Local-Stability Analysis of Cascaded Control for a Switching Power Converter

Mohammad Afkar, Roghayeh Gavagsaz-Ghoachani, Matheepot Phattanasak, Serge Pierfederici, Wiset Saksiri

Abstract


Switching power converters are integral in various applications like transportation and renewable energy. After their design, ensuring stable closed-loop poles is critical to maintain safe operating conditions. This study focuses on a switching DC-DC boost converter with a cascade control approach using an energy controller for the outer loop and indirect-sliding mode control for the inner loop. The research objective involves investigating stability through eigenvalue evaluation at different operating points. A large-signal average model is applied to make controlled performance independent of the operating point by fixing system poles. Nonlinear controllers, specifically indirect-sliding mode control, are chosen for their robustness, constant switching frequency, and implementation ease. Results indicate that insufficient decoupling leads to eigenvalue displacement, impacting control parameter choices. The research contribution is investigating the local stability of cascaded control, considering its advantageous implications for both performance and design. This study contributes to the understanding of switching power converters' stability, emphasizing the proposed methodology's broader applicability to diverse converter structures. The proposed approach, applicable to various switching power converters, sheds light on the importance of proper decoupling between outer and inner loop dynamics.

Keywords


Cascaded Control; Indirect-Sliding Control; Energy; Stability; DC-DC Converters.

Full Text:

PDF

References


T. A. Pereira, L. Schmitz, W. M. dos Santos, D. C. Martins, and R. F. Coelho, "Design of a Portable Photovoltaic I–V Curve Tracer Based on the DC–DC Converter Method," IEEE J. Photovolt., vol. 11, no. 2, pp. 552-560, March 2021, DOI: 10.1109/JPHOTOV.2021.3049903.

Y. Zhuang, F. Liu, X. Zhang, Y. Huang, X. Zha, and Z. Liu, "Short-Circuit Fault-Tolerant Topology for Multiport Cascaded DC/DC Converter in Photovoltaic Power Generation System," IEEE Trans. Power Electron., vol. 36, no. 1, pp. 549-561, Jan. 2021, DOI: 10.1109/TPEL.2020.3004070

S. W. Azeem, W. Chen, I. Tariq, H. Ye, and D. Kaija, "A Hybrid Resonant ZVZCS Three-Level Converter Suitable for Photovoltaic Power DC Distribution System," IEEE Access, vol. 8, pp. 114981-114990, 2020, DOI: 10.1109/ACCESS.2020.3002338.

J. W. Zapata, S. Kouro, G. Carrasco, H. Renaudineau, and T. A. Meynard, "Analysis of Partial Power DC–DC Converters for Two-Stage Photovoltaic Systems," IEEE J. Emerg. Sel. Top. Power Electron., vol. 7, no. 1, pp. 591-603, March 2019, DOI: 10.1109/JESTPE.2018.2842638.

G. G. Kumar, K. Sundaramoorthy, V. Karthikeyan, and E. Babaei, "Switched Capacitor–Inductor Network Based Ultra-Gain DC–DC Converter Using Single Switch," IEEE Trans. Ind. Electron., vol. 67, no. 12, pp. 10274-10283, Dec. 2020, DOI: 10.1109/TIE.2019.2962406.

P. K. Pardhi and S. K. Sharma, "High Gain Non Isolated DC Converter Employed in Single-Phase Grid-Tied Solar Photovoltaic Supply System," IEEE Trans. Ind. Appl., vol. 57, no. 5, pp. 5170-5182, Sept.-Oct. 2021, DOI: 10.1109/TIA.2021.3095439.

S. Khan, M. Zaid, M. M. A. Khan, and A. Sarwar, "A Non-Pulsating Input Current Step-Up DC/DC Converter With Common Ground Structure for Photovoltaic Applications," IEEE Access, vol. 9, pp. 159432-159446, 2021, DOI: 10.1109/ACCESS.2021.3128255.

P. L. Métayer, Q. Loeuillet, F. Wallart, C. Buttay, D. Dujic, and P. Dworakowski, "Phase-Shifted Full Bridge DC–DC Converter for Photovoltaic MVDC Power Collection Networks," IEEE Access, vol. 11, pp. 19039-19048, 2023, DOI: 10.1109/ACCESS.2023.3247952.

