Design and Analysis of IO and FO Controllers to Investigate the Effects of Process Parameter Perturbations on Lag-Dominant Time Delay Systems
Abstract
This paper focuses on the design, analysis and implementation of Integer-order (IO) and Fractional-order (FO) controllers for systems characterized by lag-dominant time delays. The existing literature has been examined to analyze the methodology employed in tuning IO and FO controllers for first-order time delay system for perturbations in process parameters. It is observed that there is scope to investigate better controllers for lag-dominant time delay systems. The five different structures of controllers are chosen. The paper proposes IO and FO controllers tailored for a test group comprising 16 first-order systems with time delays. These IO and FO controllers are designed to fulfil design specifications: phase margin, peak overshoot, IAE, ITAE and ISE using Modified Bode’s Ideal Loop Transfer Function with delay method. For comparison conventional IO tuning method, Gain-Phase Margin Tester (GPMT) and Fractional Ms Constrained Integral Gain Optimization Method (F-MIGO) is used. The simulation results and performance evaluation for both IO and FO controllers are obtained for a range of values of relative dead time of the system represented by τ. The τ value is obtained by varying conditions of delay (L) and time constant (T). Two scenarios are taken into account: the first involves varying L while keeping T constant, and the second involves keeping L constant while varying T. The main objective of the paper is to analyze IO and FO controllers based on time and frequency domain parameters, performance error indices, disturbance rejection, gain variations, Total Variation (TV) and control efforts for perturbations in process parameters. The simulation results indicate that FO controllers show superior tolerance to perturbations in L and T when compared to IO counterparts. This observation was noted during the analysis of the control system by varying values of L and T to obtain a consistent value of τ . Thus, the extensive simulation studies demonstrate that the FO controller tailored for lag-dominant time delay systems outperforms its IO counterpart in terms of robustness, closed-loop stability and error performance metrics.
Keywords
Full Text:
PDFReferences
M. M. Zavarei, and M. Jamshidi, “Time-Delay Systems: Analysis, Optimization and Applications,” Engineering, 1987.
J. P. Richard, “Time-delay systems:an overview of some recent advances and open problems,” Automatica, vol. 39, no. 10, pp. 1667–1694, 2003, doi: 10.1016/S0005-1098(03)00167-5.
Q. C. Zhong, “Robust Control of Time-delay Systems,” Springer London, vol. 1, 2006, doi: 10.1007/1-84628-265-9.
O. Boubaker, V. E. Balas, A. Benzaouia, M. Chaabane, M. S. Mahmoud, and Q. Zhu, “Time-Delay Systems: Modeling, Analysis, Estimation, Control, and Synchronization,” Mathematical Problems in Engineering, 2017, doi: 10.1155/2017/1398904.
W. Bolton, “Instrumentation and Control Systems,” Engineering and technology, vol. 3, pp. 103-136, 2021.
C. M. Ionescu, E. H. Dulf, M. Ghita, and C. I. Muresan, “Robust controller design: recent emerging concepts for control of mechatronic systems,” Journal of the Franklin Institute, vol. 357, no. 12, pp. 7818–7844, 2020, doi: 10.1016/j.jfranklin.2020.05.046.
H. W. Bode, “Network analysis and feedback amplifier design,” Van Nostrand, 1945.
D. J. Wang, “Synthesis of phase-lead/lag compensators with complete information on gain and phase margins,” Automatica, vol. 45, no. 4, pp. 1026-1031, 2009, doi: 10.1016/j.automatica.2008.11.021.
A. Bahill, “A simple adaptive Smith-predictor for controlling time-delay systems: A tutorial,” in IEEE Control Systems Magazine, vol. 3, no. 2, pp. 16-22, 1983, doi: 10.1109/MCS.1983.1104748.
A. Nortcliffe, and J. Love, “Varying time delay Smith predictor process controller,” ISA Transactions, vol. 43, no. 1, pp. 61–71, 2004, doi: 10.1016/s0019-0578(07)60020-2.
