical and Computer Engineering, vol. 2023, 2023, doi: 10.1155/2023/5558246.
M. Sharf, A. Jain, and D. Zelazo, “Geometric method for passivation cooperative control of equilibrium—independent passive-sgort systems,” IEEE Transactions on Automatic control, vol. 66, no. 12, pp. 5877-4892, 2021, doi: 10.1109/TAC.2020.3043390.
A. Turnwald, M. Schäfer, and S. Liu, "Passivity-Based Trajectory Tracking Control for an Autonomous Bicycle," IECON 2018 - 44th Annual Conference of the IEEE Industrial Electronics Society, pp. 2607-2612, 2018, doi: 10.1109/IECON.2018.8591382.
K. Baazouzi, A.D. Bensalah, S. Drid, and L. Chrifi-Alaoui, “Passivity voltage based control of the boost power converter used in photovoltaic system,” Electrical Engineering and Electromechanics, vol. 2, pp. 11-17, 2022, doi: 10.20998/2074-272X.2022.2.02.
M. Ahmed, A. Elhassane, and A. Mohamed, “Modelling and passivity-based control of a non isolated dc-dc converter in fuel cell system,” International Journal of Electrical and Computer Engineering (IJECE), vol. 8, no. 5, pp. 3436-3443, 2018, doi: 10.1159/ijece.v8i5. pp 3436-3443.
J. Kong, “Modified passivity-based control method for three phase cascaded unidirectional multilevel converters,” Journal of Power Electronics, vol. 23, pp. 1185-1195, 2023, doi: 10.1007/s43236-023-00615-1.
E. Moreno-Negrete, C. F. Mendez-Barrios, and D. Langarica-Cordoba, “On the PI-PBC controllers for a high gain transformerless dc-dc converter,” in Advances in Automation and Robotics Research: Proceedings of the 3rd Latin American Congress on Automation and Robotics, Monterrey, Mexico 2021, pp. 261-269, 2022, doi: 10.1007/978-3-Q30-90033-5_28.
R. Heredia-Barba, J. A. Juarez-Abad, J. Linares-Flores, M. A. Contreras-Ordaz, and J. L. Barahona-Avalos, “Passivity-based controller for a high energy quality active rectifier-DC motor system: an FPGA implementation,” Journal of Power Electronics, vol. 23, pp. 666-676, 2023, doi: 10.1007/s43236-022-00563-2.
M. Malekzadeh, A. Khosravi, and M. Tavan, “An immersion and invariance based input voltage and resistive load observer dc-dc boost converter,” SN Applied Sciences, vol. 2, 78, 2020, doi: 10.1007/s42452-019-1880-7.
Z. J. Yegane and A. Asghari, “A new high step-up dc/dc converter based on integrating coupled-inductor and voltage multiplier cell techniques for renewable energy applications,” in 2020 11th Power Electronics, Drive systems, and Technologies Conference (PEDSTC), pp. 1-6, 2020, doi: 10.1109/PEDSTC49159.2020.9088475.
B. A. Martinez-Trevino, A. E. Aroudi, A. Cid-Pastor, and L. Martinez-Salamero, “Nonlinear control for output voltage regulation of a boost converter with a constant power load,” IEEE Transactions on Power Electronics, vol. 34, no. 11, pp. 10381-10385, 2019, doi: 10.1109/TPEL.2019.2913570.
P. Verma, Md. N. Anwar, M. K. Ram, and A. Iqbal, “Internal model control scheme - based voltage and current mode control of dc-dc boost converter,” IEEE Access, vol. 11, pp. 110558-110569, 2023, doi: 10.1109/ACCESS.2023.3320272.
M. Mohadeszadeh, N. Pariz, and M.R. Ramezanial, “A fractional reset control scheme for a dc-dc buck converter,” International Journal of Dynamics and Control, vol. 10, pp. 2139-2150, 2022, doi: 10.1007/s40435-022-00928-2.
M. K. Sameer Kumar, J. Day, and R. Mondal, “Fractional-order (fo) control of dc-dc buck-boost converter,” In Advances in Power and Control Engineering: Proceedings of GUCON 2019, pp. 107-117, 2020, doi: 10.1007/978-981-15-0313-9_8.
A. Marahatta, Y. Rajbhandari, A. Shrestha, S. Phuyal, A. Thapa, and P. Korba, “Model predictive control of dc/dc boost converter with reinforcement learning,” Journal of Heliyon, vol. 8, no. 11, 2022, doi: 10.1016/j.heliyon.2022.e11416.
