A Passivity-based Control Combined with Sliding Mode Control for a DC-DC Boost Power Converter

Minh Ngoc Huynh, Hoai Nghia Duong, Vinh Hao Nguyen

Abstract


In this paper, a passivity-based control combined with sliding mode control for a DC-DC boost power converter is proposed. Moreover, a passivity-based control for a DC-DC boost power converter is also proposed. Using a co-ordinate transformation of state variables and control input, a DC-DC boost power converter is passive. A new plant is zero-state observable and the equilibrium point at origin of this plant is asymptotically stable. Then, a passivity-based control is applied to this plant such that the capacitor voltage is equal to the desired voltage. Additionally, the sliding mode control law is chosen such that the derivative of Lyapunov function is negative semidefinite. Finally, a passivity-based control combined with sliding mode control law is applied to this plant such that the capacitor voltage is equal to the desired voltage. The simulation results of the passivity-based control, the sliding mode control and the passivity-based control combined with sliding mode control demonstrate the effectiveness and show that the capacitor voltage is kept at the desired voltage when the desired voltage, the input voltage E and the load resistor R are changed. The results show that compared with the passivity-based control, the passivity-based control combined with sliding mode control has better performance such as shorter settling time, 8.5 ms when R changes and it has smaller steady-state error, which is indicated by the value of integral absolute error (IAE), 0.0679 when the desired voltage changes. The paper has limitations such as the assumed circuit parameters.

Keywords


DC-DC Boost Power Converter; Passivity-based Control; Sliding Mode Control.

Full Text:

PDF

References


R. Ortega, A. Loria, P. J. Nicklasson, and H. Sira-Ramirez. Passivity-based control of Euler-Lagrange systems. London: Springer-Verlag, 1998.

E. Rodriguez, R. Leyva, G. G. Farivar, H. D. Tafti, C. D. Townsend, and J. Pou, “Incremental passivity control in multilevel cascaded H-Bridge converters,” IEEE Transactions on Power electronics, vol. 35, no. 8, pp. 8766-8778, 2020, doi: 10.1109/TPEL.2020.2965164.

H. N. Duong. Control of MIMO systems. Ho Chi Minh City: VNU Press, 2013.

H. K. Khalil. Nonlinear systems. New Jersey: Prentice-Hall 3rd edition, 2002.

M. Li, G. Chesi, and Y. Hong, “Input-Feedforward-passivity-based distributed optimization over jointly connected balanced digraphs,” IEEE Transactions on Automatic Control, vol. 66, no. 9, pp. 4117-4131, 2021, doi: 10.1109/TAC.2020.3028838.

M. N. Huynh, H. N. Duong, and V. H. Nguyen, “Passivity-based control of bicycle robot,” VNUHCM Journal of Engineering and Technology, vol. 5, no. 2, pp. 1520-1527, 2022, doi: 10.32508/stdjet.v5i2.954.

V. Krishnamurthy and G. Yin, “Multikernel passive stochastic gradient algorithms and transfer learning,” IEEE Transactions on Automatic control, vol. 67, no. 4, pp. 1792-1805, 2022, doi: 10.1109/TAC.2021.3079280.

S. Monaco, D. Normand-Cyrot, M. Mattioni, and A. Moreschini, “Nonlinear hamiltonian systems under sampling,” IEEE Transactions on Automatic control, vol. 67, no. 9, pp. 4598-4613, 2022, doi: 10.1109/TAC.2022.3164985.

W. He, S. Li, J. Yang, and Z. Wang, “Incremental passivity-based control for dc-dc boost converter under time-varying disturbances via a generalized proportional integral observer,” Journal of Power Electronics, vol. 18, no. 1, pp. 147-159, 2018.

W.J. Gil-Gonzalez, O.D. Montoya, A. Garces, F.M. Serra, and G. Magaldi, “Output voltage regulation for dc-dc buck converter: a passivity-based PI design,” in 2019 IEEE 10th Latin American Symposium on circuits and systems (LASCAS), pp. 189-192, 2019, doi: 10.1109/LASCAS.2019.8667557.

W. Li, K. Qin, B. Chen, and M. Shi, “Passivity-based distributed tracking control of uncertain agents via a neural network combined UDE,” Journal of Neurocomputing, vol. 449, pp. 342-356, 2021, doi: 10.1016/j.neucom.2021.03.008.

E. Nuno and R. Ortega, “Achieving consensus of euler-lagrange agents with interconnecting delays and without velocity measurements via passivity-based control,” IEEE Transactions on Control systems Technology, vol. 26, no. 1, pp. 222-232, 2018, doi: 10.1109/TCST.2017.2661822.