R. Rahimi, S. Habibi, P. Shamsi, and M. Ferdowsi, "A Three-Winding Coupled-Inductor-Based Dual-Switch High Step-Up DC–DC Converter for Photovoltaic Systems," IEEE Journal of Emerging and Selected Topics in Industrial Electronics, vol. 3, no. 4, pp. 1106-1117, Oct. 2022, DOI: 10.1109/JESTIE.2022.3151554.

R. Rahimi, S. Habibi, M. Ferdowsi, and P. Shamsi, "Z-Source-Based High Step-Up DC–DC Converters for Photovoltaic Applications," IEEE J. Emerg. Sel. Top. Power Electron., vol. 10, no. 4, pp. 4783-4796, Aug. 2022, DOI: 10.1109/JESTPE.2021.3131996.

D. López del Moral, A. Barrado, M. Sanz, A. Lázaro, and P. Zumel, "Analysis, Design, and Implementation of the AFZ Converter Applied to Photovoltaic Systems," IEEE Trans. Power Electron., vol. 36, no. 2, pp. 1883-1900, Feb. 2021, DOI: 10.1109/TPEL.2020.3010152.

R. Rahimi, S. Habibi, M. Ferdowsi, and P. Shamsi, "A Three-Winding Coupled Inductor-Based Interleaved High-Voltage Gain DC–DC Converter for Photovoltaic Systems," IEEE Trans. Power Electron., vol. 37, no. 1, pp. 990-1002, Jan. 2022, DOI: 10.1109/TPEL.2021.3099486.

S. R. Kukunuru, Y. Naeimi, and L. G. Salem, "A Series-Parallel Switched-Photovoltaic DC–DC Converter," IEEE J. Solid-State Circuits, vol. 58, no. 3, pp. 742-756, March 2023, DOI: 10.1109/JSSC.2022.3223890.

Y. Zhuang et al., "A Multiport Modular DC–DC Converter With Low-Loss Series LC Power Balancing Unit for MVDC Interface of Distributed Photovoltaics," IEEE Trans. Power Electron., vol. 36, no. 7, pp. 7736-7749, July 2021, DOI: 10.1109/TPEL.2020.3041875.

V. K. Goyal and A. Shukla, "Isolated DC–DC Boost Converter for Wide Input Voltage Range and Wide Load Range Applications," IEEE Trans. Ind. Electron., vol. 68, no. 10, pp. 9527-9539, Oct. 2021, DOI: 10.1109/TIE.2020.3029479.

A. Sarikhani, B. Allahverdinejad, and M. Hamzeh, "A Nonisolated Buck–Boost DC–DC Converter With Continuous Input Current for Photovoltaic Applications," IEEE J. Emerg. Sel. Top. Power Electron., vol. 9, no. 1, pp. 804-811, Feb. 2021, DOI: 10.1109/JESTPE.2020.2985844.

I. A. Reyes-Portillo, J. Morales-Saldaña, C. Romero-Rivera, and E. Palacios-Hernández, "Design and Modeling of a High Current Ratio Converter for PV Applications," IEEE Lat. Am. Trans., vol. 21, no. 10, pp. 1144-1155, Oct. 2023, DOI: 10.1109/TLA.2023.10255452.

Chandrasekar et al., "Non-Isolated High-Gain Triple Port DC–DC Buck-Boost Converter With Positive Output Voltage for Photovoltaic Applications," IEEE Access, vol. 8, pp. 113649-113666, 2020, DOI: 10.1109/ACCESS.2020.3003192.

J. Zeng, J. Ning, X. Du, T. Kim, Z. Yang, and V. Winstead, "A Four-Port DC–DC Converter for a Standalone Wind and Solar Energy System," IEEE Trans. Ind. Appl., vol. 56, no. 1, pp. 446-454, 2020, DOI: 10.1109/TIA.2019.2948125.

J. Wang, K. Sun, C. Xue, T. Liu, and Y. Li, "Multi-Port DC-AC Converter With Differential Power Processing DC-DC Converter and Flexible Power Control for Battery ESS Integrated PV Systems," IEEE Trans. Ind. Electron., vol. 69, no. 5, pp. 4879-4889, May 2022, DOI: 10.1109/TIE.2021.3080198.