R. Holis and V. Bob ˇ al, “Model predictive control of time-delay sys- ´ tems with measurable disturbance compensation,” 2015 20th International Conference on Process Control (PC), pp. 209-214, 2015, doi: 10.1109/PC.2015.7169964.
G. J. Silva, A. Datta, and S. P. Bhattachaiyya, “PID Controllers for Time-Delay Systems,” Control Engineering, vol. 1, 2005, doi: 10.1007/b138796.
E. Amini, and M. Rahmani, “Stabilising PID controller for time-delay systems with guaranteed gain and phase margins,” International Journal of Systems Science, vol. 53, no. 5, pp. 1004-1016, 2022, doi: 10.1080/00207721.2021.1986598.
S. Srivastava, and V. S. Pandit, “A PI/PID controller for time delay systems with desired closed looptime response and guaranteed gain and phase margins,” Journal of Process Control, v. 37, pp. 70–77, 2016, doi: 10.1016/j.jprocont.2015.11.001.
R. S. Barbosa, J. A. T. Machado and I. M. Ferreira, “Tuning of PID controllers based on Bode’s ideal transfer function,” Nonlinear Dynamics, vol. 38, pp. 305-321, 2004, doi: 10.1007/s11071-004-3763-7.
K. J. Astr ˚ om, T. H ¨ agglund, “PID controllers: theory, design and tuning,” ¨ Engineering, Computer Science, 1995.
K. J. Astr ˚ om and T. H ¨ agglund, “Advanced PID Control,” ¨ ISA-The Instrumentation, Systems, and Automation Society, 2006.
K. J. Astr ˚ om, H. Panagopoulos, T. H ¨ agglund, “Design of PI Controllers ¨ based on Non-Convex Optimization,” Automatica, vol. 34, no. 5, pp.585- 601, 1998, doi: 10.1016/S0005-1098(98)00011-9.
H. Panagopoulos, K. J. Astrom and T. Hagglund, “Design of PID controllers based on constrained optimization,” Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251), pp. 3858-3862 vol. 6, 1999, doi: 10.1109/ACC.1999.786239.
G. S. Teodoro, J. A. T. Machado, and E. C. D. Oliveira, “A review of definitions of fractional derivatives and other operators,” Journal of Computational Physics, vol. 388, pp. 195–208, 2019, doi: 10.1016/j.jcp.2019.03.008.
C. A. Monje, Y. Q. Chen, B. M. Vinagre, and V. Feliu, “Fractional Order Systems and Controls,” Fundamentals and Applications, vol. 1, 2010, doi: 10.1007/978-1-84996-335-0.
Y. Q. Chen, I. Petra´s and D. Xue, “Fractional Order Control- A Tu- ˇ torial,” 2009 American Control Conference, pp. 1397-1411, 2009, doi: 10.1109/ACC.2009.5160719.
A. Chevalier, C. Francis, C. Copot, C. M. Ionescu, and R. D. Keyser, “Fractional-order PID design: Towards transition from state-of-art to state of use,” ISA Transactions, vol. 84, pp. 178-186, 2019, doi: 10.1016/j.isatra.2018.09.017.
A. Tepljakov, B. B. Alagoz, C. Yeroglu, E. A. Gonzalez, S. H. HosseinNia, and E. Petlenkov, “FOPID Controllers and Their Industrial Applications: A Survey of Recent Result,” IFAC-PapersOnLine, vol. 51, no. 4, pp. 25- 30, 2018, doi: 10.1016/j.ifacol.2018.06.014.
A. Tepljakov, B. B. Alagoz, C. Yeroglu, E. A. Gonzalez, S. H. HosseinNia, and E. Petlenkov, A. Ates, and M. Cech, “Towards Industrialization of FOPID Controllers: A Survey on Milestones of FO Control and Pathways,” IEEE Access, vol. 9, pp. 21016-210, 2021.
R. Caponetto, G. Maione, and J. Sabatier, “Fractional-order control: A new approach for industrial applications,” Control Engineering Practice, vol. 56, pp. 157-158, 2016, doi: 10.1016/j.conengprac.2016.09.008.
