Improving the Productivity of Laying Hens Through a Modern Cage Cleanliness Monitoring System that Utilizes Integrated Sensors and IoT Technology

Fauzi Ishak, Ichlasul Amal Restu Wardhana, Giva Andriana Mutiara, Periyadi Periyadi, Lisda Meisaroh, Muhammad Rizqi Alfarisi

Abstract


Animal husbandry plays a crucial role in the Indonesian economy. One example is layer farming. The cage's environmental conditions can have an impact on the health of laying hens, including factors like temperature, humidity, and the presence of ammonia gas. This research aims to support chicken farmers in identifying and monitoring the environmental conditions surrounding their chicken coops, with the goal of enhancing the productivity of laying hens. This study is organized using a prototype development approach. The proposed system utilizes Arduino UNO as a microcontroller, ESP32 as a connecting node from hardware to software, MQ-135 sensor as an ammonia gas sensor, DHT-22 sensor as a temperature and humidity sensor, and 16x2 I2C LCD to display the collected data. WIFI connected web monitoring system built with Laravel, MySQL, and Bootstrap. An improvement to the existing system is the integration of an ammonia gas odor sensor calibrated against clean air as a reference. Testing was conducted for a continuous period of 7 days. Comparison of test results is performed with existing devices to observe the difference in measured values. The measurement result demonstrates a remarkable ability to accurately measure temperature, humidity, and ammonia levels in the air. The difference with the comparable device was about 2%.  Meanwhile, the monitoring dashboard for IoT functional monitoring operates effectively, allowing chicken farmers to efficiently analyze the cleanliness of their chicken coops. All measurement parameters are conveniently recorded in the form of tables and graphs, providing valuable information.

Keywords


Monitoring System; Laying Hens; Environmental Monitoring; Animal Husbandry; Ammonia Gas; Research and Development; Prototype; Internet of Things; IoT; DHT-22; MQ-135.

Full Text:

PDF

References


M. Sabrani and Y. Saepudin, “Livestock and poultry in indonesia policy, potential and problems,” Bulletin of Animal Science. pp. 1–9, 1995.

C. Ferlito and H. Respatiadi, “Policy Reforms on Poultry Industry in Indonesia-Center For Indonesia Policy Studies,” 2018.

D. R. Korver, “Review: Current challenges in poultry nutrition, health, and welfare,” Animal, vol. 17, p. 100755, 2023, doi: 10.1016/j.animal.2023.100755.

K. El-Sabrout, A. El-Deek, S. Ahmad, M. Usman, M. R. Tavares Dantas, and J. B. Freire Souza-Junior, “Lighting, density, and dietary strategies to improve poultry behavior, health, and production,” J. Anim. Behav. Biometeorol., vol. 10, no. 1, pp. 1–17, 2022, doi: 10.31893/jabb.22012.

A. Guillaume, A. Hubatová-Vacková, and V. Kočí, “Environmental Impacts of Egg Production from a Life Cycle Perspective,” Agric., vol. 12, no. 3, pp. 1–16, 2022, doi: 10.3390/agriculture12030355.

F. N. A. E. P. Dameanti, M. A. Firdaus, N. Titisari, S. Aditya, and I. Guritno, “The Effect of Environmental Factors on The Productivity of Kampong Chicken Eggs Balitbangtan (KUB) Layer Phase,” J. Med. Vet., vol. 3, no. 2, pp. 166–172, 2020, doi: 10.20473/jmv.vol3.iss2.2020.166-172.

P. Sztandarski, J. Marchewka, F. Wojciechowski, A. B. Riber, S. Gunnarsson, and J. O. Horbańczuk, “Associations between weather conditions and individual range use by commercial and heritage chickens,” Poult. Sci., vol. 100, no. 8, pp. 1–9, 2021, doi: 10.1016/j.psj.2021.101265.

Y. Chang et al., “Real-time variations in body temperature of laying hens with increasing ambient temperature at different relative humidity levels,” Poult. Sci., vol. 97, no. 9, pp. 3119–3125, 2018, doi: 10.3382/ps/pey184.