R. Liu, G. Zhou, Q. Tian, and G. Xu, "Extendable Multiport High Step-Up DC–DC Converter for Photovoltaic-Battery Systems With Reduced Voltage Stress on Switches/Diodes," IEEE Trans. Ind. Electron., vol. 70, no. 9, pp. 9123-9135, Sept. 2023, DOI: 10.1109/TIE.2022.3206752.

J. Zeng, X. Du, and Z. Yang, "A Multiport Bidirectional DC–DC Converter for Hybrid Renewable Energy System Integration," IEEE Trans. Power Electron., vol. 36, no. 11, pp. 12281-12291, Nov. 2021, DOI: 10.1109/TPEL.2021.3082427.

Q. Tian, G. Zhou, M. Leng, G. Xu, and X. Fan, "A Nonisolated Symmetric Bipolar Output Four-Port Converter Interfacing PV-Battery System," IEEE Trans. Power Electron., vol. 35, no. 11, pp. 11731-11744, Nov. 2020, DOI: 10.1109/TPEL.2020.2983113.

M. I. Marei, B. N. Alajmi, I. Abdelsalam, and N. A. Ahmed, "An Integrated Topology of Three-Port DC-DC Converter for PV-Battery Power Systems," IEEE open j. Ind. Electron., vol. 3, pp. 409-419, 2022, DOI: 10.1109/OJIES.2022.3182977.

T. Qian, Y. Yang, and W. Zhao, "A Boost-Type Three-Port Resonant Forward Converter With Flexible Power Flow Path Optimization for PV Systems," IEEE Trans. Circuits Syst. II Express Briefs, vol. 70, no. 1, pp. 161-165, Jan. 2023, DOI: 10.1109/TCSII.2022.3199335.

Y. Sato, M. Uno, and H. Nagata, "Nonisolated Multiport Converters Based on Integration of PWM Converter and Phase-Shift-Switched Capacitor Converter," IEEE Trans. Power Electron., vol. 35, no. 1, pp. 455-470, Jan. 2020, DOI: 10.1109/TPEL.2019.2912550.

P. Prabhakaran and V. Agarwal, "Novel Four-Port DC–DC Converter for Interfacing Solar PV–Fuel Cell Hybrid Sources With Low-Voltage Bipolar DC Microgrids," IEEE J. Emerg. Sel. Top. Power Electron., vol. 8, no. 2, pp. 1330-1340, June 2020, DOI: 10.1109/JESTPE.2018.2885613.

S. Lu, K. Sun, H. Shi, Y. Li, and G. Cao, "Evaluation of high step-up power conversion systems for large-capacity photovoltaic generation integrated into medium voltage DC grids," in Chinese Journal of Electrical Engineering, vol. 7, no. 4, pp. 3-14, Dec. 2021, DOI: 10.23919/CJEE.2021.000033.

J. Yang, R. Li, K. Ma, and J. Xu, "A Distributed Multimode Control Strategy for the Cascaded DC–DC Converter Applied to MVAC Grid-Tied PV System," IEEE Trans. Ind. Electron., vol. 70, no. 3, pp. 2617-2627, March 2023, DOI: 10.1109/TIE.2022.3174300.

A. A. Hussein, X. Chen, M. Alharbi, A. A. Pise, and I. Batarseh, "Design of a Grid-Tie Photovoltaic System With a Controlled Total Harmonic Distortion and Tri Maximum Power Point Tracking," IEEE Trans. Power Electron., vol. 35, no. 5, pp. 4780-4790, May 2020, DOI: 10.1109/TPEL.2019.2946586.

M. K. Ram, M. N. Anwar, P. Verma, and A. Iqbal, "Closed-Loop Test Based Parametric Independent Control of DC–DC Boost-Converter Using Two Degree of Freedom Internal Model Control Scheme," IEEE Access, vol. 11, pp. 76619-76628, 2023, DOI: 10.1109/ACCESS.2023.3297491.

D. R. Espinoza Trejo, S. Taheri, J. L. Saavedra, P. Vázquez, C. H. De Angelo, and J. A. Pecina-Sánchez, "Nonlinear Control and Internal Stability Analysis of Series-Connected Boost DC/DC Converters in PV Systems With Distributed MPPT," IEEE J. Photovolt., vol. 11, no. 2, pp. 504-512, March 2021, DOI: 10.1109/JPHOTOV.2020.3041237.

