Voltage Tracking of Bidirectional DC-DC Converter Using Online Neural Network for Green Energy Application

Nor Farisha Diana, Wahyu Mulyo Utomo, Afarulrazi Bin Abu Bakar, Suriana Salimin, Gigih Priyandoko, Widjonarko Widjonarko

Abstract


In the current era, green energy systems like solar PV, wind energy, and battery storage critically rely on DC-DC converters to manage power flow and voltage conversion efficiently, ensuring optimal performance and reliability. Nevertheless, converters face multiple challenges, including efficiency losses, thermal management concerns, and electromagnetic interference, which can impact these green energy systems' overall performance and reliability. To overcome these challenges, it is necessary to utilize advanced control mechanisms, enhance heat management approaches, and optimize component design. Implementing these improvements will improve the effectiveness and durability of DC-DC converters in renewable energy applications. This research aims to analyze the performance characteristics of a three-phase interleaved half-bridge bidirectional (TPHB-Bi) converter. The research objective involves investigating the effectiveness of the proposed controller by rigorously assessing voltage tracking. This is done through comprehensive assessments of start-up procedures and reference voltage variations using MATLAB/Simulink. The study utilizes a neural network controller with an online learning algorithm based on backpropagation to enhance the converter's operational capabilities, ensuring a stable output voltage and improved transient response. The simulation results highlight the significant advantages of the proposed controller over a conventional PID controller. It exhibits a remarkable reduction in overshoot by 5.29%, considerably shorter rise times ranging from 0.01ms to 0.1ms, and faster settling times of 0.025s. The findings have great importance in promoting sustainable energy development and environmental protection. They demonstrate that implementing advanced control strategies for DC-DC converters can result in more efficient and reliable green energy systems.

Keywords


Buck-Boost Converter; Interleaved Converter; Artificial Neural Network; Electric Vehicle.

Full Text:

PDF

References


Q. Hassan et al., "The renewable energy role in the global energy Transformations," Renew. Energy Focus, vol. 48, no. 100545, pp. 1–16, 2024, doi: 10.1016/j.ref.2024.100545.

Q. Hassan, S. Algburi, A. Z. Sameen, H. M. Salman, and M. Jaszczur, "Green hydrogen: A pathway to a sustainable energy future," Int. J. Hydrogen Energy, vol. 50, pp. 310–333, 2024, doi: 10.1016/j.ijhydene.2023.08.321.

L. S. Paraschiv and S. Paraschiv, "Contribution of renewable energy (hydro, wind, solar and biomass) to decarbonization and transformation of the electricity generation sector for sustainable development," Energy Reports, vol. 9, pp. 535–544, 2023, doi: 10.1016/j.egyr.2023.07.024.

I. Kosmidis, D. Müller-Eie, and A. Delbosc, "Electric cars as a path to sustainable travel behaviour: Insights from Nord-Jæren," Transp. Res. Part D Transp. Environ., vol. 125, pp. 1–14, 2023, doi: 10.1016/j.trd.2023.103982.

J. Linn and V. McConnell, "Interactions between federal and state policies for reducing vehicle emissions," Energy Policy, vol. 126, pp. 507–517, 2019, doi: 10.1016/j.enpol.2018.10.052.

A. M. Al-Ghaili, H. Kasim, H. Aris, and N. M. Al-Hada, "Can electric vehicles be an alternative for traditional fossil-fuel cars with the help of renewable energy sources towards energy sustainability achievement?," Energy Informatics, vol. 5, no. 4, pp. 1–24, 2022, doi: 10.1186/s42162-022-00234-3.

D. Singh, U. K. Paul, and N. Pandey, "Does electric vehicle adoption (EVA) contribute to clean energy? Bibliometric insights and future research agenda," Clean. Responsible Consum., vol. 8, p. 100099, 2023, doi: 10.1016/j.clrc.2022.100099.

P. Albrechtowicz, "Electric vehicle impact on the environment in terms of the electric energy source — Case study," Energy Reports, vol. 9, pp. 3813–3821, 2023, doi: 10.1016/j.egyr.2023.02.088.

