Improving the Efficiency of Open Cathode PEM Fuel Cell Through Hydrogen Flow Control Using Wavelet-Clipping
Abstract
Open cathode proton exchange membrane fuel cells (OC-PEMFC) are devices that produce electrical energy through an electrochemical reaction between hydrogen and oxygen gas. Rapid load changes often lead to fluctuations in the flow of hydrogen entering the OC-PEMFC system. Increased load directly correlates with higher hydrogen gas consumption. However, if there is a delay in adjusting the gas flow rate to changes in load, it can trigger fluctuations in the amplitude and frequency of the output voltage. This fluctuation ultimately disrupts the stability of the power supply to the load, and reducing efficiency. Therefore, this paper presents a novel hybrid system that integrates wavelet and clipping techniques to regulate a more stable hydrogen flow, enhancing efficiency and accuracy under constant load conditions. A wavelet control system is used to mitigate noise, coupled with amplitude limitation through clipping techniques. This control system is implemented in OC-PEMFC model that is validated with experimental data. The performance analysis of this hybrid system reveals a 1.95 % increase in efficiency and attains high accuracy, as evidenced by a low ISE value of 0.028 during interference.
Keywords
Full Text:
PDFReferences
W. Cardoso, R. Di Felice, and R. C. Baptista, “Mathematical modeling of a solid oxide fuel cell operating on biogas,” Bull. Electr. Eng. Informatics, vol. 10, no. 6, pp. 2929–2942, Dec. 2021, doi: 10.11591/eei.v10i6.3253.
S. Sharma, S. Agarwal, and A. Jain, “Significance of hydrogen as economic and environmentally friendly fuel,” Energies, vol. 14, no. 21, 2021, doi: 10.3390/en14217389.
W. Agila, G. Rubio, J. Aviles-Cedeno, and L. Gonzalez, “Approximate Reasoning Techniques in the Control of States of Operation of the PEM Fuel Cell,” 11th Int. Conf. Smart Grid, icSmartGrid 2023, pp. 139–143, 2023, doi: 10.1109/icSmartGrid58556.2023.10170778.
C. Y. Chuang, C. H. Lan, T. S. Lan, X. J. Dai, and J. H. Qin, “Flow control of proton exchange membrane fuel cell with theory of inventive problem solving (TRIZ),” Sensors Mater., vol. 33, no. 5, pp. 1603–1617, May 2021, doi: 10.18494/SAM.2021.3176.
R. Stropnik, N. Mlakar, A. Lotrič, M. Sekavčnik, and M. Mori, “The influence of degradation effects in proton exchange membrane fuel cells on life cycle assessment modelling and environmental impact indicators,” Int. J. Hydrogen Energy, vol. 47, no. 57, pp. 24223–24241, Jul. 2022, doi: 10.1016/j.ijhydene.2022.04.011.
A. K. Sari et al., “Nata de Cassava Type of Bacterial Cellulose Doped with Phosphoric Acid as a Proton Exchange Membrane,” Membranes, vol. 13, no. 1, p. 43, 2023.
D. S. Khaerudini et al., "New and Renewable Catalyst Based on Electro-Activated Carbon for Hydrogen Generation," 2019 International Conference on Technologies and Policies in Electric Power & Energy, pp. 1-6, 2019, doi: 10.1109/IEEECONF48524.2019.9102628..
P. Mandal, B. K. Hong, J. G. Oh, and S. Litster, “Understanding the voltage reversal behavior of automotive fuel cells,” J. Power Sources, vol. 397, pp. 397–404, Sep. 2018, doi: 10.1016/j.jpowsour.2018.06.083.
D. Yang, R. Pan, Y. Wang, and Z. Chen, “Modeling and control of PEMFC air supply system based on T-S fuzzy theory and predictive control,” Energy, vol. 188, p. 116078, 2019, doi: 10.1016/j.energy.2019.116078.
X. M. Yuan, F. Ye, J. X. Liu, H. Guo, and C. F. Ma, “Voltage response and two-phase flow during mode switching from fuel cell to water electrolyser in a unitized regenerative fuel cell,” Int. J. Hydrogen Energy, pp. 15917–15925, Jun. 2019, doi: 10.1016/j.ijhydene.2018.07.017.
Y. Maiket, R. Yeetsorn, and W. Kaewmanee, “Hydrogen Flow Controller Applied to Driving Behavior Observation of Hydrogen Fuel Cell Performance Test,” ACS Omega, vol. 7, no. 43, pp. 38277–38288, 2022, doi: 10.1021/acsomega.2c02000.