A. Mansouri, R. Gavagsaz-Ghoachani, M. Phattanasak, and S. Pierfederici, “Nonlinear cascaded control for a dc-dc boost converter,” Journal of Robotics and Control (JRC), vol. 4, no. 4, 2023, doi: 10.18196/jrc.v4i4.18932.
S. J. Gambhire, D. R. Kishore, P. S. Londhe, and S. N. Pawar, “Review of sliding mode based control techniques for control system applications,” International Journal of Dynamics and Control, vol. 9, pp. 363-378, 2021, doi: 10.1007/s40435-020-00638-7.
B. Taheri, M. Sedaghat, M. A. Bagherpour, and P. Farhadi, “A new controller for dc-dc converters based on sliding mode control techniques,” Journal of Control, automation and electrical systems, vol. 30, pp. 63-74, 2019, doi: 10.1007/s40313-018-00427-w.
J. Qiu, W. Ji, and M. Chadli, “A novel fuzzy output feedback dynamic siding mode controller design for two-dimensional nonlinear systems,” IEEE Transaction on Fuzzy systems, vol. 29, no. 10, pp. 2869-2877, October 2021, doi: 10.1109/TFUZZ.2020.3008271.
K. K. Panday, M. Kumar, A. Kumari, and J. Kumar, “Bidirectional dc-dc buck-boost converter for battery energy storage system anfd pv panel,” In Modeling, Simulation and Optimization: Proceedings of CoMSO 2020, pp. 681-693, 2021, doi: 10.1007/978-981-15-9829-6_54.
J. E. Ruiz-Duarte and A. G. Loukianov, “Sliding mode output-feedback causal output tracking for a class of discrete-time nonlinear systems,” International Journal of Robust and nonlinear control, vol. 29, no.6, pp. 1956-1975, April 2019, doi: 10.1002/rnc.4470.
I. O. Aksu and R. Coban, “Sliding mode PI control with backstepping approach for MIMO nonlinear cross-coupled tank systems,” International Journal of Robust and nonlinear control, vol. 29, no.6, pp. 1854-1871, April 2019, doi: 10.1002/rnc.4469.
T. T. Sarkar and C. Mahanta, “Estimation based sliding mode control of dc-dc boost converters,” Journal of IFAC-PapersOnline, vol. 55, no. 1, pp. 467-472, 2022, doi: 10.1016/j.ifacol.2022.04.077.
T. Anitha, B. Rajagopal, and S. Arulselvi, “Fuzzy sliding mode control of dc-dc boost converter with right-half plane zero,” in Artificial Intelligence and Evolutionary Computations in Engineering Systems: Computational Algorithm for AI Technology, Proceedings of ICAIECES 2020, pp. 95-111, 2022, doi: 10.1007/978-981-16-2674-6_8.
K. Raman, K. Jeyaraman, S. Mekhilef, and L. G. Alexander, “Design and stability analysis of interleaved flyback converter using Lyapunov direct method with FPGA implementation,” Journal of Electrical engineering, vol. 102, pp. 1651-1665, 2020, doi: 10.1007/s00202-020-00976-x.
Z. Alam, S. K. Ghosh, A. F. Alkhateeb, T. K. Roy, M. S. Islam, S. Saha, and M. A. Hussain, “Robust hybrid nonlinear control approach for stability enhancement of a constant power load boost converter,” Alexandria Engineering Journal, vol. 74, pp. 535-545, 2023, doi: 10.1016/j.aej.2023.05.041.
X. Wang, W. He, and T. Li, “An adaptive observer for sensorless current control of boost converter feeding unknown constant power load,” In Chinese Intelligent Automation Conference, pp. 830-837, 2023, doi: 10.1007/978-981-99-6187-0_83.
Y. Wang, S. Song, L. Zhu, and Z. Fu, “An adaptive sliding mode control algorithm for boost dc-dc converter of fchevs,” in ICNCC’19 Proceedings of the 2019 8th International Conference on Networks, Communication, and computing, pp. 212-216, 2019, doi: 10.1145/3375998.3376021.
A. Gupta and D. Joshi “Comparative analysis of nonlinear smc controller with linear pid controller for flyback converter,” DC—DC Converters for Future Renewable Energy Systems, pp. 71-87, 2022, doi: 10.1007/978-981-16-4388-0.