W. N. D. Silva, L. D. S. Bezerra, S. C. S. Jucá, R. I. S. Pereira, and C. M. d. S. Medeiros, "Control and monitoring of a Flyback DC-DC converter for photovoltaic applications using embedded IoT system," IEEE Lat. Am. Trans., vol. 18, no. 11, pp. 1892-1899, 2020, DOI: 10.1109/TLA.2020.9398630.

Y. Liang, H. Zhang, M. Du, and K. Sun, "Parallel coordination control of multi-port DC-DC converter for stand-alone photovoltaic-energy storage systems," CPSS trans. power electron. appl., vol. 5, no. 3, pp. 235-241, Sept. 2020, DOI: 10.24295/CPSSTPEA.2020.00020.

E. O. B. Luna, C. B. Jacobina, and A. C. Oliveira, "Internal Energy Balance of a Modular Multilevel Cascade Converter Based on Chopper-Cells With Distributed Energy Resources for Grid-Connected Photovoltaic Systems," IEEE Trans. Ind. Appl., vol. 59, no. 2, pp. 1935-1943, March-April 2023, DOI:10.1109/ECCE44975.2020.9236323.

O. Abdel-Rahim and H. Wang, "A new high gain DC-DC converter with model-predictive-control based MPPT technique for photovoltaic systems," CPSS trans. power electron. appl., vol. 5, no. 2, pp. 191-200, June 2020, DOI: 10.24295/CPSSTPEA.2020.00016.

D. Vinnikov, A. Chub, R. Kosenko, V. Sidorov, and A. Lindvest, "Implementation of Global Maximum Power Point Tracking in Photovoltaic Microconverters: A Survey of Challenges and Opportunities," IEEE J. Emerg. Sel. Top. Power Electron., vol. 11, no. 2, pp. 2259-2280, April 2023, DOI: 10.1109/JESTPE.2021.3137521.

K. Ishaque and Z. Salam, “A Deterministic Particle Swarm Optimization Maximum Power Point Tracker for Photovoltaic System Under Partial Shading Condition,” IEEE Trans. Ind. Electron., vol. 60, no. 8, pp. 3195-3206, 2012, DOI: 10.1109/TIE.2012.2200223.

M. Azmi, S. M. Noor, and S. Musa, “Fuzzy logic control based maximum power point tracking technique in stand alone photovoltaic system,” Int. J. Power Electron. Drive Syst., vol. 14, No. 2, pp. 1110-1120, June 2023, DOI: https://doi.org/10.1007/978-981-19-4975-3_11.

T. Sutikno, A. C. Subrata, and A. Elkhateb, "Evaluation of Fuzzy Membership Function Effects for Maximum Power Point Tracking Technique of Photovoltaic System," IEEE Access, vol. 9, pp. 109157-109165, 2021, DOI: 10.1109/ACCESS.2021.3102050.

M. -C. Chang and S. -I. Liu, "An Indoor Photovoltaic Energy Harvester Using Time-Based MPPT and On-Chip Photovoltaic Cell," IEEE Trans. Circuits Syst. II Express Briefs, vol. 67, no. 11, pp. 2432-2436, Nov. 2020, DOI: 10.1109/TCSII.2020.2976760.

C. Rao, A. Hajjiah, M. A. El-Meligy, M. Sharaf, A. T. Soliman, and M. A. Mohamed, "A Novel High-Gain Soft-Switching DC-DC Converter With Improved P&O MPPT for Photovoltaic Applications," IEEE Access, vol. 9, pp. 58790-58806, 2021, DOI: 10.1109/ACCESS.2021.3072972.

J. -E. Hernández-Díez, C. -F. Méndez-Barrios, S. -I. Niculescu, and E. Bárcenas-Bárcenas, "A Current Sensorless Delay–Based Control Scheme for MPPT–Boost Converters in Photovoltaic Systems," IEEE Access, vol. 8, pp. 174449-174462, 2020, DOI: 10.1109/ACCESS.2020.3024566.

R. Kahani, M. Jamil, and M. T. Iqbal, "An Improved Perturb and Observed Maximum Power Point Tracking Algorithm for Photovoltaic Power Systems," J. Mod. Power Syst. Clean Energy, vol. 11, no. 4, pp. 1165-1175, July 2023, DOI: 10.35833/MPCE.2022.000245.