W. Liu, Z. Peng, B. Kim, B. Gao, and Y. Pei, “Development of a PEMFC dynamic model and the application to the analysis of fuel cell vehicle performance,” IOP Conf. Ser. Mater. Sci. Eng., vol. 628, no. 1, 2019, doi: 10.1088/1757-899X/628/1/012006.
A. A. J. Jeman, N. M. S. Hannoon, N. Hidayat, M. M. H. Adam, I. Musirin, and V. Vijayakumar, “Experimental study on transient response of fuel cell,” Bull. Electr. Eng. Informatics, vol. 8, no. 2, pp. 375–381, Jun. 2019, doi: 10.11591/eei.v8i2.1431.
D. N. Luta and A. K. Raji, “Comparing fuzzy rule-based MPPT techniques for fuel cell stack applications,” Energy Procedia, vol. 156, pp. 177–182, 2019, doi: 10.1016/j.egypro.2018.11.124.
M. Qaiser, A. B. Asghar, M. H. Jaffery, M. Y. Javaid, M. S. Khurram, and L. Campus, “Flow Control Of Hydrogen Fuel In Pem Fuel Cell Using Soft Computing Techniques,” Journal of Ovonic Research, vol. 17, no. 1, pp. 31–44, 2021.
T. H. Eom, J. W. Kang, J. Kim, M. H. Shin, J. H. Lee, and C. Y. Won, “Improved voltage drop compensation method for hybrid fuel cell battery system,” Electron., vol. 7, no. 11, 2018, doi: 10.3390/electronics7110331.
F. S. Nanadegani and B. Sunden, “Review of exergy and energy analysis of fuel cells,” Int. J. Hydrogen Energy, vol. 48, no. 84, pp. 32875–32942, 2023, doi: 10.1016/j.ijhydene.2023.05.052.
F. Chen, Y. Yu, Y. Liu, and H. Chen, “Control system design for proton exchange membrane fuel cell based on a common rail (I): Control strategy and performance analysis,” Int. J. Hydrogen Energy, vol. 42, no. 7, pp. 4285–4293, Feb. 2017, doi: 10.1016/j.ijhydene.2016.11.140.
K. Ahmed, O. Farrok, M. M. Rahman, M. S. Ali, M. M. Haque, and A. K. Azad, “Proton exchange membrane hydrogen fuel cell as the grid connected power generator,” Energies, vol. 13, no. 24, pp. 1–20, 2020, doi: 10.3390/en13246679.
G. I. Applications, “Short Circuit Characteristics of PEM Fuel Cells for Grid Integration Applications,” Electronics, vol. 9, no. 4, p. 602, 2020, doi: 10.3390/electronics9040602.
M. Dhimish, G. Vieira, and G. Badran, "Investigating the stability and degradation of hydrogen PEM fuel cell," International Journal of Hydrogen Energy, vol. 46, no. 74, pp. 37017-37028, 2021, doi: 10.1016/j.ijhydene.2021.08.183.
F. R. Maulana, K. Indriawati, and R. A. Wahyuono, “Reactant Control Strategies for Maximizing Efficiency in Open Cathode PEM Fuel Cell,” Proc. 2023 Int. Conf. Instrumentation, Control. Autom. ICA 2023, pp. 30–35, 2023, doi: 10.1109/ICA58538.2023.10273067.
D. Huo, Q. Peng, and C. M. Hall, “Koopman-Based Modeling of an Open Cathode Proton Exchange Membrane Fuel Cell Stack,” IFAC-PapersOnLine, vol. 56, no. 3, pp. 67–72, 2023, doi: 10.1016/j.ifacol.2023.12.002.
C. Zhao, B. Li, L. Zhang, Y. Han, and X. Wu, “Novel optimal structure design and testing of air-cooled open-cathode proton exchange membrane fuel cell,” Renew. Energy, vol. 215, p. 118899, 2023, doi: 10.1016/j.renene.2023.06.020.
C. Mahjoubi and J. Olivier, "An improved thermal control of open cathode proton exchange membrane fuel cell," International Journal of Hydrogen Energy, vol. 44, no. 22, pp. 11332-11345, 2018, doi: 10.1016/j.ijhydene.2018.11.055.
