Enhancing Multi-Robot Systems Cooperation through Machine Learning-based Anomaly Detection in Target Pursuit

Amine Khatib, Oussama Hamed, Mohamed Hamlich, Ahmed Mouchtachi

Abstract


Effectively pursuing dynamically moving targets in the domain of multi-robot systems (MRS) poses a significant challenge. This paper proposes an innovative leader-follower strategy within the MRS framework, enabling robots to dynamically adjust their roles based on target proximity. This approach fosters coordination, allowing robots to act cohesively when pursuing diverse targets, from other robots to mobile objects. The centralized architecture of the MRS facilitates wireless communication, enabling robots to share sensor-derived data providing proximity cues rather than precise location information. However, data anomalies arising from sensor errors, transmission glitches, or encoding issues pose challenges, compromising the reliability of target-related information. To mitigate this, the paper introduces an advanced methodology integrating the leader-follower strategy with Discriminant Analysis (DA)-based anomaly detection. This novel approach validates and filters data, enhancing data integrity and supporting decision-making processes. The integration of DA methods within the leader-follower strategy is detailed, emphasizing steps in anomaly detection implementation, showcasing robustness in selecting high-quality information for decision-making in dynamic environments. The research's real-world relevance addresses the problem of the impact of sensor anomalies on the performance and reliability of MRS in dynamic environments. By integrating machine learning-based anomaly detection, this methodology enhances MRS adaptability and robustness, particularly in scenarios requiring precise target tracking and coordination. Numerical experiments and simulations demonstrate the efficacy of the DA-based anomaly detection and collaborative hunting strategy in MRS. This method contributes to improved target tracking, enhanced system coordination, and streamlined pursuit of dynamic targets, affirming its practical applicability in surveillance, search and rescue operations, and industrial automation.


Keywords


Multi-Robot Systems; Machine Learning; Anomaly Detection; Centralized Architecture; Collaborative Pursuit; Sensor-Derived Data.

Full Text:

PDF

References


Y. Msala, M. Hamlich, and A. Mouchtachi, “A new Robust Heterogeneous Multi-Robot Approach Based on Cloud for Task Allocation,” in 2019 5th International Conference on Optimization and Applications (ICOA), pp. 1–4, Apr. 2019, doi: 10.1109/ICOA.2019.8727618.

O. Hamed, M. Hamlich, and E. Mohamed, “Hunting strategy for multi-robot based on wolf swarm algorithm and artificial potential field,” Indones. J. Electr. Eng. Comput. Sci., vol. 25, pp. 159–171, Jan. 2022, doi: 10.11591/ijeecs.v25.i1.pp159-171.

X. Cao and L. Guo, “A leader–follower formation control approach for target hunting by multiple autonomous underwater vehicle in three-dimensional underwater environments,” Int. J. Adv. Robot. Syst., vol. 16, no. 4, p. 1729881419870664, Jul. 2019, doi: 10.1177/1729881419870664.

R. Chand, K. Raghuwaiya, J. Vanualailai, and J. Raj, “Leader-Follower Based Control of Fixed-Wing Multi-Robot System (MRS) via Split-Rejoin Maneuvers in 3D,” in Proceedings of Third International Conference on Advances in Computer Engineering and Communication Systems, pp. 195–209, 2023, doi: 10.1007/978-981-19-9228-5_18.

X. Cao and C. Sun, “A potential field-based PSO approach to multi-robot cooperation for target search and hunting,” Autom., vol. 65, no. 12, pp. 878–887, Dec. 2017, doi: 10.1515/auto-2017-0080.

Q. Pan et al., “Adaptive Cooperative Gene Regulatory Network Optimized by Elastic Deformation Algorithm for Multirobot Hunting,” IEEE Syst. J., vol. 17, no. 3, pp. 4843–4854, Sep. 2023, doi: 10.1109/JSYST.2023.3285736.

O. Hamed and M. Hamlich, “Hybrid Formation Control for Multi-Robot Hunters Based on Multi-Agent Deep Deterministic Policy Gradient,” MENDEL, vol. 27, no. 2, Dec. 2021, doi: 10.13164/mendel.2021.2.023.

X. An, C. Wu, Y. Lin, M. Lin, T. Yoshinaga, and Y. Ji, “Multi-Robot Systems and Cooperative Object Transport: Communications, Platforms, and Challenges,” IEEE Open J. Comput. Soc., vol. 4, pp. 23–36, 2023, doi: 10.1109/OJCS.2023.3238324.