A. Hafian, M. Benbrahim, and M. N. Kabba, “A novel algorithm for optimal sizing of stand-alone photovoltaic pumping systems,” Int. J. Power Electron. Drive Syst., vol. 13, No. 3, pp. 1833-1842, 2022, DOI: 10.11591/ijpeds.v13.i3.

M. Bahrami et al., “Hybrid maximum power point tracking algorithm with improved dynamic performance,” Renew. Energ., vol. 130, pp. 982-991, 2019, DOI: 10.1016/j.renene.2018.07.020.

H. Oufettoul, N. Lamdihine, S. Motahhir, N. Lamrini, I. A. Abdelmoula, and G. Aniba, "Comparative Performance Analysis of PV Module Positions in a Solar PV Array Under Partial Shading Conditions," IEEE Access, vol. 11, pp. 12176-12194, 2023, doi: 10.1109/ACCESS.2023.3237250.

R. K. Pachauri, I. Kansal, T. S. Babu, and H. H. Alhelou, "Power Losses Reduction of Solar PV Systems Under Partial Shading Conditions Using Re-Allocation of PV Module-Fixed Electrical Connections," IEEE Access, vol. 9, pp. 94789-94812, 2021, DOI: 10.1109/ACCESS.2021.3093954.

K. Abdulmawjood, S. Alsadi, S. S. Refaat, and W. G. Morsi, "Characteristic Study of Solar Photovoltaic Array Under Different Partial Shading Conditions," IEEE Access, vol. 10, pp. 6856-6866, 2022, DOI: 10.1109/ACCESS.2022.3142168.

C. Saiprakash, A. Mohapatra, B. Nayak, T. S. Babu, and H. H. Alhelou, "A Novel Benzene Structured Array Configuration for Harnessing Maximum Power From PV Array Under Partial Shading Condition With Reduced Number of Cross Ties," IEEE Access, vol. 10, pp. 129712-129726, 2022, DOI: 10.1109/ACCESS.2022.3228049.

S. Bouguerra, M. R. Yaiche, O. Gassab, A. Sangwongwanich, and F. Blaabjerg, "The Impact of PV Panel Positioning and Degradation on the PV Inverter Lifetime and Reliability," IEEE J. Emerg. Sel. Top. Power Electron., vol. 9, no. 3, pp. 3114-3126, June 2021, DOI: 10.1109/JESTPE.2020.3006267.

V. Poulek et al., "PV Panel and PV Inverter Damages Caused by Combination of Edge Delamination, Water Penetration, and High String Voltage in Moderate Climate," IEEE J. Photovolt., vol. 11, no. 2, pp. 561-565, March 2021, DOI: 10.1109/JPHOTOV.2021.3050984.

T. Tafticht, Mr Tchakala, and M. J. Rahman, “GMPPT approach for photovoltaic systems under partial shading conditions using a genetic algorithm,” Int. J. Power Electron. Drive Syst., vol. 13, No. 2, pp. 1238-1245, June 2022, DOI:10.11591/ijpeds.v13.i2.

M. G. Yahya and M. G. Yahya, “Modified PDPWM control with MPPT algorithm for equal power sharing in cascaded multilevel inverter for stand alone PV system under partial shading,” Int. J. Power Electron. Drive Syst., vol. 14, No. 1, pp. 533-545, March 2023, DOI: 10.11591/ijpeds.v14.i1.pp533-545.

V. S. Bhadoria, R. K. Pachauri, S. Tiwari, S. P. Jaiswal, and H. H. Alhelou, "Investigation of Different BPD Placement Topologies for Shaded Modules in a Series-Parallel Configured PV Array," IEEE Access, vol. 8, pp. 216911-216921, 2020, DOI: 10.1109/ACCESS.2020.3041715.

Z. Alqaisi and Y. Mahmoud, "Comprehensive Study of Partially Shaded PV Modules With Overlapping Diodes," IEEE Access, vol. 7, pp. 172665-172675, 2019, DOI: 10.1109/ACCESS.2019.2956916.

F. Alonge, F. D'ippolito, G. Garraffa, G. C. Giaconia, R. Latona, and A. Sferlazza, "Sliding Mode Control of Quadratic Boost Converters Based on Min-Type Control Strategy," IEEE Access, vol. 11, pp. 39176-39184, 2023, DOI: 10.1109/ACCESS.2023.3267984.