B. Swarnkar, S. K. Gawre, and G. Akodiya, “Comparative analysis of conventional and sliding mode control techniques for DC-DC boost converter for PV system under transient conditions,” in Recent Advances in Power Electronics and Drives: Select Proceedings of EPREC 2021, pp. 587-600, 2022, doi: 10.1007/978-981-16-9239-0_45.
M. J. Daylamani, P. Amiri, and M. H. Refan, “Design and stability analysis of a discrete-time sliding mode control for a synchronous dc-dc buck converter,” International Journal of Control, automation and systems, vol. 17, pp. 1393-1407, 2019, doi: 10.1007/s12555-017-9793-y.
T. R. Burle, G. Satpathy, and D. De, “Hybrid controller configuration for master-slave paralleling of dc-dc converters with improved sliding manifold,” Electrical engineering, pp. 1-13, 2023, doi: 10.1007/s00202-023-01976-3.
S. Azarastemal and M. Hejri, “Cascade control system design and stability analysis of a dc-dc boost converter with proportional integral and sliding mode controller and using singular perturbation theory,” Iranian Journal of Science and Technology, Transactions of Electrical engineering, vol. 45, pp. 1445-1462, July 2021, doi: 10.1007/s40998-021-00444-7.
A. Goudarzian and A. Khosravi, “A unified method to the design of an improved high frequency sliding mode current controller for dc/dc boost converter in continuous current condition based on analogue implementation,” Sadhana, vol. 45, 281, 2020, doi: 10.1007/s12046-020-01507-x.
M. K. Kanthi and A. D. Mary, “Performance analysis of sliding mode controlled bidirectional dc-dc converter for electric vehicles,” Smart Sensors Measurements and Instrumentation: Select Proceedings of CISCON 2020, pp. 335-349, 2021, doi: 10.1007/978-981-16-0336-5_28.
A. Singh and A. Ghosh, “Comparison of quantitative feedback theory dependent controller with conventional PID and sliding mode controllers on dc-dc boost converter for microgrid applications,” Technology and Economics of Smart Grids and sustainable energy, vol. 7, no. 11, 2022, doi: 10.1007/s40866-022-00133-2.
Z. Elhajji, K. Dehri, Z. Bouchama, A. S. Nouri, and N. Essounbouli, “Robustness analysis of a discrete integral sliding mode controller for dc-dc buck converter using input-output measurement,” In Advances in Robust Control and Applications, pp. 273-284, 2023, doi: 10.1007/978-981-99-3463-8_11.
L. Zhou, X. Yi, J. She, and Z. Zhang, “Generalized extended state observer based sliding mode control for buck converter systems,” International Journal of Control, automation and systems, vol. 20, pp. 3923-3931, 2022, doi: 10.1007/s12555-021-0382-8.
J. Wu, L. Luo, C. Wen, and Q. Wang, “Inverse decoupling sliding mode control for multilevel buck converter in low power applications,” Journal of Power Electronics, vol. 23, pp. 1174-1184, 2023, doi: 10.1007/s43236-023-00667-3.
K. A. Singh, S. Soni, A. Sachan, and K Chaudhary, “PWM-based proxy sliding mode controller for DC-DC buck converters,” In Modelling, Simulation and Intelligent Computing: Proceedings of MoSICom 2020, pp. 365-374, 2020, doi: 10.1007/978-981-15-4775-1_39.
N. A. M. Mustakin, M. Bakar, and M. Noh, “An implementation of sliding mode voltage control controlled buck-boost converter for solar applicaton,” In Advances in Intelligent Manufacturing and Mechatronics: Selected Articles from the Innovative Manufacturing, Mechatronics & Materials Forum (iM3F 2022), pp. 53-60, 2023, doi: 10.1007/978-981-19-8703-8_5.
P. P. Arya, “Internal model based dynamic sliding mode control for DC-DC boost converters,” Journal of IFAC-PapersOnline, vol. 55, no. 1, pp. 567-571, 2022, doi: 10.1016/j.ifacol.2022.04.093.
V. Repecho, D. Biel, J. M. Olm, and E Fossas, “Robust sliding mode control of a dc/dc boost converter with switching frequency regulation,” Journal of the Franklin Institute, vol. 355, no. 13, pp.5367-5383, 2018, doi: 10.1016/j.jfranklin.2018.05.028.
M. N. Huỳnh, H. N. Dương, and V. H. Nguyễn, “Passivity-based control using genetic algorithm for a DC-DC boost power converter,” VNUHCM Journal of Engineering and Technology, vol. 6, no. 2, pp. 1891-1905, 2023, doi: 10.32508/stdjet.v6i2.1053.