F. Chen, L. Zhang, and J. Jiao, “Modelling of humidity dynamics for open-cathode proton exchange membrane fuel cell,” World Electr. Veh. J., vol. 12, no. 3, 2021, doi: 10.3390/wevj12030106.
Z. Guo, C. Tian, K. Gong, W. Xu, L. Chen, and W. Tao, “International Journal of Hydrogen Energy Experimental study on the dynamic response of voltage and temperature of an open-cathode air-cooled proton exchange membrane fuel cell,” International Journal of Hydrogen Energy, vol. 57, pp. 601–615, 2024.
H. Chen, S. Xu, P. Pei, B. Qu, and T. Zhang, “Mechanism analysis of starvation in PEMFC based on external characteristics,” Int. J. Hydrogen Energy, vol. 44, no. 11, pp. 5437–5446, Feb. 2019, doi: 10.1016/j.ijhydene.2018.11.135.
J. Li and T. Yu, “Sensors integrated control of PEMFC gas supply system based on large-scale deep reinforcement learning,” Sensors (Switzerland), vol. 21, no. 2, pp. 1–19, Jan. 2021, doi: 10.3390/s21020349.
X. Bai and Q. Jian, “Decoupling strategy for react-air supply and cooling of open-cathode proton exchange membrane fuel cell stack considering real-time membrane resistance estimation,” J. Clean. Prod., vol. 410, p. 137288, 2023, doi: 10.1016/j.jclepro.2023.137288.
X. Zhu et al., “Performance analysis of proton exchange membrane fuel cells with traveling-wave flow fields based on Grey-relational theory,” Int. J. Hydrogen Energy, vol. 48, no. 2, pp. 740–756, 2023, doi: 10.1016/j.ijhydene.2022.09.244.
M. Bressel, M. Hilairet, D. Hissel, and B. Ould Bouamama, “Model-based aging tolerant control with power loss prediction of Proton Exchange Membrane Fuel Cell,” Int. J. Hydrogen Energy, vol. 45, no. 19, pp. 11242–11254, 2020, doi: 10.1016/j.ijhydene.2018.11.219.
M. Obermaier, M. Rauber, A. Bauer, T. Lochner, F. Du, and C. Scheu, “Local Fuel Starvation Degradation of an Automotive PEMFC Full Size Stack,” Fuel Cells, vol. 20, no. 4, pp. 394–402, Aug. 2020, doi: 10.1002/fuce.201900180.
L. Xia, M. Ni, Q. He, Q. Xu, and C. Cheng, “Optimization of gas diffusion layer in high temperature PEMFC with the focuses on thickness and porosity,” Appl. Energy, vol. 300, p. 117357, 2021, doi: 10.1016/j.apenergy.2021.117357.
H. A. Dhahad, W. H. Alawee, and A. K. Hassan, “Experimental study of the effect of flow field design to PEM fuel cells performance,” Renew. Energy Focus, vol. 30, pp. 71–77, 2019, doi: 10.1016/j.ref.2019.05.002.
Y. Qi, M. Thern, M. Espinoza-Andaluz, and M. Andersson, “Modeling and Control Strategies of Proton Exchange Membrane Fuel Cells,” in Energy Procedia, vol. 159, pp. 54–59, 2019, doi: 10.1016/j.egypro.2018.12.017.
F. Jia, X. Tian, F. Liu, J. Ye, and C. Yang, “Oxidant starvation under various operating conditions on local and transient performance of proton exchange membrane fuel cells,” Appl. Energy, vol. 331, p. 120412, 2023, doi: 10.1016/j.apenergy.2022.120412.
M. Fattahi, "Fuzzy sliding mode control of hydrogen flow in PEM fuel cell system for residential power generation," 2017 5th International Conference on Control, Instrumentation, and Automation (ICCIA), pp. 1-6, 2017, doi: 10.1109/ICCIAutom.2017.8373943..
W. Wang, J. Chen, C. Xiao, and N. Cheng, “Adaptive fuzzy control method of hydrogen fuel cell gas supply system,” J. Phys. Conf. Ser., vol. 1983, no. 1, 2021, doi: 10.1088/1742-6596/1983/1/012051.
Y. B. Yakut, “A new control algorithm for increasing efficiency of PEM fuel cells – Based boost converter using PI controller with PSO method,” Int. J. Hydrogen Energy, 2023, doi: 10.1016/j.ijhydene.2023.12.008.