N. M. Henrique Mascarenhasa et al., “Thermal environment characterization of laying hen-housing systems,” J. Anim. Behav. Biometeorol., vol. 10, no. 2, pp. 1–5, 2022, doi: 10.31893/jabb.22008.

Sutawi, D. Karmiyati, and D. Iswatiningsih, “The Happiness of Smallholder Layer-Chicken Farmers in Rural of East Java, Indonesia,” Trop. Anim. Sci. J., vol. 43, no. 3, pp. 282–290, 2020, doi: 10.5398/tasj.2020.43.3.282.

K. E. Wyer, D. B. Kelleghan, V. Blanes-Vidal, G. Schauberger, and T. P. Curran, “Ammonia emissions from agriculture and their contribution to fine particulate matter: A review of implications for human health,” J. Environ. Manage., vol. 323, no. September, p. 116285, 2022, doi: 10.1016/j.jenvman.2022.116285.

L. Malherbe et al., “Emissions of ammonia and methane from the agricultural sector Emissions from livestock farming (Eionet Report - ETC HE 2022/21),” 2022. [Online]. Available: https://www.eionet.europa.eu/etcs/all-etc-reports.

R. Ma et al., “Mitigation potential of global ammonia emissions and related health impacts in the trade network,” Nat. Commun., vol. 12, no. 1, pp. 1–13, 2021, doi: 10.1038/s41467-021-25854-3.

Z. Zhai et al., “A laying hen breeding environment monitoring system based on internet of things,” IOP Conf. Ser. Earth Environ. Sci., vol. 371, no. 3, 2019, doi: 10.1088/1755-1315/371/3/032039.

S. Syahrorini, A. Rifai, D. H. R. Saputra, and A. Ahfas, “Design Smart Chicken Cage Based on Internet of Things,” in IOP Conference Series: Earth and Environmental Science, 2020, vol. 519, no. 1, pp. 2–9, doi: 10.1088/1755-1315/519/1/012014.

F. Syafar, M. Anwar, and R. Anon, “Smart Chicken Poultry Farm Using IoT Techniques,” Int. J. New Technol. Res., vol. 7, no. 10, pp. 40–43, 2021, doi: 10.31871/ijntr.7.10.11.

N. Gawai, “Prediction Of Air Quality Index Using ML Approach And Implementation Of Air Quality Index Meter,” Int. Res. J. Mod. Eng. Technol. Sci., vol. 03, no. 06, pp. 1688–1693, 2021.

A. Biswal, J. Subhashini, and A. K. Pasayat, “Air quality monitoring system for indoor environments using IoT,” in AIP Conference Proceedings, 2019, vol. 2112, pp. 020180-1-020180–11, doi: 10.1063/1.5112365.

A. A. Habeeb, A. E. Gad, and M. A. Atta, “Temperature-Humidity Indices as Indicators to Heat Stress of Climatic Conditions with Relation to Production and Reproduction of Farm Animals,” Int. J. Biotechnol. Recent Adv., vol. 1, no. 1, pp. 35–50, 2018, doi: 10.18689/ijbr-1000107.

B. Zeinali, F. T. Nia, and A. Kashani, “A Survey of the Monthly Trend of Relative Humidity in the Northwest of Iran in the Past Years,” Eur. J. Clim. Chang., vol. 3, no. 1, pp. 19–32, 2021, doi: 10.34154/10.34154/2021-ejcc-0016/euraass.

S. Y. Chia and M. W. Lim, “A critical review on the influence of humidity for plant growth forecasting,” IOP Conf. Ser. Mater. Sci. Eng., vol. 1257, no. 1, p. 012001, 2022, doi: 10.1088/1757-899x/1257/1/012001.

T. Alsmo and C. Alsmo, “Ventilation and Relative Humidity in Swedish Buildings,” J. Environ. Prot. (Irvine,. Calif)., vol. 05, no. 11, pp. 1022–1036, 2014, doi: 10.4236/jep.2014.511102.

Marion F. Mecklenburg, “Determining the Acceptable Ranges of Relative Humidity And Temperature in Museums and Galleries.” pp. 1–29, 2002.

N. Acevedo, J. Zakzuk, and L. Caraballo, “House dust mite allergy under changing environments,” Allergy, Asthma Immunol. Res., vol. 11, no. 4, pp. 450–469, 2019, doi: 10.4168/aair.2019.11.4.450.