P. Shah, and S. Agashe, “Review of fractional PID controller,” Mechatronics, vol. 38, pp. 29-41, 2016, doi: 10.1016/j.mechatronics.2016.06.005.
R. D. Keyser, C. I. Muresan, and C. M. Ionescu, “Autotuning of a Robust Fractional Order PID Controller,” IFAC-PapersOnLine, vol. 51, no. 25, pp. 466–471, 2018, doi: 10.1016/j.ifacol.2018.11.181.
I. Podlubny, “Fractional-order systems and P IλDµ controllers,” IEEE Transacations on Automatic Control, vol. 44, pp. 208-214, 1999, doi: 10.1109/9.739144.
Y. Q. Chen, and D. Xue, “A comparative introduction of four Fractionalorder Controllers,” in Proceedings of the 4th world congress on intelligent control and automation, vol. 4, pp. 3228–3235, 2002, doi: 10.1109/WCICA.2002.1020131.
Y. Luo, Y. Q. Chen, C. Y. Wang, and Y. G. Pi, “Tuning fractional order proportional integral controllers for fractional order systems,” 2009 Chinese Control and Decision Conference, vol. 20, pp. 307–312, 2009, doi: 10.1109/CCDC.2009.5195101.
L. Liu, L. Zhang, and S. Zhang, “Robust P Iλ controller design for AUV motion control with guaranteed frequency and time domain behaviour,” IET Control Theory Applications, vol. 15, no. 5, pp. 784–792, 2021, doi: 10.1049/cth2.12044.
S. Das, S. Saha, S. Das, and A. Gupta, “On the selection of tuning methodology of FOPID controllers for the control of higher order processes,” ISA Transactions, vol. 50, no. 3, pp. 376–388, 2011, doi: 10.1016/j.isatra.2011.02.003.
B. Senol, U. Demiroglu, and R. Matusu , “Fractional order proportional derivative control for time delay plant of the second order: the frequency frame,” Journal of the Franklin Institute, vol. 357, no. 12, pp. 7944–7961, 2020, doi: 10.1016/j.jfranklin.2020.06.016.
H. Shahsavari, A. Nateghi, “Optimal design of probabilistically robust P IλDµ controller to improve small signal stability of PV integrated power system, Journal of the Franklin Institute, vol. 356, no. 13, pp. 7183–7209, 2019, doi: 10.1016/j.jfranklin.2019.03.035.
V. F. Batlle, “Robust iso phase margin control of oscillatory systems with large uncertainties in their parameters: a fractional-order control approach,” International Journal of Robust and Nonlinear Control, vol. 27, no. 12, pp. 2145–2164, 2017, doi: 10.1002/rnc.3677.
J. G. Ziegler and N. B. Nichols, “Optimum Settings for Automatic Controllers,” J. Dyn. Sys., Meas., Control. , vol. 115, pp. 220–223, 1993, doi: 10.1115/1.2899060.
E. Yumuk, M. Guzelkaya, ˙I. Eksin, “Design of an integer order propor- ¨ tional–integral/proportional–integral–derivative controller based on model parameters of a certain class of fractional order systems,” Journal of Systems and Control Engineering, vol. 233, no. 3, pp. 320–334, 2018, doi: 10.1177/0959651818792363.
G. Baruah, S. Majhi, and C. Mahanta, “Design of FOPI Controller for Time Delay Systems and Its Experimental Validation,” International Journal of Automation and Computing vol. 16, 310-328, 2019, doi: 10.1007/s11633-018-1165-4.
L. Liu, S. Tian, D. Xue, T. Zhang, and Y. Chen, “Continuous fractionalorder Zero Phase Error Tracking Control,” ISA Transactions, vol. 75, pp. 226–235, 2018, doi: 10.1016/j.isatra.2018.01.025.
E. Yumuk , M. Guzelkaya , I. Eksin , “Application of fractional order PI ¨ controllers on a magnetic levitation system,” Turkish Journal of Electrical Engineering and Computer Sciences, vol. 29, no. 1, pp. 98–109, 2021, doi: 10.3906/elk-2003-101.