F. Zhang et al., “Passivity-based control of buck-boost converter for different loads research,” Journal of Electrical and Computer Engineering, vol. 2023, 2023, doi: 10.1155/2023/5558246.

M. Sharf, A. Jain, and D. Zelazo, “Geometric method for passivation cooperative control of equilibrium—independent passive-sgort systems,” IEEE Transactions on Automatic control, vol. 66, no. 12, pp. 5877-4892, 2021, doi: 10.1109/TAC.2020.3043390.

A. Turnwald, M. Schäfer, and S. Liu, "Passivity-Based Trajectory Tracking Control for an Autonomous Bicycle," IECON 2018 - 44th Annual Conference of the IEEE Industrial Electronics Society, pp. 2607-2612, 2018, doi: 10.1109/IECON.2018.8591382.

K. Baazouzi, A.D. Bensalah, S. Drid, and L. Chrifi-Alaoui, “Passivity voltage based control of the boost power converter used in photovoltaic system,” Electrical Engineering and Electromechanics, vol. 2, pp. 11-17, 2022, doi: 10.20998/2074-272X.2022.2.02.

M. Ahmed, A. Elhassane, and A. Mohamed, “Modelling and passivity-based control of a non isolated dc-dc converter in fuel cell system,” International Journal of Electrical and Computer Engineering (IJECE), vol. 8, no. 5, pp. 3436-3443, 2018, doi: 10.1159/ijece.v8i5. pp 3436-3443.

J. Kong, “Modified passivity-based control method for three phase cascaded unidirectional multilevel converters,” Journal of Power Electronics, vol. 23, pp. 1185-1195, 2023, doi: 10.1007/s43236-023-00615-1.

E. Moreno-Negrete, C. F. Mendez-Barrios, and D. Langarica-Cordoba, “On the PI-PBC controllers for a high gain transformerless dc-dc converter,” in Advances in Automation and Robotics Research: Proceedings of the 3rd Latin American Congress on Automation and Robotics, Monterrey, Mexico 2021, pp. 261-269, 2022, doi: 10.1007/978-3-Q30-90033-5_28.

R. Heredia-Barba, J. A. Juarez-Abad, J. Linares-Flores, M. A. Contreras-Ordaz, and J. L. Barahona-Avalos, “Passivity-based controller for a high energy quality active rectifier-DC motor system: an FPGA implementation,” Journal of Power Electronics, vol. 23, pp. 666-676, 2023, doi: 10.1007/s43236-022-00563-2.

M. Malekzadeh, A. Khosravi, and M. Tavan, “An immersion and invariance based input voltage and resistive load observer dc-dc boost converter,” SN Applied Sciences, vol. 2, 78, 2020, doi: 10.1007/s42452-019-1880-7.

Z. J. Yegane and A. Asghari, “A new high step-up dc/dc converter based on integrating coupled-inductor and voltage multiplier cell techniques for renewable energy applications,” in 2020 11th Power Electronics, Drive systems, and Technologies Conference (PEDSTC), pp. 1-6, 2020, doi: 10.1109/PEDSTC49159.2020.9088475.

B. A. Martinez-Trevino, A. E. Aroudi, A. Cid-Pastor, and L. Martinez-Salamero, “Nonlinear control for output voltage regulation of a boost converter with a constant power load,” IEEE Transactions on Power Electronics, vol. 34, no. 11, pp. 10381-10385, 2019, doi: 10.1109/TPEL.2019.2913570.

P. Verma, Md. N. Anwar, M. K. Ram, and A. Iqbal, “Internal model control scheme - based voltage and current mode control of dc-dc boost converter,” IEEE Access, vol. 11, pp. 110558-110569, 2023, doi: 10.1109/ACCESS.2023.3320272.

M. Mohadeszadeh, N. Pariz, and M.R. Ramezanial, “A fractional reset control scheme for a dc-dc buck converter,” International Journal of Dynamics and Control, vol. 10, pp. 2139-2150, 2022, doi: 10.1007/s40435-022-00928-2.

M. K. Sameer Kumar, J. Day, and R. Mondal, “Fractional-order (fo) control of dc-dc buck-boost converter,” In Advances in Power and Control Engineering: Proceedings of GUCON 2019, pp. 107-117, 2020, doi: 10.1007/978-981-15-0313-9_8.

