Using Learning Focal Point Algorithm to Classify Emotional Intelligence

Abdelhak Sakhi, Salah-Eddine Mansour, Abderrahim Sekkaki

Abstract


Recognizing the fundamental role of learners' emotions in the educational process, this study aims to enhance educational experiences by incorporating emotional intelligence (EI) into teacher robots through artificial intelligence and image processing technologies. The primary hurdle addressed is the inadequacy of conventional methods, particularly convolutional neural networks (CNNs) with pooling layers, in imbuing robots with emotional intelligence. To surmount this challenge, the research proposes an innovative solution—introducing a novel learning focal point (LFP) layer to replace pooling layers, resulting in significant enhancements in accuracy and other vital parameters. The distinctive contribution of this research lies in the creation and application of the LFP algorithm, providing a novel approach to emotion classification for teacher robots. The results showcase the LFP algorithm's superior performance compared to traditional CNN approaches. In conclusion, the study highlights the transformative impact of the LFP algorithm on the accuracy of classification models and, consequently, on emotionally intelligent teacher robots. This research contributes valuable insights to the convergence of artificial intelligence and education, with implications for future advancements in the field.

Keywords


Perceptron; LFP Algorithm; CNN; Neural Network; Emotional Intelligence.

Full Text:

PDF

References


F. Zhou, S. Hu, X. Wan, Z. Lu, and J. Wu, “Diplin: A Disease Risk Prediction Model Based on EfficientNetV2 and Transfer Learning Applied to Nursing Homes,” Electronics, vol. 12, no. 12, p. 2581, 2023, doi: 10.3390/electronics12122581.

S. Kwon et al., “Empirical Comparison of Supervised Learning Methods for Assessing the Stability of Slopes Adjacent to Military Operation Roads,” Forests, vol. 14, no. 6, p. 1237, 2023, doi: 10.3390/f14061237.

D. Masi et al., “Uncovering Predictors of Lipid Goal Attainment in Type 2 Diabetes Outpatients Using Logic Learning Machine: Insights from the AMD Annals and AMD Artificial Intelligence Study Group,” J. Clin. Med., vol. 12, no. 12, p. 4095, 2023, doi: 10.3390/jcm12124095.

S. Amaouche et al., “FSCB-IDS: Feature Selection and Minority Class Balancing for Attacks Detection in VANETs,” Appl. Sci., vol. 13, no. 13, p. 7488, 2023, doi: 10.3390/app13137488.

R. Amin, Md. S. Reza, Y. Okuyama, Y. Tomioka, and J. Shin, “A Fine-Tuned Hybrid Stacked CNN to Improve Bengali Handwritten Digit Recognition,” Electronics, vol. 12, no. 15, p. 3337, 2023, doi: 10.3390/electronics12153337.

A. Rahim, Y. Zhong, T. Ahmad, S. Ahmad, P. Pławiak, and M. Hammad, “Enhancing Smart Home Security: Anomaly Detection and Face Recognition in Smart Home IoT Devices Using Logit-Boosted CNN Models,” Sensors, vol. 23, no. 15, p. 6979, 2023, doi: 10.3390/s23156979.

U. M. Ramirez-Alcocer, E. Tello-Leal, G. Romero, and B. A. Macías-Hernández, “A Deep Learning Approach for Predictive Healthcare Process Monitoring,” Information, vol. 14, no. 9, p. 508, 2023, doi: 10.3390/info14090508.

M. A. Almaiah et al., “A Novel Approach for Improving the Security of IoT–Medical Data Systems Using an Enhanced Dynamic Bayesian Network,” Electronics, vol. 12, no. 20, p. 4316, 2023, doi: 10.3390/electronics12204316.

B. Yagin, F. Yagin, C. Colak, F. Inceoglu, S. Kadry, and J. Kim, “Cancer Metastasis Prediction and Genomic Biomarker Identification through Machine Learning and eXplainable Artificial Intelligence in Breast Cancer Research,” Diagnostics, vol. 13, no. 21, p. 3314, 2023, doi: 10.3390/diagnostics13213314.

H. Lai et al., “Applications of Machine Learning to Diagnosis of Parkinson’s Disease,” Brain Sci., vol. 13, no. 11, p. 1546, 2023, doi: 10.3390/brainsci13111546.