P. P. Arya, and S. Chakrabarty, “Robust internal model controller with increased closed-loop bandwidth for process control systems,” IET Control Theory and Applcations, vol. 14, no. 15, pp. 2134–2146, 2020, doi: 10.1049/iet-cta.2019.1182.
C. A. Monje, B. Deutschmann, J. Munoz, C. Ott and C. Bala- ˜ guer, “Fractional Order Control of Continuum Soft Robots: Combining Decoupled/Reduced-Dynamics Models and Robust Fractional Order Controllers for Complex Soft Robot Motions,” in IEEE Control Systems Magazine, vol. 43, no. 3, pp. 66-99, 2023, doi: 10.1109/MCS.2023.3253420.
X. Li, G. Sun, S. Han and X. Shao, “Fractional-Order Nonsingular Terminal Sliding Mode Tension Control for the Deployment of Space Tethered Satellite,” in IEEE Transactions on Aerospace and Electronic Systems, vol. 57, no. 5, pp. 2759-2770, 2021, doi: 10.1109/TAES.2021.3061815.
X. Shao, G. Sun, W. Yao, X. Li, and O. Zhang, “Fractional-order resolved acceleration control for free-floating space manipulator with system uncertainty,” Aerospace Science and Technology, vol. 118, p. 107041, 2021, doi: 10.1016/j.ast.2021.107041.
I. Birs, C. Muresan, I. Nascu and C. Ionescu, “A Survey of Recent Advances in Fractional Order Control for Time Delay Systems,” in IEEE Access, vol. 7, pp. 30951-30965, 2019, doi: 10.1109/ACCESS.
M. Tavazoei, “Time response analysis of fractional-order control systems: A survey on recent results,” Fractional Calculus and Applied Analysis, vol. 17, no. 2, pp. 440-461, 2014, doi: 10.2478/s13540-014-0179-z.
S. E. Hamamci, “An Algorithm for Stabilization of Fractional-Order Time Delay Systems Using Fractional-Order PID Controllers,” in IEEE Transactions on Automatic Control, vol. 52, no. 10, pp. 1964-1969, 2007, doi: 10.1109/TAC.2007.906243.
M. M. Ozyetkin, D. Baleanu, “An algebraic stability test for fractional order time delay systems,” An International Journal of Optimization and Control: Theories and Applications, vol. 10, no.1, pp. 94-103, 2020, doi: 10.11121/ijocta.01.2020.00803.
C. A. Monje, A. J. Calderon, B. M. Vinagre, Y. Chen, and V. Feliu, ´ “Fractional PI controllers: some tuning rules for robustness to plant uncertainties,” Nonlinear Dynamics, vol. 38, pp. 369-381, 2004, doi: 10.1007/s11071-004-3767-3.
B. Aguiar, T. Gonzalez and M. Bernal, “Comments on “Robust Stability ´ and Stabilization of Fractional-Order Interval Systems With the Fractional Order α: The 0 < α < 1 Case,” in IEEE Transactions on Automatic Control, vol. 60, no. 2, pp. 582-583, 2015, doi: 10.1109/TAC.2014.2332711.
E. Yumuk, M. Guzelkaya, and I. Eksin, “Optimal fractional-order con- ¨ troller design using direct synthesis method,” IET Control Theory & Applications, vol. 14, no. 18, pp. 2960–2967, 2020, doi: 10.1049/ietcta.2020.0596.
H. Malek, Y. Luo, and Y. Chen, “Identification and tuning fractional order proportional integral controllers for time delayed systems with a fractional pole,” Mechatronics, vol. 23, no. 7, pp. 746–754, 2013, doi: 10.1016/j.mechatronics.2013.02.005.
A. A. Dastjerdi, N. Saikumar, and S. H. HosseinNia, “Tuning guidelines for fractional order PID controllers: rules of thumb,” Mechatronics, vol. 56, pp. 26–36, 2018, doi: 10.1016/j.mechatronics.2018.10.004.