G. Guarnieri, B. Olivieri, G. Senna, and A. Vianello, “Relative Humidity and Its Impact on the Immune System and Infections,” Int. J. Mol. Sci., vol. 24, no. 11, 2023, doi: 10.3390/ijms24119456.

P. Wolkoff, “Indoor air humidity, air quality, and health – An overview,” Int. J. Hyg. Environ. Health, vol. 221, no. 3, pp. 376–390, 2018, doi: 10.1016/j.ijheh.2018.01.015.

Y. I. Chandra, F. Sjafrina, D. R. Irawati, M. Riastuti, W. Sari, and B. Purba, “Design of Air Pollution Measurement Detection Using Microcontroller NodeMCU ESP 8266 Based on IoT,” Int. J. Inf. Syst. Technol., vol. 6, no. 158, pp. 41–53, 2022, [Online]. Available: https://ijistech.org/ijistech/index.php/ijistech/article/view/211.

J. Wang, B. Xie, J. Cai, Y. Wang, J. Chen, and M. I. Abro, “Design and implementation of an atmospheric anion monitoring system based on beidou positioning,” Sensors, vol. 21, no. 18, pp. 1–14, 2021, doi: 10.3390/s21186174.

A. Kusyadi Nugraha, A. Mutiara, T. Gunawan, and G. I. Hapsari, “Android-based System Monitoring of Supporting Variables for Nursery-Plant Growth in Plantation Areas,” Int. J. Informatics Vis., vol. 7, no. March, pp. 51–57, 2023, [Online]. Available: www.joiv.org/index.php/joiv.

D. Yulizar, S. Soekirno, N. Ananda, M. A. Prabowo, I. F. P. Perdana, and D. Aofany, Performance Analysis Comparison of DHT11, DHT22 and DS18B20 as Temperature Measurement, vol. 1. Atlantis Press International BV, 2023.

H. Allioui and Y. Mourdi, “Exploring the Full Potentials of IoT for Better Financial Growth and Stability: A Comprehensive Survey,” Sensors, vol. 23, no. 19, pp. 1–68, 2023, doi: 10.3390/s23198015.

A. Ketut Nalendra, M. N. Fuad, D. Wahyudi, N. Kholila, and M. Mujiono, “Effectiveness of the Use of the Internet of Things (IoT) in the Agricultural Sector,” Int. J. Sci. Soc., vol. 4, no. 3, pp. 474–478, 2022, doi: 10.54783/ijsoc.v4i3.541.

A. Ullah et al., “Smart cities: the role of Internet of Things and machine learning in realizing a data-centric smart environment,” Complex Intell. Syst., pp. 1–31, 2023, doi: 10.1007/s40747-023-01175-4.

S. Issues, M. Kumar, A. Kumar, S. Verma, P. Bhattacharya, and D. Ghimire, “Healthcare Internet of Things ( H-IoT ): Current Trends , Future,” Electronics, vol. 12, no. 9, pp. 1–19, 2023.

D. D. Sanjaya, A. Fadlil, and A. Fadlil, “Monitoring Temperature and Humidity of Boiler Chicken Cages Based on Internet of Things ( IoT ),” Bul. Ilm. Sarj. Tek. Elektro, vol. 5, no. 2, pp. 180–189, 2023, doi: 10.12928/biste.v5i2.4897.

L. Perdanasari, B. Etikasari, and D. L. Rukmi, “Control system for temperature, humidity, and ammonia levels in laying hens farms based on internet of things,” IOP Conf. Ser. Earth Environ. Sci., vol. 1168, no. 1, pp. 1–8, 2023, doi: 10.1088/1755-1315/1168/1/012053.

Lasminiasih, G. E. Saputra, Rooswhan Budhi Utomo, and Elbi Wiseno, “Using Prototyping Method for Analysis and Design of Information Systems for Student Registration in Sekolah Master,” Int. J. Sci. Technol., vol. 1, no. 2, pp. 19–29, 2022, doi: 10.56127/ijst.v1i2.140.

D. Y. Kim, “A design methodology using prototyping based on the digital-physical models in the architectural design process,” Sustain., vol. 11, no. 16, 2019, doi: 10.3390/su11164416.