F. Alanazi, "Electric Vehicles: Benefits, Challenges, and Potential Solutions for Widespread Adaptation," Appl. Sci., vol. 13, no. 10, p. 6016, May 2023, doi: 10.3390/app13106016.

A. A. Shalbaf, N. Shahidi, and M. Hemati, "A high-gain interleaved DC-DC converter with reduced components for EV charging application," Comput. Electr. Eng., vol. 118, no. 109316, pp. 1–26, 2024, doi: 10.1016/j.compeleceng.2024.109316.

J. A. Sanguesa, V. Torres-Sanz, P. Garrido, F. J. Martinez, and J. M. Marquez-Barja, "A Review on Electric Vehicles: Technologies and Challenges," Smart Cities, vol. 4, no. 1, pp. 372–404, Mar. 2021, doi: 10.3390/smartcities4010022.

M. Guzek, J. Jackowski, R. S. Jurecki, E. M. Szumska, P. Zdanowicz, and M. Żmuda, "Electric Vehicles—An Overview of Current Issues—Part 1—Environmental Impact, Source of Energy, Recycling, and Second Life of Battery," Energies, vol. 17, no. 1, p. 249, Jan. 2024, doi: 10.3390/en17010249.

I. Veza, M. Z. Asy'ari, M. Idris, V. Epin, I. M. Rizwanul Fattah, and M. Spraggon, "Electric vehicle (EV) and driving towards sustainability: Comparison between EV, HEV, PHEV, and ICE vehicles to achieve net zero emissions by 2050 from EV," Alexandria Eng. J., vol. 82, pp. 459–467, 2023, doi: 10.1016/j.aej.2023.10.020.

X. Zhao, H. Hu, H. Yuan, and X. Chu, "How does adopting electric vehicles reduce carbon emissions? Evidence from China," Heliyon, vol. 9, no. 9, pp. 1–13, 2023, doi: 10.1016/j.heliyon.2023.e20296.

J. Gupta, R. Maurya, and S. R. Arya, "Designing an On-board Charger to Charge Multiple Electric Vehicles Efficiently," Chinese J. Electr. Eng., vol. 9, no. 2, pp. 38–56, 2023, doi: 10.23919/CJEE.2023.000019.

F. Wang, Y. Wang, B. Su, and C. Teng, "Three-phase interleaved high step-up bidirectional DC-DC converter," IET Power Electron., vol. 13, no. 12, pp. 2638–2650, 2020, doi: 10.1049/iet-pel.2020.0295.

S. C. Devi, A. Ramkumar, and S. Rajendran, "Design and Analysis of Three Stage Interleaved Boost Converter for E-Vehicle Application," vol. 6, no. 3, pp. 3666–3670, 2021.

Y. Huang et al., "Bidirectional Buck-Boost and Series LC-Based Power Balancing Units for Photovoltaic DC Collection System," IEEE J. Emerg. Sel. Top. Power Electron., vol. 9, no. 6, pp. 6726–6738, 2021, doi: 10.1109/JESTPE.2021.3074575.

Y. Wang, Y. Li, Y. Guan, and D. Xu, "Topology and Control Optimization of Bidirectional DC/DC Converter for Electric Vehicles," IEEE J. Emerg. Sel. Top. Power Electron., vol. 12, no. 1, pp. 257–268, 2024, doi: 10.1109/JESTPE.2023.3278718.

M. Rezvanyvardom and A. Mirzaei, "Zero-Voltage Transition Nonisolated Bidirectional Buck-Boost DC-DC Converter with Coupled Inductors," IEEE J. Emerg. Sel. Top. Power Electron., vol. 9, no. 3, pp. 3266–3275, 2021, doi: 10.1109/JESTPE.2020.2992007.

Z. Gholami, R. Ildarabadi, H. Heydari-Doostabad, M. Monfared, and T. O'Donnell, "Bidirectional wide range and high voltage gain buck-boost DC-DC converter for EV chargers empowering V2G-G2V applications," IET Power Electron., vol. 17, no. 2, pp. 230–250, 2024, doi: 10.1049/pel2.12630.