Y. Huang and Y. Huang, “Research on PID Parameter Self-Tuning Speed Control System Based on Grasshopper Optimazation Algorithm-Optimized BP Neural Network,” 2023 3rd Int. Conf. Energy, Power Electr. Eng., pp. 1444–1450, 2023, doi: 10.1109/epee59859.2023.10351813.
F. Behrooz, N. Mariun, M. H. Marhaban, M. A. M. Radzi, and A. R. Ramli, “Review of control techniques for HVAC systems-nonlinearity approaches based on fuzzy cognitive maps,” Energies, vol. 11, no. 3, 2018, doi: 10.3390/en11030495.
N. A. Zambri, N. Bin Salim, F. H. M. Noh, and S. S. Yi, “Performance comparison of PEMFC hydrogen reformer with different controllers,” Telkomnika (Telecommunication Comput. Electron. Control., vol. 17, no. 5, pp. 2617–2624, 2019, doi: 10.12928/TELKOMNIKA.v17i5.12817.
N. Rifai, J. Sabor, and C. Alaoui, “PEM Fuel Cell Dynamic Modeling Based On Transfer Functions,” 2022 2nd Int. Conf. Innov. Res. Appl. Sci. Eng. Technol. IRASET 2022, pp. 1–5, 2022, doi: 10.1109/IRASET52964.2022.9738273.
X. Hou et al., “Energy, economic, and environmental analysis: A study of operational strategies for combined heat and power system based on PEM fuel cell in the East China region,” Renew. Energy, vol. 223, p. 120023, 2024, doi: 10.1016/j.renene.2024.120023.
W. Andari, S. Ghozzi, M. S. Ben Yahia, H. Allagui, and A. Mami, “Supervisory control design for a PEM fuel cell electric vehicle,” 2021 12th Int. Renew. Energy Congr. IREC 2021, pp. 21–25, 2021, doi: 10.1109/IREC52758.2021.9624829.
C. Mahjoubi, J. C. Olivier, S. Skander-mustapha, M. Machmoum, and I. Slama-belkhodja, “An improved thermal control of open cathode proton exchange membrane fuel cell,” Int. J. Hydrogen Energy, vol. 44, no. 22, pp. 11332–11345, 2019, doi: 10.1016/j.ijhydene.2018.11.055.
Y. Cao, Y. Li, G. Zhang, K. Jermsittiparsert, and N. Razmjooy, “Experimental modeling of PEM fuel cells using a new improved seagull optimization algorithm,” Energy Reports, vol. 5, pp. 1616–1625, 2019, doi: 10.1016/j.egyr.2019.11.013.
M. Bayat and M. Özalp, “Effects of leak current density and doping level on energetic, exergetic and ecological performance of a high-temperature PEM fuel cell,” Int. J. Hydrogen Energy, vol. 48, no. 60, pp. 23212–23229, 2023, doi: 10.1016/j.ijhydene.2023.03.277.
P. Xie, S. S. Araya, J. M. Guerrero, and J. C. Vasquez, “Dynamic Modeling and Control of High Temperature PEM Fuel Cell and Battery System for Electrical Applications,” IECON Proc. (Industrial Electron. Conf., pp. 1–6, 2023, doi: 10.1109/IECON51785.2023.10312306.
J. Kuang et al., “Oxygen excess ratio control of PEM fuel cell systems with prescribed regulation time,” ISA Trans., vol. 142, pp. 683–692, 2023, doi: 10.1016/j.isatra.2023.07.026.
K. Benmouiza and A. Cheknane, “Analysis of proton exchange membrane fuel cells voltage drops for different operating parameters,” Int. J. Hydrogen Energy, vol. 43, no. 6, pp. 3512–3519, Feb. 2018, doi: 10.1016/j.ijhydene.2017.06.082.
B. O. Emmanuel, P. Barendse, and J. Chamier, “Effect of Anode Stoichiometry and Back Pressure on the Performance of PEMFCs,” 2018 IEEE PES/IAS PowerAfrica, PowerAfrica 2018, pp. 1–6, 2018, doi: 10.1109/PowerAfrica.2018.8521183.
X. Li, J. Wang, W. Huang, and H. Dong, “Fuzzy Adaptive Algorithm Controls Oxygen Excess Coefficient of Air Blower and System Net Power of Proton Exchange Membrane Fuel Cell,” 2023 7th Int. Conf. Smart Grid Smart Cities, ICSGSC 2023, pp. 343–348, 2023, doi: 10.1109/ICSGSC59580.2023.10319237.