A. Marahatta, Y. Rajbhandari, A. Shrestha, S. Phuyal, A. Thapa, and P. Korba, “Model predictive control of dc/dc boost converter with reinforcement learning,” Journal of Heliyon, vol. 8, no. 11, 2022, doi: 10.1016/j.heliyon.2022.e11416.

A. Mansouri, R. Gavagsaz-Ghoachani, M. Phattanasak, and S. Pierfederici, “Nonlinear cascaded control for a dc-dc boost converter,” Journal of Robotics and Control (JRC), vol. 4, no. 4, 2023, doi: 10.18196/jrc.v4i4.18932.

S. J. Gambhire, D. R. Kishore, P. S. Londhe, and S. N. Pawar, “Review of sliding mode based control techniques for control system applications,” International Journal of Dynamics and Control, vol. 9, pp. 363-378, 2021, doi: 10.1007/s40435-020-00638-7.

B. Taheri, M. Sedaghat, M. A. Bagherpour, and P. Farhadi, “A new controller for dc-dc converters based on sliding mode control techniques,” Journal of Control, automation and electrical systems, vol. 30, pp. 63-74, 2019, doi: 10.1007/s40313-018-00427-w.

J. Qiu, W. Ji, and M. Chadli, “A novel fuzzy output feedback dynamic siding mode controller design for two-dimensional nonlinear systems,” IEEE Transaction on Fuzzy systems, vol. 29, no. 10, pp. 2869-2877, October 2021, doi: 10.1109/TFUZZ.2020.3008271.

K. K. Panday, M. Kumar, A. Kumari, and J. Kumar, “Bidirectional dc-dc buck-boost converter for battery energy storage system anfd pv panel,” In Modeling, Simulation and Optimization: Proceedings of CoMSO 2020, pp. 681-693, 2021, doi: 10.1007/978-981-15-9829-6_54.

J. E. Ruiz-Duarte and A. G. Loukianov, “Sliding mode output-feedback causal output tracking for a class of discrete-time nonlinear systems,” International Journal of Robust and nonlinear control, vol. 29, no.6, pp. 1956-1975, April 2019, doi: 10.1002/rnc.4470.

I. O. Aksu and R. Coban, “Sliding mode PI control with backstepping approach for MIMO nonlinear cross-coupled tank systems,” International Journal of Robust and nonlinear control, vol. 29, no.6, pp. 1854-1871, April 2019, doi: 10.1002/rnc.4469.

T. T. Sarkar and C. Mahanta, “Estimation based sliding mode control of dc-dc boost converters,” Journal of IFAC-PapersOnline, vol. 55, no. 1, pp. 467-472, 2022, doi: 10.1016/j.ifacol.2022.04.077.

T. Anitha, B. Rajagopal, and S. Arulselvi, “Fuzzy sliding mode control of dc-dc boost converter with right-half plane zero,” in Artificial Intelligence and Evolutionary Computations in Engineering Systems: Computational Algorithm for AI Technology, Proceedings of ICAIECES 2020, pp. 95-111, 2022, doi: 10.1007/978-981-16-2674-6_8.

K. Raman, K. Jeyaraman, S. Mekhilef, and L. G. Alexander, “Design and stability analysis of interleaved flyback converter using Lyapunov direct method with FPGA implementation,” Journal of Electrical engineering, vol. 102, pp. 1651-1665, 2020, doi: 10.1007/s00202-020-00976-x.

Z. Alam, S. K. Ghosh, A. F. Alkhateeb, T. K. Roy, M. S. Islam, S. Saha, and M. A. Hussain, “Robust hybrid nonlinear control approach for stability enhancement of a constant power load boost converter,” Alexandria Engineering Journal, vol. 74, pp. 535-545, 2023, doi: 10.1016/j.aej.2023.05.041.

X. Wang, W. He, and T. Li, “An adaptive observer for sensorless current control of boost converter feeding unknown constant power load,” In Chinese Intelligent Automation Conference, pp. 830-837, 2023, doi: 10.1007/978-981-99-6187-0_83.

Y. Wang, S. Song, L. Zhu, and Z. Fu, “An adaptive sliding mode control algorithm for boost dc-dc converter of fchevs,” in ICNCC’19 Proceedings of the 2019 8th International Conference on Networks, Communication, and computing, pp. 212-216, 2019, doi: 10.1145/3375998.3376021.

A. Gupta and D. Joshi “Comparative analysis of nonlinear smc controller with linear pid controller for flyback converter,” DC—DC Converters for Future Renewable Energy Systems, pp. 71-87, 2022, doi: 10.1007/978-981-16-4388-0.