B. Camburn et al., “Design prototyping methods: State of the art in strategies, techniques, and guidelines,” Des. Sci., vol. 3, no. Schrage 1993, pp. 1–33, 2017, doi: 10.1017/dsj.2017.10.

H. Y. Lu et al., “A Low-Cost AI Buoy System for Monitoring Water Quality at Offshore Aquaculture Cages,” Sensors, vol. 22, no. 11, pp. 1–15, 2022, doi: 10.3390/s22114078.

W. J. R. Rolim, P. J. Spencer, and D. A. De Andrade, “Development of an arduino based real time environmental monitor for animal facilities,” Cuad. Educ. y Desarro., vol. 15, no. 3, pp. 2913–2931, 2023, doi: 10.55905/cuadv15n3-049.

Furizal, Sunardi, and A. Yudhana, “Temperature and Humidity Control System with Air Conditioner Based on Fuzzy Logic and Internet of Things,” J. Robot. Control, vol. 4, no. 3, pp. 308–322, 2023, doi: 10.18196/jrc.v4i3.18327.

N. Li, Z. Ren, D. Li, and L. Zeng, “Review: Automated techniques for monitoring the behaviour and welfare of broilers and laying hens: towards the goal of precision livestock farming,” Animal, vol. 14, no. 3, pp. 617–625, 2020, doi: 10.1017/S1751731119002155.

B. K. Depuru, B. Kumar Depuru, S. Putsala, and P. Mishra, “Automating Poultry Farm Management with Artiicial Intelligence: Real-time Detection and Tracking of Broiler Chickens for Enhanced and EEcient Health Monitoring Title:-Automating Poultry Farm Management with Artificial Intelligence: Real-time Detection and,” 2023.

F.Syafar; M.Anwar; Ridwansyah, “Mobile Collaborative Smart Farm : Proposed Poultry IoT Solution for Indonesia Farming,” in Innovation Management and Sustainable Economic Development in the Era of Global Pandemic, 2021, no. November, pp. 23–24.

I. V. Paputungan et al., “Temperature and Humidity Monitoring System in Broiler Poultry Farm,” IOP Conf. Ser. Mater. Sci. Eng., vol. 803, no. 1, pp. 1–7, 2020, doi: 10.1088/1757-899X/803/1/012010.

Y. Wu, H. Liu, B. Li, and R. Kosonen, “Prediction of thermal sensation using low-cost infrared array sensors monitoring system,” IOP Conf. Ser. Mater. Sci. Eng., vol. 609, no. 3, pp. 1–7, 2019, doi: 10.1088/1757-899X/609/3/032002.

M. Moghbeli Damane, A. Barazandeh, M. Sattaei Mokhtari, O. Esmaeilipour, and Y. Badakhshan, “Evaluation of body surface temperature in broiler chickens during the rearing period based on age, air temperature and feather condition,” Iran. J. Appl. Anim. Sci., vol. 8, no. 3, pp. 499–504, 2018.

T. Hong Kha, “Temperature and humidity monitor with ESP8266,” 2019.

M. Artiyasa, I. Himawan Kusumah, A. Suryana, Edwinanto, A. D. W. Muhammad Sidik, and A. Pradiftha Junfithrana, “Comparative Study of Internet of Things (IoT) Platform for Smart Home Lighting Control Using NodeMCU with Thingspeak and Blynk Web Applications,” Fidel. J. Tek. Elektro, vol. 2, no. 1, pp. 1–6, 2020, doi: 10.52005/fidelity.v2i1.103.

H. M. Najmul, “Thesis for the Degree of Master of Engineering A Study on Data Monitoring of Multiple Sensors and Internet Service,” 2021.

M. A. Hailan, B. M. Albaker, and M. S. Alwan, “Transformation to a smart factory using NodeMCU with Blynk platform,” Indones. J. Electr. Eng. Comput. Sci., vol. 30, no. 1, pp. 237–245, 2023, doi: 10.11591/ijeecs.v30.i1.pp237-245.