Y. G. Oh, O. Kwon, and J. M. Kwon, "Bidirectional push–pull/H-bridge converter for low-voltage energy storage system," IET Power Electron., vol. 17, no. 1, pp. 1–9, 2024, doi: 10.1049/pel2.12586.

E. Martinez-Vera and P. Bañuelos-Sanchez, "Review of Bidirectional DC-DC Converters and Trends in Control Techniques for Applications in Electric Vehicles," IEEE Lat. Am. Trans., vol. 22, no. 2, pp. 144–155, 2024, doi: 10.1109/TLA.2024.10412031.

A. Zabetian-Hosseini, G. Joos, and B. Boulet, "Control Design for Effective Usage of Electric Vehicles in V2G-Enabled DC Charging Stations," IEEE Trans. Power Deliv., vol. 38, no. 6, pp. 4335–4346, 2023, doi: 10.1109/TPWRD.2023.3317804.

Y. Li, Y. Wang, Y. Guan, and D. Xu, "Design and Analysis of Integrated Bidirectional DC-DC Converter for Energy Storage Systems," IEEE Trans. Ind. Electron., vol. PP, pp. 1–12, 2023, doi: 10.1109/TIE.2023.3340186.

G. Hill, O. Heidrich, F. Creutzig, and P. Blythe, "The role of electric vehicles in near-term mitigation pathways and achieving the UK' s carbon budget," Appl. Energy, vol. 251, no. July 2018, p. 113111, 2019, doi: 10.1016/j.apenergy.2019.04.107.

A. Dik, S. Omer, and R. Boukhanouf, "Electric vehicles : V2G for rapid , safe , and green EV penetration," Energies 2022, vol. 15, no. 803, pp. 2–27, 2022, doi: 10.3390/en15030803.

Z. Yan et al., "Ripple-Free Bidirectional DC-DC Converter With Wide ZVS Range for Battery Charging/Discharging System," IEEE Trans. Ind. Electron., vol. 70, no. 10, pp. 9992–10002, 2023, doi: 10.1109/TIE.2022.3222659.

M. N. Huynh, H. N. Duong, and V. H. Nguyen, "A Passivity-based Control Combined with Sliding Mode Control for a DC-DC Boost Power Converter," J. Robot. Control, vol. 4, no. 6, pp. 780–790, 2023, doi: 10.18196/jrc.v4i6.20071.

O. O. Babayomi, Z. Zhang, Z. Li, and K. B. Park, "Bidirectional DC-DC converters for distributed energy resources: Robust predictive control with structurally-adaptive extended state observers," Int. J. Electr. Power Energy Syst., vol. 158, no. March, 2024, doi: 10.1016/j.ijepes.2024.109913.

M. Zhu, X. Liu, and X. Pan, "Design and implementation of real-time simulation module for non-isolated bidirectional half-bridge DC–DC converter," Energy Reports, vol. 8, pp. 15531–15547, 2022, doi: 10.1016/j.egyr.2022.11.148.

R. D. N. Aditama, N. Ramadhani, T. Ardriani, J. Furqani, A. Rizqiawan, and P. A. Dahono, "New Modular Multilevel DC–DC Converter Derived from Modified Buck–Boost DC–DC Converter," Energies, vol. 16, no. 19, 2023, doi: 10.3390/en16196950.

M. Afkar, R. Gavagsaz-Ghoachani, M. Phattanasak, S. Pierfederici, and W. Saksiri, "Local-Stability Analysis of Cascaded Control for a Switching Power Converter," J. Robot. Control, vol. 5, no. 1, pp. 160–172, 2024, doi: 10.18196/jrc.v5i1.20302.

D. H. Al-Mamoori, N. A. Azli, S. M. Ayob, and A. A. A. Albakry, "A multilevel boost inverter with removed leakage current and a reduced number of elements for photovoltaic applications," Int. J. Power Electron. Drive Syst., vol. 15, no. 1, pp. 312–322, 2024, doi: 10.11591/ijpeds.v15.i1.pp312-322.