H. Kabir, M.-L. Tham, and Y. C. Chang, “Internet of robotic things for mobile robots: concepts, technologies, challenges, applications, and future directions,” Digit. Commun. Netw., vol. 9, no. 6, pp. 1265-1290, 2023, doi: 10.1016/j.dcan.2023.05.006.

F. -J. Mañas-Álvarez, M. Guinaldo, R. Dormido, and S. Dormido, "Robotic Park: Multi-Agent Platform for Teaching Control and Robotics," in IEEE Access, vol. 11, pp. 34899-34911, 2023, doi: 10.1109/ACCESS.2023.3264508.

F. Corradini, S. Pettinari, B. Re, L. Rossi, and F. Tiezzi, “A BPMN-driven framework for Multi-Robot System development,” Robot. Auton. Syst., vol. 160, p. 104322, Feb. 2023, doi: 10.1016/j.robot.2022.104322.

R. Muthusamy et al., “Strictly Decentralized Approaches for Multi-Robot Grasp Coordination,” in 2023 IEEE 19th International Conference on Automation Science and Engineering (CASE), pp. 1–8, Aug. 2023, doi: 10.1109/CASE56687.2023.10260355.

S. Leder and A. Menges, “Architectural design in collective robotic construction,” Autom. Constr., vol. 156, p. 105082, Dec. 2023, doi: 10.1016/j.autcon.2023.105082.

Z. Lv, C. Cheng, and H. Lv, “Multi-Robot Distributed Communication in Heterogeneous Robotic Systems on 5G Networking,” IEEE Wirel. Commun., vol. 30, no. 2, pp. 98–104, Apr. 2023, doi: 10.1109/MWC.001.2200315.

P. -Y. Lajoie and G. Beltrame, "Swarm-SLAM: Sparse Decentralized Collaborative Simultaneous Localization and Mapping Framework for Multi-Robot Systems," in IEEE Robotics and Automation Letters, vol. 9, no. 1, pp. 475-482, Jan. 2024, doi: 10.1109/LRA.2023.3333742.

J. P. Queralta, F. Keramat, S. Salimi, L. Fu, X. Yu, and T. Westerlund, “Blockchain and Emerging Distributed Ledger Technologies for Decentralized Multi-robot Systems,” Curr. Robot. Rep., vol. 4, no. 3, pp. 43–54, Sep. 2023, doi: 10.1007/s43154-023-00101-3.

L. Bramblett and N. Bezzo, “Epistemic planning for multi-robot systems in communication-restricted environments,” Front. Robot. AI, vol. 10, 2023.

Z. Xun et al., "CREPES: Cooperative RElative Pose Estimation System," 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5274-5281, 2023, doi: 10.1109/IROS55552.2023.10342523.

M. Dehghani, R. A. McKenzie, R. A. Irani, and M. Ahmadi, “Robot-mounted sensing and local calibration for high-accuracy manufacturing,” Robot. Comput.-Integr. Manuf., vol. 79, p. 102429, Feb. 2023, doi: 10.1016/j.rcim.2022.102429.

P. Wei et al., “Impact Analysis of Temperature and Humidity Conditions on Electrochemical Sensor Response in Ambient Air Quality Monitoring,” Sensors, vol. 18, no. 2, Feb. 2018, doi: 10.3390/s18020059.

S. El Bied, M. V. de-la-Fuente-Aragon, L. Ros-McDonnell, and D. Ros-McDonnell, “Urban Ecosystem Sustainability Impacts of Air Quality,” in IoT and Data Science in Engineering Management, pp. 225–232, 2023, doi: 10.1007/978-3-031-27915-7_41.

R. Al-amri, R. K. Murugesan, M. Man, A. F. Abdulateef, M. A. Al-Sharafi, and A. A. Alkahtani, “A Review of Machine Learning and Deep Learning Techniques for Anomaly Detection in IoT Data,” Appl. Sci., vol. 11, no. 12, Jan. 2021, doi: 10.3390/app11125320.

S. Mokhtari, A. Abbaspour, K. K. Yen, and A. Sargolzaei, “A Machine Learning Approach for Anomaly Detection in Industrial Control Systems Based on Measurement Data,” Electronics, vol. 10, no. 4, Jan. 2021, doi: 10.3390/electronics10040407.