F. Z. Amatoul and M. Er-raki, “Modeling and simulation of electrical generation systems based on PEM fuel cell-boost converter using a closed loop PI controller,” Energy Reports, vol. 9, no. S11, pp. 296–308, 2023, doi: 10.1016/j.egyr.2023.08.055.
M. Zadehbagheri, M. J. Kiani, and T. Sutikno, “Investigation of the Effects of Fuel Cells on V-Q & V-P Characteristics,” J. Robot. Control, vol. 3, no. 4, pp. 535–545, 2022, doi: 10.18196/jrc.v3i4.14855.
S. Cheng et al., “Investigation and analysis of proton exchange membrane fuel cell dynamic response characteristics on hydrogen consumption of fuel cell vehicle,” Int. J. Hydrogen Energy, vol. 47, no. 35, pp. 15845–15864, 2022, doi: 10.1016/j.ijhydene.2022.03.063.
B. Li, Z. Guo, L. Zeng, J. Fu, C. Sheng, and X. Li, “Optimization of Parameter Matching for PEM Fuel Cell Hybrid Power System,” Chinese Control Conf. CCC, pp. 6340–6345, 2023, doi: 10.23919/CCC58697.2023.10240722.
U. K. Chakraborty, “A New Model for Constant Fuel Utilization and Constant Fuel Flow in Fuel Cells,” Appl. Sci., vol. 9, no. 6, 2019, doi: 10.3390/app9061066.
A. Elbaz, M. H. Elfar, A. Kalas, and A. Refaat, “Maximum Power Extraction from Polymer Electrolyte Membrane (PEM) Fuel Cell Based on Deterministic Particle Swarm Optimization Algorithm,” Proc. 2022 Conf. Russ. Young Res. Electr. Electron. Eng. ElConRus 2022, pp. 613–619, 2022, doi: 10.1109/ElConRus54750.2022.9755807.
M. Li, M. Lin, L. Wang, Y. Wang, F. Pan, and X. Zhao, “Observation and Analysis of Ejector Hysteresis Phenomena in the Hydrogen Recirculation Subsystem of PEMFCs,” Entropy, vol. 25, no. 3, p. 426, 2023, doi: 10.3390/e25030426.
S. and A. K. Darjat , Sulistyo, Aris Triwiyatno, “Designing Hydrogen and Oxygen Flow Rate Control on a Solid Oxide Fuel Cell Simulator Using the Fuzzy Logic Control Method,” Process, vol. 8, no. 154, pp. 1–22, 2020.
K. Mammar, F. Saadaoui, and A. Hazzab, “Development and simulation of a PEM fuel cell model for prediction of water content and power generation,” vol. 4, no. 2017, pp. 289–299, 2018, doi: 10.22104/ijhfc.2018.2792.1168.
X. Tang, Y. Zhang, and S. Xu, “Experimental study of PEM fuel cell temperature characteristic and corresponding automated optimal temperature calibration model,” Energy, vol. 283, p. 128456, 2023, doi: 10.1016/j.energy.2023.128456.
E. A. El-Hay, M. A. El-Hameed, and A. A. El-Fergany, “Optimized Parameters of SOFC for steady state and transient simulations using interior search algorithm,” Energy, vol. 166, pp. 451–461, 2019, doi: 10.1016/j.energy.2018.10.038.
N. Benchouia, A. E. Hadjadj, A. Derghal, L. Khochemane, and B. Mahmah, “Modeling and validation of fuel cell PEMFC,” J. Renew. Energies, vol. 16, no. 2, pp. 365–377, 2023, doi: 10.54966/jreen.v16i2.386.
M. Y. Silaa, O. Barambones, and A. Bencherif, “A Novel Adaptive PID Controller Design for a PEM Fuel Cell Using Stochastic Gradient Descent with Momentum Enhanced by Whale Optimizer,” Electron., vol. 11, no. 16, 2022, doi: 10.3390/electronics11162610.
M. Derbeli, M. Farhat, O. Barambones, and L. Sbita, “Control of PEM fuel cell power system using sliding mode and super-twisting algorithms,” Int. J. Hydrogen Energy, vol. 42, no. 13, pp. 8833–8844, 2017, doi: 10.1016/j.ijhydene.2016.06.103.