D. Maheswaran, S. V. Thazhathu, and D. Thangavelusamy, "A non-inverting single-switch buck-boost converter based LED driver," Int. J. Power Electron. Drive Syst., vol. 14, no. 3, pp. 1509–1522, 2023, doi: 10.11591/ijpeds.v14.i3.pp1509-1522.

W. Abitha Memala, C. Bhuvaneswari, S. M. Shyni, G. Merlin Sheeba, M. S. Mahendra, and V. Jaishree, "DC-DC converter based power management for go green applications," Int. J. Power Electron. Drive Syst., vol. 10, no. 4, pp. 2046–2054, 2019, doi: 10.11591/ijpeds.v10.i4.pp2046-2054.

M. A. N. Amran, A. A. Bakar, M. H. A. Jalil, A. F. H. A. Gani, and E. Pathan, "Optimal tuning of proportional-integral controller using system identification for two-phase boost converter for low-voltage applications," Int. J. Power Electron. Drive Syst., vol. 12, no. 4, pp. 2393–2402, 2021, doi: 10.11591/ijpeds.v12.i4.pp2393-2402.

M. C. Annamalai and N. Amutha prabha, "A comprehensive review on isolated and non-isolated converter configuration and fast charging technology: For battery and plug in hybrid electric vehicle," Heliyon, vol. 9, no. 8, p. e18808, 2023, doi: 10.1016/j.heliyon.2023.e18808.

M. Hassanifar, D. Nazarpour, S. Golshannavaz, and Y. Neyshabouri, "A Modular Cascaded Multilevel Converter With High Configurability: Design, Analysis, and Optimization Study," IEEE J. Emerg. Sel. Top. Power Electron., vol. 11, no. 1, pp. 850–861, 2023, doi: 10.1109/JESTPE.2021.3114501.

W. C. Leal, M. O. Godinho, R. F. Bastos, C. R. De Aguiar, G. H. F. Fuzato, and R. Q. MacHado, "Cascaded Interleaved DC-DC Converter for a Bidirectional Electric Vehicle Charging Station," IEEE Trans. Ind. Electron., vol. 71, no. 4, pp. 3708–3717, 2024, doi: 10.1109/TIE.2023.3273281.

A. A. M. Faudzi, S. F. Toha, R. A. Hanifah, N. F. Hasbullah, and N. A. Kamisan, "An interleaved DC charging solar system for electric vehicle," Int. J. Power Electron. Drive Syst., vol. 12, no. 4, pp. 2414–2422, 2021, doi: 10.11591/ijpeds.v12.i4.pp2414-2422.

S. Farhani, A. N'Diaye, A. Djerdir, and F. Bacha, "Design and practical study of three-phase interleaved boost converter for fuel cell electric vehicle," J. Power Sources, vol. 479, no. September, p. 228815, 2020, doi: 10.1016/j.jpowsour.2020.228815.

R. R. de Melo, F. L. Toffoli, S. Daher, and F. L. M. Antunes, "Interleaved bidirectional DC-DC converter for electric vehicle applications based on multiple energy storage devices," Electron. Eng., vol. 102, no. 4, pp. 2011–2023, 2020, doi: 10.1007/s00202-020-01009-3.

P. Purna Chandra Rao, R. Anandhakumar, and L. Shanmukha Rao, "Analysis of a novel soft switching bidirectional DC-DC converter for electric vehicle," Bull. Electr. Eng. Informatics, vol. 12, no. 5, pp. 2665–2672, 2023, doi: 10.11591/eei.v12i5.4505.

Y. E. Wu and W. C. Huang, "Dual-Input Interleaved Bidirectional DC-DC Converter for Light Electric Vehicles," IEEE J. Emerg. Sel. Top. Power Electron., vol. 11, no. 5, pp. 5037–5051, 2023, doi: 10.1109/JESTPE.2023.3294231.

O. Asvadi-Kermani, B. Felegari, H. Momeni, S. Alireza Davari, and J. Rodriguez, "Dynamic Neural-Based Model Predictive Voltage Controller for an Interleaved Boost Converter With Adaptive Constraint Tuning," IEEE Trans. Ind. Electron., vol. 70, no. 12, pp. 12739–12751, 2023, doi: 10.1109/TIE.2023.3234138.