M. Hamlich, A. E. Khantach, and N. Belbounaguia, “Machine learning methods against false data injection in smart grid,” Int. J. Reason.-Based Intell. Syst., vol. 12, no. 1, pp. 51–59, Jan. 2020, doi: 10.1504/IJRIS.2020.104991.

A. B. Nassif, M. A. Talib, Q. Nasir, and F. M. Dakalbab, “Machine Learning for Anomaly Detection: A Systematic Review,” IEEE Access, vol. 9, pp. 78658–78700, 2021, doi: 10.1109/ACCESS.2021.3083060.

S. Wang, J. F. Balarezo, S. Kandeepan, A. Al-Hourani, K. G. Chavez, and B. Rubinstein, “Machine Learning in Network Anomaly Detection: A Survey,” IEEE Access, vol. 9, pp. 152379–152396, 2021, doi: 10.1109/ACCESS.2021.3126834.

M. Chaabi, M. Hamlich, and M. Garouani, “Product defect detection based on convolutional autoencoder and one-class classification,” Int. J. Artif. Intell., vol. 12, no. 2, p. 912, Jun. 2023, doi: 10.11591/ijai.v12.i2.pp912-920.

Y. Xu, L. Zhang, B. Du, and L. Zhang, “Hyperspectral Anomaly Detection Based on Machine Learning: An Overview,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 15, pp. 3351–3364, 2022, doi: 10.1109/JSTARS.2022.3167830.

S.-V. Oprea, A. Bâra, F. C. Puican, and I. C. Radu, “Anomaly Detection with Machine Learning Algorithms and Big Data in Electricity Consumption,” Sustainability, vol. 13, no. 19, Jan. 2021, doi: 10.3390/su131910963.

M. Mittal, R. P. de Prado, Y. Kawai, S. Nakajima, and J. E. Muñoz-Expósito, “Machine Learning Techniques for Energy Efficiency and Anomaly Detection in Hybrid Wireless Sensor Networks,” Energies, vol. 14, no. 11, Jan. 2021, doi: 10.3390/en14113125.

A. Guezzaz, Y. Asimi, M. Azrour, and A. Asimi, “Mathematical validation of proposed machine learning classifier for heterogeneous traffic and anomaly detection,” Big Data Min. Anal., vol. 4, no. 1, pp. 18–24, Mar. 2021, doi: 10.26599/BDMA.2020.9020019.

M. Ibrahim, A. Alsheikh, F. M. Awaysheh, and M. D. Alshehri, “Machine Learning Schemes for Anomaly Detection in Solar Power Plants,” Energies, vol. 15, no. 3, Jan. 2022, doi: 10.3390/en15031082.

E. Šabić, D. Keeley, B. Henderson, and S. Nannemann, “Healthcare and anomaly detection: using machine learning to predict anomalies in heart rate data,” AI Soc., vol. 36, no. 1, pp. 149–158, Mar. 2021, doi: 10.1007/s00146-020-00985-1.

S. Salimpour, F. Keramat, J. P. Queralta, and T. Westerlund, “Decentralized Vision-Based Byzantine Agent Detection in Multi-robot Systems with IOTA Smart Contracts,” in Foundations and Practice of Security, pp. 322–337, 2023, doi: 10.1007/978-3-031-30122-3_20.

A. Khatib, M. Hamlich, and D. Hamad, “Machine Learning based Intrusion Detection for Cyber-Security in IoT Networks,” E3S Web Conf., vol. 297, p. 01057, 2021, doi: 10.1051/e3sconf/202129701057.

W. Liang, Z. Ning, S. Xie, Y. Hu, S. Lu, and D. Zhang, “Secure fusion approach for the Internet of Things in smart autonomous multi-robot systems,” Inf. Sci., vol. 579, pp. 468–482, Nov. 2021, doi: 10.1016/j.ins.2021.08.035.

T. Ji, A. N. Sivakumar, G. Chowdhary, and K. Driggs-Campbell, “Proactive Anomaly Detection for Robot Navigation With Multi-Sensor Fusion,” IEEE Robot. Autom. Lett., vol. 7, no. 2, pp. 4975–4982, Apr. 2022, doi: 10.1109/LRA.2022.3153989.

O. Hamed and M. Hamlich, “Improvised multi-robot cooperation strategy for hunting a dynamic target,” in 2020 International Symposium on Advanced Electrical and Communication Technologies (ISAECT), pp. 1–4, Nov. 2020, doi: 10.1109/ISAECT50560.2020.9523684.