S. Song, B. Zhang, X. Song, Y. Zhang, Z. Zhang, and W. Li, “Fractionalorder adaptive neuro-fuzzy sliding mode H∞ control for fuzzy singularly perturbed systems,” Journal of the Franklin Institute, vol. 356, no. 10, pp. 5027–5048, 2019, doi: 10.1016/j.jfranklin.2019.03.020.
E. Cokmez, S. Atic¸, F. Peker, and I. Kaya, “Fractional-order pi controller design for integrating processes based on gain and phase margin specifications,” IFAC-Papers OnLine, vol. 51, no. 4, pp. 751–756, 2018, doi: 10.1016/j.ifacol.2018.06.206.
P. Chen, Y. Luo, Y. Peng, and Y. Chen, “Optimal robust fractional order P IλD controller synthesis for first order plus time delay systems,” ISA Transactions, vol. 114, pp. 136–149, 2020, doi: 10.1016/j.isatra.2020.12.043.
P. P. Arya and S. Chakrabarty, “A Robust Internal Model-Based Fractional Order Controller for Fractional Order Plus Time Delay Processes,” in IEEE Control Systems Letters, vol. 4, no. 4, pp. 862-867, 2020, doi: 10.1109/LCSYS.2020.2994606.
Y. Luo and Y. Chen, “Stabilizing and robust fractional order PI controller synthesis for first order plus time delay systems,” Automatica, vol. 48, no. 9, pp. 2159-2167, 2019, doi: 10.1016/j.automatica.2012.05.072.
N. Zhuo-Yun, Z. Yi-Min, W. Qing-Guo, L. Rui-Juan and X. Lei-Jun, “Fractional-Order PID Controller Design for Time-Delay Systems Based on Modified Bode’s Ideal Transfer Function,” in IEEE Access, vol. 8, pp. 103500-103510, 2020, doi: 10.1109/ACCESS.2020.2996265.
A. Ben Hmed, M. Amairi, M. Aoun and S. E. Hamdi, “Comparative study of some fractional PI controllers for first order plus time delay systems,” 2017 18th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering, pp. 278-283, 2017, doi: 10.1109/STA.2017.8314971.
SiYi Chen, HuiXian Huang, “Design of fractional order proportional integral controller using stability and robustness criteria in time delay system,” Measurement and Control, vol. 52, no. 9-10, 2019, doi: 10.1177/00202940198775.
R. Ranganayakulu, G. U. B. Babu, A. S. Rao, and D. S. Patle, “A comparative study of fractional order P Iλ/P IλDµ tuning rules for stable first order plus time delay processes,” Resource-Efficient Technologies, vol. 2, pp.S136-S152, 2016, doi: 10.1016/j.reffit.2016.11.009.
F. J. C. Garcia, V. F. Batlle, R. R. Perez and L. Sanchez, “Comparative Analysis of Stability and Robustness between Integer and FractionalOrder PI Controllers for First Order plus Time Delay Plants,” IFAC Proceedings Volumes, vol. 44, no. 1, pp. 15019–15024, 2011, doi: 10.3182/20110828-6-IT-1002.01875.
E. Yumuk, M. Guzelkaya, and ¨ ˙I. Eksin, “A robust fractional-order controller design with gain and phase margin specifications based on delayed Bode’s ideal transfer function”, Journal of the Franklin Institute, vol. 359, no. 11, pp. 5341-5353, 2022, doi: 10.1016/j.jfranklin.2022.05.033.
B. Keziz, A. Djouambi, and S. Ladaci, “A new fractional order controller tuning method based on Bode’s ideal transfer function,” International Journal of Dynamics and Control, vol. 8, pp. 932–942, 2020, doi: 10.1007/s40435-020-00608-z.
W. Zheng, Y. Luo, Y. Chen, X. Wang, “Synthesis of fractional order robust controller based on Bode’s ideas,” ISA Transactions, vol. 111, pp. 290-301, 2021, doi: 10.1016/j.isatra.2020.11.019.