P. Abolhassani, M. Maalandish, A. Nadermohammadi, M. B. B. Sharifian, M. R. Feyzi, and S. H. Hosseini, "A high step-up high step-down coupled inductor based bidirectional DC-DC converter with low voltage stress on switches," IET Power Electron., no. March, pp. 1–22, 2024, doi: 10.1049/pel2.12694.

K. Farajzadeh, L. Mohammadian, S. Shahmohammadi, and T. Abedinzadeh, "A novel bidirectional DC-DC converter with high voltage conversion ratio and capability of canceling input current ripple," IET Power Electron., vol. 17, no. 3, pp. 375–393, 2024, doi: 10.1049/pel2.12649.

X. Cui and A. T. Avestruz, "Large-Signal Stability Guarantees for Cycle-by-Cycle Controlled DC-DC Converters," IEEE Control Syst. Lett., vol. 7, no. iii, pp. 763–768, 2023, doi: 10.1109/LCSYS.2022.3225586.

R. Pramanik and B. B. Pati, "Modelling and controlling a non-isolated half-bridge bidirectional DC-DC converter with an energy management topology applicable with EV/HEV," J. King Saud Univ. - Eng. Sci., vol. 35, no. 2, pp. 116–122, 2023, doi: 10.1016/j.jksues.2021.03.004.

M. D. Keshavarzi and M. H. Ali, "A novel bidirectional dc-dc converter for dynamic performance enhancement of hybrid ac/dc microgrid," Electron., vol. 9, no. 10, pp. 1–20, 2020, doi: 10.3390/electronics9101653.

S. Wijanarko, G. I. Hasyim, J. Furqani, A. Rizqiawan, P. A. Dahono, and A. Muqorobin, "A bidirectional power converter connecting electric vehicle battery and DC microgrid," Int. J. Power Electron. Drive Syst., vol. 15, no. 2, p. 978, 2024, doi: 10.11591/ijpeds.v15.i2.pp978-992.

Y. Li, B. Zhao, J. Wan, Z. Yang, F. Liu, and M. Shahidehpour, "A Multiobjective Adaptive Switching Control for Bidirectional DC/DC Converter," IEEE J. Emerg. Sel. Top. Power Electron., vol. 12, no. 2, pp. 1619–1628, 2024, doi: 10.1109/JESTPE.2023.3337944.

N. A. Madiseh, E. Adib, and M. R. Amini, "A Novel Soft Switching Non-Isolated Bidirectional dc-dc Converter Without Any Extra Auxiliary Switch," IEEE J. Emerg. Sel. Top. Power Electron., vol. 12, no. 2, pp. 1875–1882, 2024, doi: 10.1109/JESTPE.2023.3250435.

H. J. Choi, K. W. Heo, and J. H. Jung, "A Hybrid Switching Modulation of Isolated Bidirectional DC-DC Converter for Energy Storage System in DC Microgrid," IEEE Access, vol. 10, pp. 6555–6568, 2022, doi: 10.1109/ACCESS.2021.3138988.

C. S. Purohit, M. Geetha, P. Sanjeevikumar, P. K. Maroti, S. Swami, and V. K. Ramachandaramurthy, "Performance analysis of DC/DC bidirectional converter with sliding mode and pi controller," Int. J. Power Electron. Drive Syst., vol. 10, no. 1, pp. 357–365, 2019, doi: 10.11591/ijpeds.v10.i1.pp357-365.

W. I. Hameed, B. A. Sawadi, and A. M. Fadhil, "Voltage tracking control of DC-DC boost converter using fuzzy neural network," Int. J. Power Electron. Drive Syst., vol. 9, no. 4, pp. 1657–1665, 2018, doi: 10.11591/ijpeds.v9.i4.pp1657-1665.