F. Zhu, J. Gao, J. Yang, and N. Ye, “Neighborhood linear discriminant analysis,” Pattern Recognit., vol. 123, p. 108422, Mar. 2022, doi: 10.1016/j.patcog.2021.108422.

V. Amiri and K. Nakagawa, “Using a linear discriminant analysis (LDA)-based nomenclature system and self-organizing maps (SOM) for spatiotemporal assessment of groundwater quality in a coastal aquifer,” J. Hydrol., vol. 603, p. 127082, Dec. 2021, doi: 10.1016/j.jhydrol.2021.127082.

Y. Li, B. Liu, Y. Yu, H. Li, J. Sun, and J. Cui, “3E-LDA: Three Enhancements to Linear Discriminant Analysis,” ACM Trans. Knowl. Discov. Data, vol. 15, no. 4, p. 57:1-57:20, Mar. 2021, doi: 10.1145/3442347.

S. D. Fabiyi, P. Murray, J. Zabalza, and J. Ren, “Folded LDA: Extending the Linear Discriminant Analysis Algorithm for Feature Extraction and Data Reduction in Hyperspectral Remote Sensing,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 14, pp. 12312–12331, 2021, doi: 10.1109/JSTARS.2021.3129818.

Y. Zhou, S. Yan, Y. Ren, and S. Liu, “Rolling bearing fault diagnosis using transient-extracting transform and linear discriminant analysis,” Measurement, vol. 178, p. 109298, Jun. 2021, doi: 10.1016/j.measurement.2021.109298.

W. Lin, Q. Gao, M. Du, W. Chen, and T. Tong, “Multiclass diagnosis of stages of Alzheimer’s disease using linear discriminant analysis scoring for multimodal data,” Comput. Biol. Med., vol. 134, p. 104478, Jul. 2021, doi: 10.1016/j.compbiomed.2021.104478.

L. Xu, J. Raitoharju, A. Iosifidis, and M. Gabbouj, "Saliency-Based Multilabel Linear Discriminant Analysis," in IEEE Transactions on Cybernetics, vol. 52, no. 10, pp. 10200-10213, Oct. 2022, doi: 10.1109/TCYB.2021.3069338.

G. E. Castro Guzman and A. Fujita, “Convolution-based linear discriminant analysis for functional data classification,” Inf. Sci., vol. 581, pp. 469–478, Dec. 2021, doi: 10.1016/j.ins.2021.09.057.

D. Albani, W. Hönig, D. Nardi, N. Ayanian, and V. Trianni, “Hierarchical Task Assignment and Path Finding with Limited Communication for Robot Swarms,” Appl. Sci., vol. 11, no. 7, Jan. 2021, doi: 10.3390/app11073115.

F. Nie, H. Chen, S. Xiang, C. Zhang, S. Yan, and X. Li, “On the Equivalence of Linear Discriminant Analysis and Least Squares Regression,” IEEE Trans. Neural Netw. Learn. Syst., pp. 1–11, 2022, doi: 10.1109/TNNLS.2022.3208944.

D. Kim and T.-Y. Heo, “Anomaly Detection with Feature Extraction Based on Machine Learning Using Hydraulic System IoT Sensor Data,” Sensors, vol. 22, no. 7, Jan. 2022, doi: 10.3390/s22072479.

M. O. Adebiyi, M. O. Arowolo, M. D. Mshelia, and O. O. Olugbara, “A Linear Discriminant Analysis and Classification Model for Breast Cancer Diagnosis,” Appl. Sci., vol. 12, no. 22, Jan. 2022, doi: 10.3390/app122211455.

Q. Ma, C. Sun, B. Cui, and X. Jin, “A novel model for anomaly detection in network traffic based on kernel support vector machine,” Comput. Secur., vol. 104, p. 102215, May 2021, doi: 10.1016/j.cose.2021.102215.

L. Kang, L. Zhang, X. Huang, W. Hu, and X. Yang, “Hardware Fingerprint Authentication in Optical Networks Assisted by Anomaly Detection,” IEEE Photonics Technol. Lett., vol. 34, no. 19, pp. 1030–1033, Oct. 2022, doi: 10.1109/LPT.2022.3199106.