N. Rifai, J. Sabor, C. Alaoui, R. Petrone, and H. Gualous, “Dynamic modeling of an open cathode PEM fuel cell for automotive energy management applications,” Int. J. Power Electron. Drive Syst., vol. 13, no. 3, pp. 1406–1418, 2022, doi: 10.11591/ijpeds.v13.i3.pp1406-1418.
M. A. Khan, A. Haque, V. S. B. Kurukuru, and F. Blaabjerg, “Optimizing the Performance of Single-Phase Photovoltaic Inverter using Wavelet-Fuzzy Controller,” e-Prime - Adv. Electr. Eng. Electron. Energy, vol. 3, p. 100093, 2023, doi: 10.1016/j.prime.2022.100093.
A. K. Samantaray, P. Gorre, and P. K. Sahoo, “Design of CSD based bi-orthogonal wavelet filter bank for medical image retrieval,” e-Prime - Adv. Electr. Eng. Electron. Energy, vol. 5, p. 100242, 2023, doi: 10.1016/j.prime.2023.100242.
M. Sushmitha, S. Chetan, and S. Sarkar, “An Efficient High-Speed Lifting Based 1D/2D-DWT VLSI Architecture Using CDF-5/3 Wavelet Transform for Image Processing Applications,” Proc. - 5th IEEE Int. Conf. Recent Trends Electron. Inf. Commun. Technol. RTEICT 2020, pp. 269–274, 2020, doi: 10.1109/RTEICT49044.2020.9315649.
M. Sushmitha, S. Chetan and S. Sarkar, "An Efficient High-Speed Lifting Based 1D/2D-DWT VLSI Architecture Using CDF-5/3 Wavelet Transform For Image Processing Applications," 2020 International Conference on Recent Trends on Electronics, Information, Communication & Technology (RTEICT), pp. 269-274, 2020, doi: 10.1109/RTEICT49044.2020.9315649.
M. Gholipour, “Design and implementation of lifting based integer wavelet transform for image compression applications,” Commun. Comput. Inf. Sci., vol. 166, pp. 161–172, 2011, doi: 10.1007/978-3-642-21984-9_14.
S. Krishna, D. Kumar, and V. K. Dwivedi, “Biorthogonal Wavelets for Multiresolution Image Compression,” 2022 2nd Int. Conf. Power Electron. IoT Appl. Renew. Energy its Control. PARC 2022, pp. 1–7, 2022, doi: 10.1109/PARC52418.2022.9726558.
B. Bakkas, R. Benkhouya, I. Chana, and H. Ben-azza, “Palm Date Leaf Clipping : A New Method to Reduce PAPR in OFDM Systems,” Information, vol. 11, no. 4, p. 190, 2020.
B. Tang, K. Qin, and C. Chen, “A Novel Clipping-Based Method to Reduce Peak-To-Average Power Ratio of OFDM Signals,” Information, vol. 11, no. 2, p. 113, 2020.
W. Pirom and A. Srisiriwat, “Experimental Study of Hybrid Photovoltaic-PEM Electrolyzer-PEM Fuel Cell System,” Proc. 2022 Int. Electr. Eng. Congr. iEECON 2022, pp. 1–4, 2022, doi: 10.1109/iEECON53204.2022.9741687.
Z. Baroud, A. Benalia, and C. Ocampo-Martinez, “Air flow regulation in fuel cells: An efficient design of hybrid fuzzy-PID control,” EEA - Electroteh. Electron. Autom., vol. 64, no. 4, pp. 28–32, 2016.
Z. Baroud, M. Benmiloud, A. Benalia, and C. Ocampo-Martinez, “Novel hybrid fuzzy-PID control scheme for air supply in PEM fuel-cell-based systems,” Int. J. Hydrogen Energy, vol. 42, no. 15, pp. 10435–10447, 2017, doi: 10.1016/j.ijhydene.2017.01.014.
DOI: https://doi.org/10.18196/jrc.v5i2.21227
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Triyanto Pangaribowo, Wahyu Mulyo Utomo, Abdul Hamid Budiman, Deni Shidqi Khaerudini, Afarulrazi Abu Bakar
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Journal of Robotics and Control (JRC)
P-ISSN: 2715-5056 || E-ISSN: 2715-5072
Organized by Peneliti Teknologi Teknik Indonesia
Published by Universitas Muhammadiyah Yogyakarta in collaboration with Peneliti Teknologi Teknik Indonesia, Indonesia and the Department of Electrical Engineering
Website: http://journal.umy.ac.id/index.php/jrc
Email: jrcofumy@gmail.com