X. Liu, “Florida State University Libraries Open-Source Low-Cost Internet of Things Platform for Buildings,” 2017.

S. Mahmood, S. Alani, F. Hasan, and M. Mustafa, “ESP 8266 Node MCU Based Weather Monitoring System,” in International Multi-Disciplinary Conference Theme: Sustainable Development and Smart Planning, 2020, no. November, pp. 1–15, doi: 10.4108/eai.28-6-2020.2298609.

D. A. Aziz, R. Asgarnezhad, M. S. Mustafa, A. A. Saber, and S. Alani, “A Developed IoT Platform-Based Data Repository for Smart Farming Applications,” J. Commun., vol. 18, no. 3, pp. 187–197, 2023, doi: 10.12720/jcm.18.3.187-197.

A. A. Jaber, F. K. I. Al-Mousawi, and H. S. Jasem, “Internet of things based industrial environment monitoring and control: A design approach,” Int. J. Electr. Comput. Eng., vol. 9, no. 6, pp. 4657–4667, 2019, doi: 10.11591/ijece.v9i6.pp4657-4667.

R. R. Lamsal, P. Karthikeyan, P. Otero, and A. Ariza, “Design and Implementation of Internet of Things (IoT) Platform Targeted for Smallholder Farmers: From Nepal Perspective,” Agric., vol. 13, no. 10, pp. 1–21, 2023, doi: 10.3390/agriculture13101900.

J. Husein and O. B. Kharisma, “Internet of Things (IOT) Development for The Chicken Coop Temperature and Humidity Monitoring System Based on Fuzzy,” Indones. J. Artif. Intell. Data Min., vol. 3, no. 1, p. 9, 2020, doi: 10.24014/ijaidm.v3i1.9294.

I. Gusti, P. Sena, S. Adnyana, I. Nyoman Piarsa, and K. S. Wibawa, “Internet of Things: Control and Monitoring System of Chicken Eggs Incubator Using Raspberry Pi,” Int. J. Internet Things, vol. 7, no. 1, pp. 16–21, 2018, doi: 10.5923/j.ijit.20180701.03.

A. Rahmatulloh, D. Wahyudin, N. Widiyasono, and I. Darmawan, “IoT-Based Temperature Monitoring System For Smart Cage,” in ICACNIS 2022 - 2022 International Conference on Advanced Creative Networks and Intelligent Systems: Blockchain Technology, Intelligent Systems, and the Applications for Human Life, Proceeding, 2022, pp. 1–6, doi: 10.1109/ICACNIS57039.2022.10055769.

A. P. Abiyasa, I. K. Nuraga, and A. M. Satriadi, “A Low Cost Open Source Remote Monitoring System for Hospital Wastewater Management,” IOP Conf. Ser. Earth Environ. Sci., vol. 1117, no. 1, pp. 1–10, 2022, doi: 10.1088/1755-1315/1117/1/012047.

U. E. Etuk, G. Omenaru, S. Inyang, and I. Umoren, “Towards Sustainable Smart Living : Cloud-Based IoT Solutions for Home Automation,” J. Inf. Syst. Informatics, vol. 5, no. 4, pp. 1743–1763, 2023, doi: 10.51519/journalisi.v5i4.621.

P. F. Pereira and N. M. M. Ramos, “Low-cost Arduino-based temperature, relative humidity and CO2 sensors - An assessment of their suitability for indoor built environments,” J. Build. Eng., vol. 60, no. March, p. 105151, 2022, doi: 10.1016/j.jobe.2022.105151.

B. Yunanto, M. Billy Putra Kusuma, S. Zairotul Munawaroh, A. Wisaksono, B. Krishna, and K. Utomo, “Monitoring Room Temperature and the Use of Cooling Power Based on IoT,” in International Conference on Innovation in Science and Technology, 2021, vol. 208, pp. 32–37.

Y. A. Ahmad, T. Surya Gunawan, H. Mansor, B. A. Hamida, A. Fikri Hishamudin, and F. Arifin, “On the Evaluation of DHT22 Temperature Sensor for IoT Application,” in Proceedings of the 8th International Conference on Computer and Communication Engineering, ICCCE 2021, 2021, no. September, pp. 131–134, doi: 10.1109/ICCCE50029.2021.9467147.