L. Begic Fazlic et al., “A Novel Hybrid Methodology for Anomaly Detection in Time Series,” International Journal of Computational Intelligence Systems, vol. 15, no. 1, p. 50, 2022.

A. Khatib, F. Dufrenois, M. Hamlich, and D. Hamad, “Collaborative Kernel Discriminant Analysis for Large Scale Multi Class Problems,” in Smart Applications and Data Analysis, pp. 34–50, 2022, doi: 10.1007/978-3-031-20490-6_4.

K. Chumachenko, J. Raitoharju, A. Iosifidis, and M. Gabbouj, “Speed-up and multi-view extensions to subclass discriminant analysis,” Pattern Recognit., vol. 111, p. 107660, Mar. 2021, doi: 10.1016/j.patcog.2020.107660.

R. Graf, M. Zeldovich, and S. Friedrich, “Comparing linear discriminant analysis and supervised learning algorithms for binary classification—A method comparison study,” Biom. J., vol. 66, no. 1, p. 202200098, 2024, doi: 10.1002/bimj.202200098.

S. Vijh, H. M. Pandey, and P. Gaurav, “Brain tumor segmentation using extended Weiner and Laplacian lion optimization algorithm with fuzzy weighted k-mean embedding linear discriminant analysis,” Neural Comput. Appl., vol. 35, no. 10, pp. 7315–7338, Apr. 2023, doi: 10.1007/s00521-021-06709-w.

C.-N. Li, Y.-F. Qi, D. Zhao, T. Guo, and L. Bai, “FF-norm two-dimensional linear discriminant analysis and its application on face recognition,” Int. J. Intell. Syst., vol. 37, no. 11, pp. 8327–8347, 2022, doi: 10.1002/int.22941.

C. Ozdemir, R. C. Hoover, K. Caudle, and K. Braman, “High-Order Multilinear Discriminant Analysis Via Order-N Tensor Eigendecomposition,” arXiv preprint arXiv:2205.09191, 2022.

P. Buzzini, J. Curran, and C. Polston, “Comparison between visual assessments and different variants of linear discriminant analysis to the classification of Raman patterns of inkjet printer inks,” Forensic Chem., vol. 24, p. 100336, Jun. 2021, doi: 10.1016/j.forc.2021.100336.

B. Bartan and M. Pilanci, “Neural Fisher Discriminant Analysis: Optimal Neural Network Embeddings in Polynomial Time,” in Proceedings of the 39th International Conference on Machine Learning, PMLR, pp. 1647–1663, 2022.

T. Yan, D. Wang, T. Xia, J. Liu, Z. Peng, and L. Xi, “Investigation on optimal discriminant directions of linear discriminant analysis for locating informative frequency bands for machine health monitoring,” Mech. Syst. Signal Process., vol. 180, p. 109424, Nov. 2022, doi: 10.1016/j.ymssp.2022.109424.

T. Liu, Z. Yang, A. Marino, G. Gao, and J. Yang, “Joint Polarimetric Subspace Detector Based on Modified Linear Discriminant Analysis,” IEEE Trans. Geosci. Remote Sens., vol. 60, pp. 1–19, 2022, doi: 10.1109/TGRS.2022.3148979.

W. Chang, F. Nie, Z. Wang, R. Wang, and X. Li, “Self-weighted learning framework for adaptive locality discriminant analysis,” Pattern Recognit., vol. 129, p. 108778, Sep. 2022, doi: 10.1016/j.patcog.2022.108778.

M.-L. Zhang, J.-H. Wu, and W.-X. Bao, “Disambiguation Enabled Linear Discriminant Analysis for Partial Label Dimensionality Reduction,” ACM Trans. Knowl. Discov. Data, vol. 16, no. 4, pp. 1-18, Jan. 2022, doi: 10.1145/3494565.




DOI: https://doi.org/10.18196/jrc.v5i3.20333

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Amine Khatib, Oussama Hamed, Mohamed Hamlich, Ahmed Mouchtachi

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 


Journal of Robotics and Control (JRC)

P-ISSN: 2715-5056 || E-ISSN: 2715-5072
Organized by Peneliti Teknologi Teknik Indonesia
Published by Universitas Muhammadiyah Yogyakarta in collaboration with Peneliti Teknologi Teknik Indonesia, Indonesia and the Department of Electrical Engineering
Website: http://journal.umy.ac.id/index.php/jrc
Email: jrcofumy@gmail.com


Kuliah Teknik Elektro Terbaik