O. Y. Her, M. S. A. Mahmud, M. S. Z. Abidin, R. Ayop, and S. Buyamin, "Artificial neural network based short term electrical load forecasting," Int. J. Power Electron. Drive Syst., vol. 13, no. 1, pp. 586–593, 2022, doi: 10.11591/ijpeds.v13.i1.pp586-593.

S. Burada and K. Padma, "Model predictive current control for maximum power point tracking of voltage source inverter based grid-connected photovoltaic system," Int. J. Power Electron. Drive Syst., vol. 14, no. 3, pp. 1781–1790, 2023, doi: 10.11591/ijpeds.v14.i3.pp1781-1790.

T. Randjaka, S. J. Rajonirina, F. P. Andriniriniaimalaza, and J. N. Razafinjaka, "An ANFIS Control Approach of a Bi-Directional Buck-Boost used for a Battery," Int. J. Eng. Manag. Res., vol. 12, no. 3, pp. 30–39, 2022, doi: 10.31033/ijemr.12.3.5.

I. Journal and M. Trends, "Fuzzy Logic Based a Bidirectional DC/DC Converter with Dual-Battery Energy Storage for Hybrid Electric Vehicle System," Int. J. Mod. Trends Sci. Technol., vol. 5, no. November, pp. 133–137, 2019.

Y. Wang, Y. Wang, X. Song, and Z. Liang, "Finite-Time Adaptive Neural Network Observer-Based Output Voltage-Tracking Control for DC-DC Boost Converters," IEEE Trans. Circuits Syst. I Regul. Pap., vol. 70, no. 7, pp. 3005–3016, 2023, doi: 10.1109/TCSI.2023.3264536.

C. P. Ragasudha and S. Hemamalini, "Performance Analysis of a High Gain Bidirectional DC-DC Converter Fed Drive for an Electric Vehicle With Battery Charging Capability During Braking," IEEE Access, vol. 12, pp. 14499–14511, 2024, doi 10.1109/ACCESS.2024.3357726.

T. Sutikno, "Application of non-isolated bidirectional DC-DC converters for renewable and sustainable energy systems : a review," Clean Energy, vol. 7, no. 2, pp. 293–311, 2023, doi: https://doi.org/10.1093/ce/zkac070.

W. Dong, S. Li, X. Fu, Z. Li, M. Fairbank, and Y. Gao, "Control of a Buck DC/DC Converter Using Approximate Dynamic Programming and Artificial Neural Networks," IEEE Trans. Circuits Syst. I Regul. Pap., vol. 68, no. 4, pp. 1760–1768, 2021, doi: 10.1109/TCSI.2021.3053468.

X. Cui and A. T. Avestruz, "Fast-Response Variable Frequency DC-DC Converters Using Switching Cycle Event-Driven Digital Control," IEEE Trans. Power Electron., vol. 38, no. 7, pp. 8190–8207, 2023, doi: 10.1109/TPEL.2023.3263516.

S. Arandhakar, N. Jayaram, Y. R. Shankar, Gaurav, P. S. V. Kishore, and S. Halder, "Emerging Intelligent Bidirectional Charging Strategy Based on Recurrent Neural Network Accosting EMI and Temperature Effects for Electric Vehicle," IEEE Access, vol. 10, no. November, pp. 121741–121761, 2022, doi 10.1109/ACCESS.2022.3223443.

M. Gheisarnejad and M. H. Khooban, "IoT-Based DC/DC Deep Learning Power Converter Control: Real-Time Implementation," IEEE Trans. Power Electron., vol. 35, no. 12, pp. 13621–13630, 2020, doi: 10.1109/TPEL.2020.2993635.

V. Govindan and N. Pappa, "Online learning based neural network adaptive controller for efficient power tracking of PWR type reactor with unknown internal dynamics," Ann. Nucl. Energy, vol. 168, p. 108866, 2022, doi: 10.1016/j.anucene.2021.108866.

E. Kalaiyarasan and S. Singaravelu, "Design and Performance Analysis of Bi-Directional DC-DC Buck/Boost Converter for Energy Storage Systems Using Advanced Control Strategies," SSRG Int. J. Electron. Commun. Eng., vol. 11, no. 3, pp. 53–62, 2024, doi: 10.14445/23488549/IJECE-V11I3P106.