Q. Xiao, T. Huang, and M. A. Hussain, “Passivity and passification of fuzzy memristive inertial neural networks on time scales,” IEEE Transactions on Fuzzy systems, vol. 26, no. 6, pp. 3342-3355, 2018, doi: 10.1109/TFUZZ.2018.2825306.
S. Zare, A. R. Tavakolpour-Saleh, and T. Binazadeh, “Passivity-based control technique incorporating genetic algorithm for design of a free piston stirling engine,” Journal of Renewable Energy Focus, vol. 28, no.0, pp. 66-77, March 2019, doi: 10.1016/j.ref.2018.11.003.
M. A. Hassan, E. Li, X. Li, T. Li, C. Duan, and S. Chi, “Adaptive passivity-based control of dc-dc buck power converter with constant power load in DC Microgrid systems,” IEEE Journal of Emerging and selected topics in power electronics, vol. 7, no. 3, pp. 2029-2040, 2019, doi: 10.1109/JESTPE.2018.2874449.
J. L. Chang, “Passivity-based sliding mode controller/observer for second-order nonlinear systems,” International Journal of Robust and nonlinear control, vol. 29, no. 6, pp. 1976-1989, 2019, doi: 10.1002/rnc.4474.
M. Cucuzzella, R. Lazzari, Y. Kawano, K. C. Kosaraju, and J. M. A. Scherpen, "Robust Passivity-Based Control of Boost Converters in DC Microgrids⋆," 2019 IEEE 58th Conference on Decision and Control (CDC), pp. 8435-8440, 2019, doi: 10.1109/CDC40024.2019.9029657.
M. Xia, A. Rahnama, S. Wang, and P. J. Antsaklis, “Control design using passivation for stability and performance,” IEEE Transactions on Automatic Control, vol. 63, no. 9, pp. 2987-2993, 2018, doi: 10.1109/TAC.2018.2789681.
W. Liu, X. Cui, J. Zhou, Z. Zhang, M. Hou, S. Shan, and S. Wu, “Composite passivity based control of dc/dc boost converters with constant power loads in dc microgrid,” Journal of Power Electronics, vol. 22, pp. 1927-1937, 2022, doi: 10.1007/s43236-022-00492-0.
M. T. Vo, V. D. H. Nguyen, H. N. Duong, and V. H. Nguyen, “Combining passivity-based control and linear quadratic regulator to control a rotary inverted pendulum,” Journal of Robotics and Control (JRC), vol. 4, no. 4, 2023, doi: 10.18196/jrc.v4i4.18498.
Q. Xian, Y. Wang, F. Wang, R. Li, and S. Wang, “Hybrid passivity-based control for stability and robustness enhancement in dc microgrids with constant power loads,” Journal of Power Electronics, vol. 23, pp. 296-307, 2023, doi: 10.1007/s43236-022-00529-4.
X. Li and X. Fang, “Passive backstepping control of dual active bridge converter in modular three-port DC converter,” Electronics, vol. 12, no. 5, p. 1074, 2023, doi: 10.3390/electronics12051074.
B. Said, T. Ilyes, K. Okba, D. E. Zabia, and M. Messaoud, “Optimized passivity-based control of a hybrid electric vehicle source using a novel optimizer,” Electrotehnica, Electronica, Automatica, vol. 71, no. 3, pp. 23-31, 2023, doi: 10.46904/eea.23.71.3.1108003.
J. Zhou, Q. Zhang, M.A. Hassan, Z. Zhana, M. Hou, S. Wu, Y. Li, E. Li, and J. M. Guerrero, “A robust passivity based model predictive control for buck converter suppling constant power load,” Energy Reports, vol. 7, no. 7, pp. 792-813, 2021, doi: 10.1016/j.egyr.2021.09.193.
DOI: https://doi.org/10.18196/jrc.v4i6.20071
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Minh Ngoc Huynh, Hoai Nghia Duong, Vinh Hao Nguyen
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Journal of Robotics and Control (JRC)
P-ISSN: 2715-5056 || E-ISSN: 2715-5072
Organized by Peneliti Teknologi Teknik Indonesia
Published by Universitas Muhammadiyah Yogyakarta in collaboration with Peneliti Teknologi Teknik Indonesia, Indonesia and the Department of Electrical Engineering
Website: http://journal.umy.ac.id/index.php/jrc
Email: jrcofumy@gmail.com