M. A. Márquez-Vera, M. Martínez-Quezada, R. Calderón-Suárez, A. Rodríguez, and R. M. Ortega-Mendoza, “Microcontrollers programming for control and automation in undergraduate biotechnology engineering education,” Digit. Chem. Eng., vol. 9, no. August, p. 100122, 2023, doi: 10.1016/j.dche.2023.100122.

P. Erik Wahyu and K. Agus, “Electrical Analysis Using Esp-32 Module in,” J. Electr. Eng. Comput. Sci., vol. 7, no. 2, pp. 1273–1284, 2022.

D. Hercog, T. Lerher, M. Truntič, and O. Težak, “Design and Implementation of ESP32-Based IoT Devices,” Sensors, vol. 23, no. 15, pp. 1–20, 2023, doi: 10.3390/s23156739.

S. S. Gaikwad and P. Adkar, “A Review Paper on Bootstrap Framework,” Iconics Res. Eng. Journals, vol. 2, no. 10, pp. 349–351, 2019, [Online]. Available: https://www.think247.com/vertical?s_pt=sou.

M. Santoro, L. Vaccari, D. Mavridis, R. Smith, M. Posada, and D. Gattwinkel, “Web application programming interfaces (apis): General purpose standards, terms and European commission initiatives,” 2019. doi: 10.2760/675.

M. Boyd, L. Vaccari, M. Posada, and ..., “An Application Programming Interface (API) framework for digital government,” 2020. doi: 10.2760/772503.

A. Sulger, “Database management in MySQL,” Edu Maspul J. Pendidik., vol. 19, no. 13, pp. 36–40, 1994.

I. Šušter and T. Ranisavljević, “Optimization of Mysql Database,” J. Process Manag. new Technol., vol. 11, no. 1–2, pp. 141–151, 2023, doi: 10.5937/jpmnt11-44471.

B. Rawat, S. Purnama, and M. Mulyati, “MySQL Database Management System (DBMS) On FTP Site LAPAN Bandung,” Int. J. Cyber IT Serv. Manag., vol. 1, no. 2, pp. 173–179, 2021, doi: 10.34306/ijcitsm.v1i2.47.

F. K. B, K. Tiffany, D. Gunawan, and P. Utomo, “Integrated Web-Based E-Fulfillment Services,” in International Conference of Economics, Business & Entrepreneurship (ICEBE) 2022, 2023, vol. 1, pp. 80–93, doi: 10.2991/978-2-38476-064-0.

J. Armel, “Web application development with Laravel PHP Framework version 4,” 2014.

H. Md Sakib, “Web Application Development With Laravel Framework,” 2019.

R. B. Bist, S. Subedi, L. Chai, and X. Yang, “Ammonia emissions, impacts, and mitigation strategies for poultry production: A critical review,” J. Environ. Manage., vol. 328, pp. 1–31, 2023, doi: 10.1016/j.jenvman.2022.116919.

M. A. Duesa and K. R. T. P. Sari, “Monitoring and Notification System Air Quality Against Carbon Monoxide in The Study Room IoT based,” Sci. J. Res. Appl. Inf. Syst. Technol., vol. 5, no. 1, pp. 121–133, 2021, doi: 10.29407/intensif.v5i1.14844.

B. Satria and H. Alam, “Monitoring Air Quality System Based On Smart Device Intelligent,” J. Ekon., vol. 12, no. 01, p. 2023, 2023, [Online]. Available: http://ejournal.seaninstitute.or.id/index.php/Ekonomi.




DOI: https://doi.org/10.18196/jrc.v5i4.21610

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Fauzi Ishak Ichlasul Amal Restu Wardhana, Giva Andriana Mutiara, Periyadi, Lisda Meisaroh, Muhammad Rizqi Alfarisi

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 


Journal of Robotics and Control (JRC)

P-ISSN: 2715-5056 || E-ISSN: 2715-5072
Organized by Peneliti Teknologi Teknik Indonesia
Published by Universitas Muhammadiyah Yogyakarta in collaboration with Peneliti Teknologi Teknik Indonesia, Indonesia and the Department of Electrical Engineering
Website: http://journal.umy.ac.id/index.php/jrc
Email: jrcofumy@gmail.com


Kuliah Teknik Elektro Terbaik