S. K. Ramu, I. Vairavasundaram, B. Palaniyappan, A. Bragadeshwaran, and B. Aljafari, "Enhanced energy management of DC microgrid: Artificial neural networks-driven hybrid energy storage system with integration of bidirectional DC-DC converter," J. Energy Storage, vol. 88, no. April, p. 111562, 2024, doi: 10.1016/j.est.2024.111562.

A. A. Mutlag, M. Kdair Abd, and S. W. Shneen, "Power Management and Voltage Regulation in DC Microgrid with Solar Panels and Battery Storage System," J. Robot. Control, vol. 5, no. 2, pp. 397–407, 2024, doi: 10.18196/jrc.v5i2.20581.

M. R. Banaei, M. Golmohamadi, and H. Afsharirad, "A bidirectional high voltage ratio DC-DC topology for energy storage systems in a microgrid," IET Power Electron., vol. 17, no. 2, pp. 281–294, 2024, doi: 10.1049/pel2.12637.

I. Sudiharto, F. D. Murdianto, and A. Wulandari, "Adaptive charging control using ANN-PID controllers on multiple DC loads with varying battery voltages," Int. J. Power Electron. Drive Syst., vol. 13, no. 1, pp. 620–630, 2022, doi: 10.11591/ijpeds.v13.i1.pp620-630.

Z. Fu, Y. Wang, F. Tao, and P. Si, "An adaptive nonsingular terminal sliding mode control for bidirectional dc-dc converter in hybrid energy storage systems," Can. J. Electr. Comput. Eng., vol. 43, no. 4, pp. 282–289, 2020, doi: 10.1109/CJECE.2020.2972576.

C. Zhang, B. Xu, J. Jasni, M. A. M. Radzi, N. Azis, and Q. Zhang, "Model Control and Digital Implementation of the Three Phase Interleaved Parallel Bidirectional Buck-Boost Converter for New Energy Electric Vehicles," Energies, vol. 15, no. 19, 2022, doi: 10.3390/en15197178.

A. Mansouri, R. Gavagsaz-Ghoachani, M. Phattanasak, and S. Pierfederici, "Nonlinear Cascaded Control for a DC-DC Boost Converter," J. Robot. Control, vol. 4, no. 4, pp. 521–536, 2023, doi: 10.18196/jrc.v4i4.18932.

C. L. Kuo, E. E. Kuruoglu, and W. K. V. Chan, "Neural Network Structure Optimization by Simulated Annealing," Entropy, vol. 24, no. 3, pp. 1–18, 2022, doi: 10.3390/e24030348.

Y. Chu, J. Fei, and S. Hou, "Adaptive Global Sliding-Mode Control for Dynamic Systems Using Double Hidden Layer Recurrent Neural Network Structure," IEEE Trans. Neural Networks Learn. Syst., vol. 31, no. 4, pp. 1297–1309, 2020, doi: 10.1109/TNNLS.2019.2919676.

E. al. Ibrahim Altarawni, "Design a New Neural Network Architecture Using a Layer of Neurons," Int. J. Recent Innov. Trends Comput. Commun., vol. 11, no. 9, pp. 2984–2994, 2023, doi: 10.17762/ijritcc.v11i9.9406.




DOI: https://doi.org/10.18196/jrc.v6i1.22326

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Nor Farisha Diana, Wahyu Mulyo Utomo, Afarulrazi Bin Abu Bakar, Suriana Salimin, Gigih Priyandoko, Widjonarko

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 


Journal of Robotics and Control (JRC)

P-ISSN: 2715-5056 || E-ISSN: 2715-5072
Organized by Peneliti Teknologi Teknik Indonesia
Published by Universitas Muhammadiyah Yogyakarta in collaboration with Peneliti Teknologi Teknik Indonesia, Indonesia and the Department of Electrical Engineering
Website: http://journal.umy.ac.id/index.php/jrc
Email: jrcofumy@gmail.com


Kuliah Teknik Elektro Terbaik