B. Swarnkar, S. K. Gawre, and G. Akodiya, “Comparative analysis of conventional and sliding mode control techniques for DC-DC boost converter for PV system under transient conditions,” in Recent Advances in Power Electronics and Drives: Select Proceedings of EPREC 2021, pp. 587-600, 2022, doi: 10.1007/978-981-16-9239-0_45.

M. J. Daylamani, P. Amiri, and M. H. Refan, “Design and stability analysis of a discrete-time sliding mode control for a synchronous dc-dc buck converter,” International Journal of Control, automation and systems, vol. 17, pp. 1393-1407, 2019, doi: 10.1007/s12555-017-9793-y.

T. R. Burle, G. Satpathy, and D. De, “Hybrid controller configuration for master-slave paralleling of dc-dc converters with improved sliding manifold,” Electrical engineering, pp. 1-13, 2023, doi: 10.1007/s00202-023-01976-3.

S. Azarastemal and M. Hejri, “Cascade control system design and stability analysis of a dc-dc boost converter with proportional integral and sliding mode controller and using singular perturbation theory,” Iranian Journal of Science and Technology, Transactions of Electrical engineering, vol. 45, pp. 1445-1462, July 2021, doi: 10.1007/s40998-021-00444-7.

A. Goudarzian and A. Khosravi, “A unified method to the design of an improved high frequency sliding mode current controller for dc/dc boost converter in continuous current condition based on analogue implementation,” Sadhana, vol. 45, 281, 2020, doi: 10.1007/s12046-020-01507-x.

M. K. Kanthi and A. D. Mary, “Performance analysis of sliding mode controlled bidirectional dc-dc converter for electric vehicles,” Smart Sensors Measurements and Instrumentation: Select Proceedings of CISCON 2020, pp. 335-349, 2021, doi: 10.1007/978-981-16-0336-5_28.

A. Singh and A. Ghosh, “Comparison of quantitative feedback theory dependent controller with conventional PID and sliding mode controllers on dc-dc boost converter for microgrid applications,” Technology and Economics of Smart Grids and sustainable energy, vol. 7, no. 11, 2022, doi: 10.1007/s40866-022-00133-2.

Z. Elhajji, K. Dehri, Z. Bouchama, A. S. Nouri, and N. Essounbouli, “Robustness analysis of a discrete integral sliding mode controller for dc-dc buck converter using input-output measurement,” In Advances in Robust Control and Applications, pp. 273-284, 2023, doi: 10.1007/978-981-99-3463-8_11.

L. Zhou, X. Yi, J. She, and Z. Zhang, “Generalized extended state observer based sliding mode control for buck converter systems,” International Journal of Control, automation and systems, vol. 20, pp. 3923-3931, 2022, doi: 10.1007/s12555-021-0382-8.

J. Wu, L. Luo, C. Wen, and Q. Wang, “Inverse decoupling sliding mode control for multilevel buck converter in low power applications,” Journal of Power Electronics, vol. 23, pp. 1174-1184, 2023, doi: 10.1007/s43236-023-00667-3.

K. A. Singh, S. Soni, A. Sachan, and K Chaudhary, “PWM-based proxy sliding mode controller for DC-DC buck converters,” In Modelling, Simulation and Intelligent Computing: Proceedings of MoSICom 2020, pp. 365-374, 2020, doi: 10.1007/978-981-15-4775-1_39.

N. A. M. Mustakin, M. Bakar, and M. Noh, “An implementation of sliding mode voltage control controlled buck-boost converter for solar applicaton,” In Advances in Intelligent Manufacturing and Mechatronics: Selected Articles from the Innovative Manufacturing, Mechatronics & Materials Forum (iM3F 2022), pp. 53-60, 2023, doi: 10.1007/978-981-19-8703-8_5.

P. P. Arya, “Internal model based dynamic sliding mode control for DC-DC boost converters,” Journal of IFAC-PapersOnline, vol. 55, no. 1, pp. 567-571, 2022, doi: 10.1016/j.ifacol.2022.04.093.

V. Repecho, D. Biel, J. M. Olm, and E Fossas, “Robust sliding mode control of a dc/dc boost converter with switching frequency regulation,” Journal of the Franklin Institute, vol. 355, no. 13, pp.5367-5383, 2018, doi: 10.1016/j.jfranklin.2018.05.028.

M. N. Huỳnh, H. N. Dương, and V. H. Nguyễn, “Passivity-based control using genetic algorithm for a DC-DC boost power converter,” VNUHCM Journal of Engineering and Technology, vol. 6, no. 2, pp. 1891-1905, 2023, doi: 10.32508/stdjet.v6i2.1053.