S. B. Khan, M. Alojail, and M. Al Moteri, “Advancing Disability Management in Information Systems: A Novel Approach through Bidirectional Federated Learning-Based Gradient Optimization,” Mathematics, vol. 12, no. 1, p. 119, 2023, doi: 10.3390/math12010119.

X. Luo, X. Chen, and Y. Yao, “MVMSGAT: Integrating Multiview, Multi-Scale Graph Convolutional Networks with Biological Prior Knowledge for Predicting Bladder Cancer Response to Neoadjuvant Therapy,” Appl. Sci., vol. 14, no. 2, p. 669, 2024, doi: 10.3390/app14020669.

H. T. Gayap and M. A. Akhloufi, “Deep Machine Learning for Medical Diagnosis, Application to Lung Cancer Detection: A Review,” BioMedInformatics, vol. 4, no. 1, pp. 236–284, 2024, doi: 10.3390/biomedinformatics4010015.

K. M. N. K. Khalif, W. Chaw Seng, A. Gegov, A. S. A. Bakar, and N. A. Shahrul, “Integrated Generative Adversarial Networks and Deep Convolutional Neural Networks for Image Data Classification: A Case Study for COVID-19,” Information, vol. 15, no. 1, p. 58, 2024, doi: 10.3390/info15010058.

M. Bouazizi, A. L. Mora, K. Feghoul, and T. Ohtsuki, “Activity Detection in Indoor Environments Using Multiple 2D Lidars,” Sensors, vol. 24, no. 2, p. 626, 2024, doi: 10.3390/s24020626.

L. Cao et al., “U2-Net and ResNet50-Based Automatic Pipeline for Bacterial Colony Counting,” Microorganisms, vol. 12, no. 1, p. 201, 2024, doi: 10.3390/microorganisms12010201.

K. B. Sachidananda Murthy and S. N. Prasad, “Blockchain-Enabled Detection of Neurological Disorders Using a Deep Learning Approach,” in RAiSE-2023, p. 187, 2024, doi: 10.3390/engproc2023059187.

L. Lundberg, M. Boldt, A. Borg, and H. Grahn, “Bibliometric Mining of Research Trends in Machine Learning,” AI, vol. 5, no. 1, pp. 208–236, 2024, doi: 10.3390/ai5010012.

J. Hou, Z. Liu, Z. Yang, and C. Yang, “Hardware Trojan Attacks on the Reconfigurable Interconnections of Field-Programmable Gate Array-Based Convolutional Neural Network Accelerators and a Physically Unclonable Function-Based Countermeasure Detection Technique,” Micromachines, vol. 15, no. 1, p. 149, 2024, doi: 10.3390/mi15010149.

L. Alhoraibi, D. Alghazzawi, and R. Alhebshi, “Generative Adversarial Network-Based Data Augmentation for Enhancing Wireless Physical Layer Authentication,” Sensors, vol. 24, no. 2, p. 641, 2024, doi: 10.3390/s24020641.

Y. Wu, L. Huang, W. Feng, and S. Tian, “A Hybrid Deep Learning Algorithm for Tropospheric Zenith Wet Delay Modeling with the Spatiotemporal Variation Considered,” Atmosphere, vol. 15, no. 1, p. 121, 2024, doi: 10.3390/atmos15010121.

Y. Liu, X. Yan, W. Du, T. Zhang, X. Bai, and R. Nan, “Downscaling Daily Reference Evapotranspiration Using a Super-Resolution Convolutional Transposed Network,” Water, vol. 16, no. 2, p. 335, 2024, doi: 10.3390/w16020335.

S. Li, N. Jin, A. Dogani, Y. Yang, M. Zhang, and X. Gu, “Enhancing LightGBM for Industrial Fault Warning: An Innovative Hybrid Algorithm,” Processes, vol. 12, no. 1, p. 221, 2024, doi: 10.3390/pr12010221.

J.-C. Chiu, G.-Y. Lee, C.-Y. Hsieh, and Q.-Y. Lin, “Design and Implementation of Nursing-Secure-Care System with mmWave Radar by YOLO-v4 Computing Methods,” Appl. Syst. Innov., vol. 7, no. 1, p. 10, 2024, doi: 10.3390/asi7010010.

C.-H. Liu, S. D. You, and Y.-C. Chiu, “A Reinforcement Learning Approach to Guide Web Crawler to Explore Web Applications for Improving Code Coverage,” Electronics, vol. 13, no. 2, p. 427, 2024, doi: 10.3390/electronics13020427.