S. Saxena, and Y. V. Hote, “Design of robust fractional-order controller using the Bode ideal transfer function approach in IMC paradigm,” Nonlinear Dynamics, vol. 107, pp. 983–1001, 2022, doi: 10.1007/s11071- 021-07003-z.
R. Azarmi, M. T. Kakhki, A. K. Sedigh, and A. Fatehi, “Robust Fractional Order PI Controller Tuning Based on Bode’s Ideal Transfer Function,” IFAC-Papers OnLine, vol. 49, no. 9, pp. 158–163, 2016, doi: 10.1016/j.ifacol.2016.07.519.
W. Zheng, Y. Luo, Y. Chen, X. Wang, “Synthesis of fractional order robust controller based on Bode’s ideas,” ISA Transactions, vol. 111, pp. 290-301, 2021, doi: 10.1016/j.isatra.2020.11.019.
E. Yumuk, M. Guzelkaya, and I. Eksin, “Analytical fractional ¨ PID controller design based on Bode’s ideal transfer function plus time delay,” ISA Transactions, vol. 91, pp. 196–206, 2019, doi: 10.1016/j.isatra.2019.01.034.
L. Liu and S. Zhang, “Robust Fractional-Order PID Controller Tuning Based on Bode’s Optimal Loop Shaping,” Complexity, vol. 2018, 2018, doi: 10.1155/2018/6570560.
F. Padula and A. Visioli, “On the fragility of fractional-order PID controllers for IPDT processes,” 2017 25th Mediterranean Conference on Control and Automation, pp. 870-875, 2017, doi: 10.1109/MED.2017.7984229.
M. L. Frikh, F. Soltani, N. Bensiali, N. Boutasseta, and N. Fergani, “Fractional order PID controller design for wind turbine systems using analytical and computational tuning approaches,” Computers and Electrical Engineering, vol. 95, p. 107410, 2021, doi: 10.1016/j.compeleceng.2021.107410.
T. N. L. Vu, and M. Lee, “Analytical design of fractional-order proportional-integral controllers for time-delay processes,” ISA Transactions, vol. 52, no. 5, pp. 583-591, 2013, doi: 10.1016/j.isatra.2013.06.003.
K. Gu, V. L. Kharitonov, and J. Chen, “Stability of Time-Delay Systems,” Control ENgineering Book Series, vol. 1, 2003, doi: 10.1007/978-1-4612- 0039-0.
J. J. Loiseau, W. Michiels, S. I. Niculescu, and R. Sipahi, “Topics in Time Delay Systems-Analysis,” Algorithms and Control, Lecture Notes in COntrol & Information Sciences, 2009.
P. D. Domanski, “Control Performance Assessment: Theoretical Analyses ´ and Industrial Practice Studies in Systems,” Spring Cham, vol. 245, 2020, doi: 10.1007/978-3-030-23593-2.
I. Petra´s, “Tuning and implementation methods for fractional-order con- ˇ trollers,” Fractional Calculus and Applied Analysis, vol. 15, pp. 282–303, 2012, doi: 10.2478/s13540-012-0021-4.
D. Valerio, and J. S. D. Costa, “A review of tuning methods for fractional PIDs,” Proceedings of the 4th IFAC Workshop Fractional Differentiation and its Applications FDA’10, 2010.
D. Valerio, J. S. D. Costa, “Tuning-rules for fractional PID controllers,” IFAC Proceedings Volumes, vol. 39, no. 11, pp. 28–33, 2006, doi: 10.3182/20060719-3-PT-4902.00004.
DOI: https://doi.org/10.18196/jrc.v5i2.21101
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Diptee Subhash Patil, Sharad P. Jadhav
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Journal of Robotics and Control (JRC)
P-ISSN: 2715-5056 || E-ISSN: 2715-5072
Organized by Peneliti Teknologi Teknik Indonesia
Published by Universitas Muhammadiyah Yogyakarta in collaboration with Peneliti Teknologi Teknik Indonesia, Indonesia and the Department of Electrical Engineering
Website: http://journal.umy.ac.id/index.php/jrc
Email: jrcofumy@gmail.com