Q. Xiao, T. Huang, and M. A. Hussain, “Passivity and passification of fuzzy memristive inertial neural networks on time scales,” IEEE Transactions on Fuzzy systems, vol. 26, no. 6, pp. 3342-3355, 2018, doi: 10.1109/TFUZZ.2018.2825306.

S. Zare, A. R. Tavakolpour-Saleh, and T. Binazadeh, “Passivity-based control technique incorporating genetic algorithm for design of a free piston stirling engine,” Journal of Renewable Energy Focus, vol. 28, no.0, pp. 66-77, March 2019, doi: 10.1016/j.ref.2018.11.003.

M. A. Hassan, E. Li, X. Li, T. Li, C. Duan, and S. Chi, “Adaptive passivity-based control of dc-dc buck power converter with constant power load in DC Microgrid systems,” IEEE Journal of Emerging and selected topics in power electronics, vol. 7, no. 3, pp. 2029-2040, 2019, doi: 10.1109/JESTPE.2018.2874449.

J. L. Chang, “Passivity-based sliding mode controller/observer for second-order nonlinear systems,” International Journal of Robust and nonlinear control, vol. 29, no. 6, pp. 1976-1989, 2019, doi: 10.1002/rnc.4474.

M. Cucuzzella, R. Lazzari, Y. Kawano, K. C. Kosaraju, and J. M. A. Scherpen, "Robust Passivity-Based Control of Boost Converters in DC Microgrids⋆," 2019 IEEE 58th Conference on Decision and Control (CDC), pp. 8435-8440, 2019, doi: 10.1109/CDC40024.2019.9029657.

M. Xia, A. Rahnama, S. Wang, and P. J. Antsaklis, “Control design using passivation for stability and performance,” IEEE Transactions on Automatic Control, vol. 63, no. 9, pp. 2987-2993, 2018, doi: 10.1109/TAC.2018.2789681.

W. Liu, X. Cui, J. Zhou, Z. Zhang, M. Hou, S. Shan, and S. Wu, “Composite passivity based control of dc/dc boost converters with constant power loads in dc microgrid,” Journal of Power Electronics, vol. 22, pp. 1927-1937, 2022, doi: 10.1007/s43236-022-00492-0.

M. T. Vo, V. D. H. Nguyen, H. N. Duong, and V. H. Nguyen, “Combining passivity-based control and linear quadratic regulator to control a rotary inverted pendulum,” Journal of Robotics and Control (JRC), vol. 4, no. 4, 2023, doi: 10.18196/jrc.v4i4.18498.

Q. Xian, Y. Wang, F. Wang, R. Li, and S. Wang, “Hybrid passivity-based control for stability and robustness enhancement in dc microgrids with constant power loads,” Journal of Power Electronics, vol. 23, pp. 296-307, 2023, doi: 10.1007/s43236-022-00529-4.

X. Li and X. Fang, “Passive backstepping control of dual active bridge converter in modular three-port DC converter,” Electronics, vol. 12, no. 5, p. 1074, 2023, doi: 10.3390/electronics12051074.

B. Said, T. Ilyes, K. Okba, D. E. Zabia, and M. Messaoud, “Optimized passivity-based control of a hybrid electric vehicle source using a novel optimizer,” Electrotehnica, Electronica, Automatica, vol. 71, no. 3, pp. 23-31, 2023, doi: 10.46904/eea.23.71.3.1108003.

J. Zhou, Q. Zhang, M.A. Hassan, Z. Zhana, M. Hou, S. Wu, Y. Li, E. Li, and J. M. Guerrero, “A robust passivity based model predictive control for buck converter suppling constant power load,” Energy Reports, vol. 7, no. 7, pp. 792-813, 2021, doi: 10.1016/j.egyr.2021.09.193.




DOI: https://doi.org/10.18196/jrc.v4i6.20071

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Minh Ngoc Huynh, Hoai Nghia Duong, Vinh Hao Nguyen

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 


Journal of Robotics and Control (JRC)

P-ISSN: 2715-5056 || E-ISSN: 2715-5072
Organized by Peneliti Teknologi Teknik Indonesia
Published by Universitas Muhammadiyah Yogyakarta in collaboration with Peneliti Teknologi Teknik Indonesia, Indonesia and the Department of Electrical Engineering
Website: http://journal.umy.ac.id/index.php/jrc
Email: jrcofumy@gmail.com


Kuliah Teknik Elektro Terbaik