S. K. Poguluri and Y. H. Bae, “Enhancing Wave Energy Conversion Efficiency through Supervised Regression Machine Learning Models,” J. Mar. Sci. Eng., vol. 12, no. 1, p. 153, 2024, doi: 10.3390/jmse12010153.

O. Adeniyi, A. S. Sadiq, P. Pillai, M. Aljaidi, and O. Kaiwartya, “Securing Mobile Edge Computing Using Hybrid Deep Learning Method,” Computers, vol. 13, no. 1, p. 25, 2024, doi: 10.3390/computers13010025.

E. Kalboussi, N. Ndhaief, and N. Rezg, “Last-Mile Optimization Using Neural Networks,” Appl. Sci., vol. 14, no. 2, p. 787, 2024, doi: 10.3390/app14020787.

S.-E. Mansour, A. Sakhi, L. Kzaz, O. Tali, and A. Sekkaki, “Focal Point of Learning,” in 2021 IEEE 12th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON), pp. 0522–0526, 2021, doi: 10.1109/UEMCON53757.2021.9666524.

S.-E. Mansour, A. Sakhi, L. Kzaz, A. Erroutbi, and A. Sekkaki, “Electronic device for acquiring images of sardine cans,” In 2022 IEEE World AI IoT Congress (AIIoT), pp. 471–475, 2022, doi: 10.1109/AIIoT54504.2022.9817260.

A. Sakhi, S.-E. Mansour, A. Sekkaki, and K. Benzidane, “The Use of the AI to Classify the Emotion Intelligence (EI) Students,” In 2022 IEEE 13th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON), pp. 0148–0152, 2022, doi: 10.1109/IEMCON56893.2022.9946581.

V. Kemešytė, G. Statkevičiūtė, E. Norkevičienė, and K. Jaškūnė, “Italian Ryegrass as a Forage Crop for the Baltics: Opportunities and Challenges in Light of Climate Change,” Plants, vol. 12, no. 22, p. 3841, 2023, doi: 10.3390/plants12223841.

A. A. Alothman et al., “Ti3C2-MXene/NiO Nanocomposites-Decorated CsPbI3 Perovskite Active Materials under UV-Light Irradiation for the Enhancement of Crystal-Violet Dye Photodegradation,” Nanomaterials, vol. 13, no. 23, p. 3026, 2023, doi: 10.3390/nano13233026.

H. Kim, S. Park, and S.-Y. Jeong, “Machine Learning-Based Image Processing for Ice Concentration during Chukchi and Beaufort Sea Trials,” J. Mar. Sci. Eng., vol. 11, no. 12, p. 2281, 2023, doi: 10.3390/jmse11122281.

C. Goumy et al., “Feasibility of Optical Genome Mapping from Placental and Umbilical Cord Sampled after Spontaneous or Therapeutic Pregnancy Termination,” Diagnostics, vol. 13, no. 23, p. 3576, 2023, doi: 10.3390/diagnostics13233576.

Y.-D. Chen and Y.-C. Chang, “AI-DAS: AI-Based Driving Assistance System for Scooters for Traffic Accident Avoidance,” In 2023 IEEE 5th Eurasia Conference on Biomedical Engineering, Healthcare and Sustainability, p. 58, 2023, doi: 10.3390/engproc2023055058.

B. Bąk, J. Wilk, P. Artiemjew, M. Siuda, and J. Wilde, “The Identification of Bee Comb Cell Contents Using Semiconductor Gas Sensors,” Sensors, vol. 23, no. 24, p. 9811, 2023, doi: 10.3390/s23249811.

A. Boixader, C. Labella, M. Catalan, and J. Paradells, “A High-Accuracy, Scalable and Affordable Indoor Positioning System Using Visible Light Positioning for Automated Guided Vehicles,” Electronics, vol. 13, no. 1, p. 82, 2023, doi: 10.3390/electronics13010082.

S. B. Rosende, D. S. J. Gavilán, J. Fernández-Andrés, and J. Sánchez-Soriano, “An Urban Traffic Dataset Composed of Visible Images and Their Semantic Segmentation Generated by the CARLA Simulator,” Data, vol. 9, no. 1, p. 4, 2023, doi: 10.3390/data9010004.