L. M. Saublet, R. Gavagsaz-Ghoachani, J. P. Martin, B. Nahid-Mobarakeh, and S. Pierfederici, “Bifurcation analysis and stabilization of DC power systems for electrified transportation systems,” IEEE Trans. Transp. Electrific., vol. 2, no. 1, pp. 86–95, Mar. 2016, DOI: 10.1109/TTE.2016.2519351.

A. Battiston, E. -H. Miliani, J. -P. Martin, B. Nahid-Mobarakeh, S. Pierfederici, and F. Meibody-Tabar, "A Control Strategy for Electric Traction Systems Using a PM-Motor Fed by a Bidirectional Z -Source Inverter," IEEE Trans. Veh. Technol., vol. 63, no. 9, pp. 4178-4191, Nov. 2014, DOI: 10.1109/TVT.2014.2312434.

R. Gavagsaz-Ghoachani, M. Phattanasak, J. -P. Martin, B. Nahid-Mobarakeh, and S. Pierfederici, "A Fixed-Frequency Optimization of PWM Current Controller—Modeling and Design of Control Parameters," IEEE Trans. Transp. Electrific., vol. 4, no. 3, pp. 671-683, Sept. 2018, DOI: 10.1109/TTE.2018.2841801.

M. Afkar, R. Gavagsaz-Ghoachani, M. Phattanasak, and S. Pierfederici, "Cascaded Controller for Controlling DC Bus Voltage in Mismatched Input Powers," IEEE Trans. Power Electron., vol. 37, no. 11, pp. 13834-13847, Nov. 2022, DOI: 10.1109/TPEL.2022.3186233.

A. Shahin et al., "Sensorless Robust Flatness-Based Control With Nonlinear Observer for Non-Ideal Parallel DC–AC Inverters," IEEE Access, vol. 10, pp. 53940-53953, 2022, DOI: 10.1109/ACCESS.2022.3175847.

D. Dell’Isola, M. Urbain, M. Weber, S. Pierfederici, and F. Meibody-Tabar, "Optimal Design of a DC–DC Boost Converter in Load Transient Conditions, Including Control Strategy and Stability Constraint," IEEE Trans. Transp. Electrification., vol. 5, no. 4, pp. 1214-1224, Dec. 2019, DOI: 10.1109/TTE.2019.2948038.

R. Choupanzadeh and A. Zadehgol, "Stability, Causality, and Passivity of Canonical Equivalent Circuits for Improper Rational Transfer Functions—Part II: With Complex-Conjugate Poles and Residues," IEEE Access, vol. 11, pp. 108995-109009, 2023, DOI: 10.1109/ACCESS.2023.3321631.

Z. Shahrouei, M. Rahmati, R. Gavagsaz-Ghoachani, M. Phattanasak, J. -P. Martin, and S. Pierfederici, "Robust Flatness-Based Control With Nonlinear Observer for Boost Converters," IEEE Trans. Transp. Electrification., vol. 9, no. 1, pp. 142-155, March 2023, DOI: 10.1109/TTE.2022.3192217.

Y. Hennane, S. Pierfederici, A. Berdai, F. Meibody-Tabar, and J. -P. Martin, "Distributed Control of Islanded Meshed Microgrids," IEEE Access, vol. 11, pp. 78262-78272, 2023, DOI: 10.1109/ACCESS.2023.3298525.

M. Afkar, R. Gavagsaz-Ghoachani, M. Phattanasak, J. -P. Martin, and S. Pierfederici, "Proposed System Based on a Three-Level Boost Converter to Mitigate Voltage Imbalance in Photovoltaic Power Generation Systems," IEEE Trans. Power Electron., vol. 37, no. 2, pp. 2264-2282, Feb. 2022, DOI: 10.1109/TPEL.2021.3105571.

P. Thounthong et al., "Robust Hamiltonian Energy Control Based on Lyapunov Function for Four-Phase Parallel Fuel Cell Boost Converter for DC Microgrid Applications," IEEE Trans Sustain Energy., vol. 12, no. 3, pp. 1500-1511, July 2021, DOI: 10.1109/TSTE.2021.3050783.

P. Mungporn et al., "Modeling and Control of Multiphase Interleaved Fuel-Cell Boost Converter Based on Hamiltonian Control Theory for Transportation Applications," IEEE Trans. Transp. Electrification., vol. 6, no. 2, pp. 519-529, June 2020, DOI: 10.1109/TTE.2020.2980193.