J. Cai, M. Wang, and Y. Wu, “Research on Pedestrian Crossing Decision Models and Predictions Based on Machine Learning,” Sensors, vol. 24, no. 1, p. 258, 2024, doi: 10.3390/s24010258.

R. Bridgelall, “Alignment of Unsupervised Machine Learning with Human Understanding: A Case Study of Connected Vehicle Patents,” Appl. Sci., vol. 14, no. 2, p. 474, 2024, doi: 10.3390/app14020474.

G. G. Md. N. Ali, M. N. Sadat, M. S. Miah, S. A. Sharief, and Y. Wang, “A Comprehensive Study and Analysis of the Third Generation Partnership Project’s 5G New Radio for Vehicle-to-Everything Communication,” Future Internet, vol. 16, no. 1, p. 21, 2024, doi: 10.3390/fi16010021.

S. Y. Alaba, A. C. Gurbuz, and J. E. Ball, “Emerging Trends in Autonomous Vehicle Perception: Multimodal Fusion for 3D Object Detection,” World Electr. Veh. J., vol. 15, no. 1, p. 20, 2024, doi: 10.3390/wevj15010020.

F. Pedra, M. L. Inácio, P. Fareleira, P. Oliveira, P. Pereira, and C. Carranca, “Long-Term Effects of Plastic Mulch in a Sandy Loam Soil Used to Cultivate Blueberry in Southern Portugal,” Pollutants, vol. 4, no. 1, pp. 16–25, 2024, doi: 10.3390/pollutants4010002.

S. Kim, B. S. An, and E. C. Lee, “Comparative Analysis of AI-Based Facial Identification and Expression Recognition Using Upper and Lower Facial Regions,” Appl. Sci., vol. 13, no. 10, p. 6070, 2023, doi: 10.3390/app13106070.

S. Gwak and K. Park, “Designing Effective Visual Feedback for Facial Rehabilitation Exercises: Investigating the Role of Shape, Transparency, and Age on User Experience,” Healthcare, vol. 11, no. 13, p. 1835, 2023, doi: 10.3390/healthcare11131835.

M. Ma and H. Pang, “SP-YOLOv8s: An Improved YOLOv8s Model for Remote Sensing Image Tiny Object Detection,” Appl. Sci., vol. 13, no. 14, p. 8161, 2023, doi: 10.3390/app13148161.

O. Adel, K. M. Fathalla, and A. Abo ElFarag, “MM-EMOR: Multi-Modal Emotion Recognition of Social Media Using Concatenated Deep Learning Networks,” Big Data Cogn. Comput., vol. 7, no. 4, p. 164, 2023, doi: 10.3390/bdcc7040164.

M. Alonazi, H. J. Alshahrani, F. A. Alotaibi, M. Maray, M. Alghamdi, and A. Sayed, “Automated Facial Emotion Recognition Using the Pelican Optimization Algorithm with a Deep Convolutional Neural Network,” Electronics, vol. 12, no. 22, p. 4608, 2023, doi: 10.3390/electronics12224608.

N. Anđelić, S. Baressi Šegota, and Z. Car, “Improvement of Malicious Software Detection Accuracy through Genetic Programming Symbolic Classifier with Application of Dataset Oversampling Techniques,” Computers, vol. 12, no. 12, p. 242, 2023, doi: 10.3390/computers12120242.

R. Venkatesan, S. Shirly, M. Selvarathi, and T. J. Jebaseeli, “Human Emotion Detection Using DeepFace and Artificial Intelligence,” In RAiSE-2023, p. 37, 2023, doi: 10.3390/engproc2023059037.

H. Xu, J. Kong, X. Kong, J. Li, and J. Wang, “MCF-Net: Fusion Network of Facial and Scene Features for Expression Recognition in the Wild,” Appl. Sci., vol. 12, no. 20, p. 10251, 2022, doi: 10.3390/app122010251.

Y. Gao, Y. Cai, X. Bi, B. Li, S. Li, and W. Zheng, “Cross-Domain Facial Expression Recognition through Reliable Global–Local Representation Learning and Dynamic Label Weighting,” Electronics, vol. 12, no. 21, p. 4553, 2023, doi: 10.3390/electronics12214553.

S. Eddine Mansour, A. Sakhi, L. Kzaz, O. Tali, and A. Sekkaki, “Design, security and implementation of learning focal point algorithm in a docker container,” Indones. J. Electr. Eng. Comput. Sci., vol. 33, no. 1, p. 416, 2024, doi: 10.11591/ijeecs.v33.i1.pp416-424.

J. Chang and M. Wang, “Design of Hardware IP for 128-Bit Low-Latency Arcsinh and Arccosh Functions,” Electronics, vol. 12, no. 22, p. 4658, 2023, doi: 10.3390/electronics12224658.

S. Sun, M. E. Alkahtani, S. Gaisford, A. W. Basit, M. Elbadawi, and M. Orlu, “Virtually Possible: Enhancing Quality Control of 3D-Printed Medicines with Machine Vision Trained on Photorealistic Images,” Pharmaceutics, vol. 15, no. 11, p. 2630, 2023, doi: 10.3390/pharmaceutics15112630.

S. V. H. Pham and K. V. T. Nguyen, “Productivity Assessment of the Yolo V5 Model in Detecting Road Surface Damages,” Appl. Sci., vol. 13, no. 22, p. 12445, 2023, doi: 10.3390/app132212445.

A. Ali, N. Zhang, and R. M. Santos, “Mineral Characterization Using Scanning Electron Microscopy (SEM): A Review of the Fundamentals, Advancements, and Research Directions,” Appl. Sci., vol. 13, no. 23, p. 12600, 2023, doi: 10.3390/app132312600.

A. M. Girardi, E. A. Cardell, and S. P. Bird, “Artificial Intelligence in the Interpretation of Videofluoroscopic Swallow Studies: Implications and Advances for Speech–Language Pathologists,” Big Data Cogn. Comput., vol. 7, no. 4, p. 178, 2023, doi: 10.3390/bdcc7040178.

D. Giansanti, “An Umbrella Review of the Fusion of fMRI and AI in Autism,” Diagnostics, vol. 13, no. 23, p. 3552, 2023, doi: 10.3390/diagnostics13233552.

I. Razveeva et al., “Analysis of Geometric Characteristics of Cracks and Delamination in Aerated Concrete Products Using Convolutional Neural Networks,” Buildings, vol. 13, no. 12, p. 3014, 2023, doi: 10.3390/buildings13123014.

X. Gao, K. Zhao, L. Han, and J. Luo, “BézierCE: Low-Light Image Enhancement via Zero-Reference Bézier Curve Estimation,” Sensors, vol. 23, no. 23, p. 9593, 2023, doi: 10.3390/s23239593.

G. Dipalma et al., “Artificial Intelligence and Its Clinical Applications in Orthodontics: A Systematic Review,” Diagnostics, vol. 13, no. 24, p. 3677, 2023, doi: 10.3390/diagnostics13243677.

H. Mohammadi, K. Thirunarayan, and L. Chen, “CVII: Enhancing Interpretability in Intelligent Sensor Systems via Computer Vision Interpretability Index,” Sensors, vol. 23, no. 24, p. 9893, 2023, doi: 10.3390/s23249893.

H. Sheng and M. S. Nisar, “Simulating an Integrated Photonic Image Classifier for Diffractive Neural Networks,” Micromachines, vol. 15, no. 1, p. 50, 2023, doi: 10.3390/mi15010050.

K. Khalaf et al., “From Staining Techniques to Artificial Intelligence: A Review of Colorectal Polyps Characterization,” Medicina (Mex.), vol. 60, no. 1, p. 89, 2024, doi: 10.3390/medicina60010089.

S. Jalalifar et al., “Enhancing Water Safety: Exploring Recent Technological Approaches for Drowning Detection,” Sensors, vol. 24, no. 2, p. 331, 2024, doi: 10.3390/s24020331.

Y. Zhang, H. Feng, Y. Zhao, and S. Zhang, “Exploring the Application of the Artificial-Intelligence-Integrated Platform 3D Slicer in Medical Imaging Education,” Diagnostics, vol. 14, no. 2, p. 146, 2024, doi: 10.3390/diagnostics14020146.

O. Capetillo-Contreras, F. D. Pérez-Reynoso, M. A. Zamora-Antuñano, J. M. Álvarez-Alvarado, and J. Rodríguez-Reséndiz, “Artificial Intelligence-Based Aquaculture System for Optimizing the Quality of Water: A Systematic Analysis,” J. Mar. Sci. Eng., vol. 12, no. 1, p. 161, 2024, doi: 10.3390/jmse12010161.