S. Pang et al., "Large-Signal Stabilization of Power Converters Cascaded Input Filter Using Adaptive Energy Shaping Control," IEEE Trans. Transp. Electrification., vol. 7, no. 2, pp. 838-853, June 2021, DOI: 10.1109/TTE.2020.3021954.

B. Yodwong, S. Sikkabut, D. Guilbert, M. Hinaje, P. Phattanasak, W. Kaewmanee, and G. Vitale, “Open-Circuit Switch Fault Diagnosis and Accommodation of a Three-Level Interleaved Buck Converter for Electrolyzer Applications,” Electronics, vol. 12, pp. 1-24, 2023, DOI: 10.3390/electronics12061349.

B. Yodwong, D. Guilbert, W. Kaewmanee, M. Phattanasak, M. Hinaje, and G. Vitale, "Improved Sliding Mode-Based Controller of a High Voltage Ratio DC–DC Converter for Electrolyzers Supplied by Renewable Energy," IEEE Trans. Ind. Electron., DOI: 10.1109/TIE.2023.3322009.

M. Afkar, R. Gavagsaz-Ghoachani, M. Phattanasak, A. Siangsanoh, J. -P. Martin, and S. Pierfederici, "Generalization of a DC–DC Modular Converter Topology for Fuel Cell Applications," IEEE Trans. Ind. Appl., vol. 58, no. 2, pp. 2255-2267, 2022, DOI: 10.1109/TIA.2022.3142659.

Z. Liu et al., "Existence and Stability of Equilibrium of DC Micro-Grid Under Master-Slave Control," IEEE Trans. Power Syst., vol. 37, no. 1, pp. 212-223, Jan. 2022, DOI: 10.1109/TPWRS.2021.3085872.

Y. L. Guo, L. Wang, and Q. H. Wu, "Bifurcation Control Method for Buck-Boost Converters Based on Energy Balance Principle," IEEE J. Emerg. Sel. Top. Power Electron., vol. 9, no. 6, pp. 6947-6954, Dec. 2021, DOI: 10.1109/JESTPE.2021.3067357.

P. Azer and A. Emadi, "Generalized State Space Average Model for Multi-Phase Interleaved Buck, Boost and Buck-Boost DC-DC Converters: Transient, Steady-State and Switching Dynamics," IEEE Access, vol. 8, pp. 77735-77745, 2020, DOI: 10.1109/ACCESS.2020.2987277.

M. Bahrami, J. -P. Martin, G. Maranzana, S. Pierfederici, F. Meibody-Tabar, and M. Weber, "Hybrid power electronics architecture to implement the fuel cell management system," 2020 IEEE Energy Conversion Congress and Exposition (ECCE), 2020, DOI: 10.1109/ECCE44975.2020.9235418.

M. Amin and M. Molinas, "Small-Signal Stability Assessment of Power Electronics Based Power Systems: A Discussion of Impedance- and Eigenvalue-Based Methods," IEEE Trans. Ind. Appl., vol. 53, no. 5, pp. 5014-5030, 2017, DOI: 10.1109/TIA.2017.2712692.

K. Ogata. Modern Control Engineering 5th Edition. Pearson, 2010.

J. D. Navamani, K. Boopathi, M. J. Sathik, A. Lavanya, Kitmo, and P. Vishnuram, "Analysis of Higher Dimensional Converter Using Graphical Approach," IEEE Access, vol. 11, pp. 75076-75092, 2023, DOI: 10.1109/ACCESS.2023.3295996.




DOI: https://doi.org/10.18196/jrc.v5i1.20302

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Mohammad Afka, Roghayeh Gavagsaz-Ghoachani, Matheepot Phattanasak, Serge Pierfederici, Wiset Saksiri

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 


Journal of Robotics and Control (JRC)

P-ISSN: 2715-5056 || E-ISSN: 2715-5072
Organized by Peneliti Teknologi Teknik Indonesia
Published by Universitas Muhammadiyah Yogyakarta in collaboration with Peneliti Teknologi Teknik Indonesia, Indonesia and the Department of Electrical Engineering
Website: http://journal.umy.ac.id/index.php/jrc
Email: jrcofumy@gmail.com


Kuliah Teknik Elektro Terbaik