H.-J. Yoo et al., “Prediction of Beach Sand Particle Size Based on Artificial Intelligence Technology Using Low-Altitude Drone Images,” J. Mar. Sci. Eng., vol. 12, no. 1, p. 172, 2024, doi: 10.3390/jmse12010172.

Y. Sui, L. Zhang, Z. Sun, W. Yi, and M. Wang, “Research on Coal and Rock Recognition in Coal Mining Based on Artificial Neural Network Models,” Appl. Sci., vol. 14, no. 2, p. 864, 2024, doi: 10.3390/app14020864.

H. S. Munawar, A. W. A. Hammad, S. T. Waller, M. J. Thaheem, and A. Shrestha, “An Integrated Approach for Post-Disaster Flood Management Via the Use of Cutting-Edge Technologies and UAVs: A Review,” Sustainability, vol. 13, no. 14, p. 7925, 2021, doi: 10.3390/su13147925.

B. Xu et al., “Evaluation of Deep Learning for Automatic Multi-View Face Detection in Cattle,” Agriculture, vol. 11, no. 11, p. 1062, 2021, doi: 10.3390/agriculture11111062.

R. R. Devaram, G. Beraldo, R. De Benedictis, M. Mongiovì, and A. Cesta, “LEMON: A Lightweight Facial Emotion Recognition System for Assistive Robotics Based on Dilated Residual Convolutional Neural Networks,” Sensors, vol. 22, no. 9, p. 3366, 2022, doi: 10.3390/s22093366.

A. Bhardwaj, S. Kishore, and D. K. Pandey, “Artificial Intelligence in Biological Sciences,” Life, vol. 12, no. 9, p. 1430, 2022, doi: 10.3390/life12091430.

J. Jiang, X. Ma, D. Ouyang, and R. O. Williams, “Emerging Artificial Intelligence (AI) Technologies Used in the Development of Solid Dosage Forms,” Pharmaceutics, vol. 14, no. 11, p. 2257, 2022, doi: 10.3390/pharmaceutics14112257.

M. F. Almufareh, S. Tehsin, M. Humayun, and S. Kausar, “A Transfer Learning Approach for Clinical Detection Support of Monkeypox Skin Lesions,” Diagnostics, vol. 13, no. 8, p. 1503, 2023, doi: 10.3390/diagnostics13081503.

X. Peng, Y. Wang, X. Zhang, H. Yang, X. Tang, and S. Bai, “A 6G-Enabled Lightweight Framework for Person Re-Identification on Distributed Edges,” Electronics, vol. 12, no. 10, p. 2266, 2023, doi: 10.3390/electronics12102266.

G. Monteiro et al., “A Comprehensive Framework for Industrial Sticker Information Recognition Using Advanced OCR and Object Detection Techniques,” Appl. Sci., vol. 13, no. 12, p. 7320, 2023, doi: 10.3390/app13127320.

A. Zargham et al., “Revolutionizing Small-Scale Retail: Introducing an Intelligent IoT-based Scale for Efficient Fruits and Vegetables Shops,” Appl. Sci., vol. 13, no. 14, p. 8092, 2023, doi: 10.3390/app13148092.

C. Frascarelli et al., “Revolutionizing Cancer Research: The Impact of Artificial Intelligence in Digital Biobanking,” J. Pers. Med., vol. 13, no. 9, p. 1390, 2023, doi: 10.3390/jpm13091390.

T.-J. Tung, M. Al-Hussein, and P. Martinez, “Vision-Based Guiding System for Autonomous Robotic Corner Cleaning of Window Frames,” Buildings, vol. 13, no. 12, p. 2990, 2023, doi: 10.3390/buildings13122990.




DOI: https://doi.org/10.18196/jrc.v5i1.20895

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Abdelhak Sakhi, Salah-Eddine Mansour, Abderrahim Sekkaki

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 


Journal of Robotics and Control (JRC)

P-ISSN: 2715-5056 || E-ISSN: 2715-5072
Organized by Peneliti Teknologi Teknik Indonesia
Published by Universitas Muhammadiyah Yogyakarta in collaboration with Peneliti Teknologi Teknik Indonesia, Indonesia and the Department of Electrical Engineering
Website: http://journal.umy.ac.id/index.php/jrc
Email: jrcofumy@gmail.com


Kuliah Teknik Elektro Terbaik