Design and Analysis of a Hybrid Intelligent SCARA Robot Controller Based on a Virtual Reality Model
Abstract
SCARA robots have been used in various fields of robotics, such as biomedical engineering, automation, industrial, and gaming. However, our SCARA (Selective Compliance Assembly Robot Arm) VR model stands out with its realistic design and construction assumptions. The VR testing of the robot's motion envelope has facilitated a more precise inverse kinematics solution and verification of the dynamic process. The intelligent controller of this application, based on the Adaptive Neuro-Fuzzy Inference System (ANFIS) technique and a classical proportional-integral-derivative (PID) controller, offers an optimized solution to the accuracy problem. The hybrid ANFIS controller starts with the PID setting parameters of the resultant solution. Following thorough testing of the suggested SCARA manipulator with an intelligent controller in a virtual reality environment, researchers recognized the physical system's potential for implementation utilizing multiple control approaches. Despite the intricacy of its design and implementation, the intelligent controller's software ensures that the system runs at top efficiency. This application replicates the user interface of the MATLAB/SIMULINK var (2022b), which produced promising robotics results, demonstrating its trustworthiness as a realistic, intelligent model, and virtual reality was critical in the development of the SCARA manipulator. It digs into the design and analysis of a hybrid intelligent controller for SCARA robots, which are widely used in assembly lines and manufacturing. Finally, the proposed controller combines the best features of an Adaptive Neuro-Fuzzy Inference System (ANFIS) with a conventional proportional-integral-derivative (PID) controller to resolve application accuracy difficulties as efficiently as possible.
Keywords
Full Text:
PDFReferences
S. S. Arawade, “State of Art Review on SCARA Robotic Arm,” Int. J. Adv. Res. Sci. Commun. Technol., vol. 5, no. 1, pp. 145–152, 2021, doi: 10.48175/ijarsct-1108.
Y. I. M. Al Mashhadany, A. K. Abbas, and S. S. Algburi, “Modeling and analysis of brushless DC motor system based on intelligent controllers,” Bulletin of Electrical Engineering and Informatics, vol. 11, no. 6, 2022, doi: 10.11591/eei.v11i6.4365.
W. S. Kim, F. Tendick, and L. W. Stark, “Visual Enhancements in Pick-and-Place Tasks: Human Operators Controlling a Simulated Cylindrical Manipulator,” IEEE J. Robot. Autom., vol. 3, no. 5, pp. 418–425, 1987, doi: 10.1109/JRA.1987.1087127.
S. S. Saab and P. Ghanem, “A multivariable stochastic tracking controller for robot manipulators without joint velocities,” IEEE Trans. Automat. Contr., vol. 63, no. 8, pp. 2481–2495, 2018, doi: 10.1109/TAC.2017.2771154.
Y. I. Al Mashhadany, "Scara robot: Modeled, simulated, and virtual-reality verified," in International Conference on Intelligent Robotics, Automation, and Manufacturing, pp. 94-102, 2012.
A. T. Vo, T. N. Truong, and H. J. Kang, “An Adaptive Prescribed Performance Tracking Motion Control Methodology for Robotic Manipulators with Global Finite-Time Stability,” Sensors, vol. 22, no. 20, 2022, doi: 10.3390/s22207834.
Y. Sun, H. Qiang, X. Mei, and Y. Teng, “Modified repetitive learning control with unidirectional control input for uncertain nonlinear systems,” Neural Comput. Appl., vol. 30, no. 6, pp. 2003–2012, 2018, doi: 10.1007/s00521-017-2983-y.
Y. I. Al Mashhadany, “ANFIS-inverse-controlled PUMA 560 workspace robot with spherical wrist,” Procedia Eng., vol. 41, pp. 700–709, 2012, doi: 10.1016/j.proeng.2012.07.232.
J. J. Rubio, “Structure control for the disturbance rejection in two electromechanical processes,” J. Franklin Inst., vol. 353, no. 14, pp. 3610–3631, 2016, doi: 10.1016/j.jfranklin.2016.07.001.
S. Singh, A. Singla, A. Singh, S. Soni, and S. Verma, “Kinematic modelling of a five-DOFs spatial manipulator used in robot-assisted surgery,” Perspect. Sci., vol. 8, pp. 550–553, 2016, doi: 10.1016/j.pisc.2016.06.017.
S. Gamaralalage, P. Jesus, and D. Šormaz, “Conversion of the SCARA Robot into a Hybrid Manufacturing Workstation,” Procedia Manuf., vol. 17, pp. 62–69, 2018, doi: 10.1016/j.promfg.2018.10.013.
Y. I. Al-Mashhadany, “Modeling and simulation of adaptive neuro-fuzzy controller for Chopper-Fed DC Motor Drive,” 2011 IEEE Appl. Power Electron. Colloquium, IAPEC 2011, pp. 110–115, 2011, doi: 10.1109/IAPEC.2011.5779859.
K. M. Ben-Gharbia, A. A. MacIejewski, and R. G. Roberts, “A kinematic analysis and evaluation of planar robots designed from optimally fault-tolerant Jacobians,” IEEE Trans. Robot., vol. 30, no. 2, pp. 516–524, 2014, doi: 10.1109/TRO.2013.2291615.
R. Jesan and Z. Hassan, “Mathematical Assessment of the Reliability in a Complex Deregulated Power System,” Qeios, 2023, doi: 10.32388/91mwdb.
C. Taesi, F. Aggogeri, and N. Pellegrini, “COBOT applications–recent advances and robot usability,” Robotics, vol. 12, no. 3, p. 79, 2023.
Y. A. Mashhadany, A. A. A. Alrawi, Z. T. Ibraheem, and S. Algburi, "Implement of Intelligent Controller for 6DOF Robot Based on a Virtual Reality Model," 2023 15th International Conference on Developments in eSystems Engineering (DeSE), pp. 428-433, 2023, doi: 10.1109/DeSE58274.2023.10099597.
M. A. Baballe, A. I. Adamu, A. S. Bari, and A. Ibrahim, “Principle Operation of a Line Follower Robot,” Far East J. Electron. Commun., vol. 27, no. 3, pp. 1–12, 2023, doi: 10.17654/0973700623001.
L. Zhang, Y. Hou, H. Liu, D. Tang, and L. Li, “Prescribed Performance Fault-Tolerant Tracking Control of Uncertain Robot Manipulators with Integral Sliding Mode,” Mathematics, vol. 11, no. 11, 2023, doi: 10.3390/math11112430.
Y. B. Wakchaure, B. K. Patle, and S. Pawar, “Prospects of robotics in food processing: an overview,” J. Mech. Eng. Autom. Control Syst., vol. 4, no. 1, pp. 17–37, 2023, doi: 10.21595/jmeacs.2023.23209.
A. Visioli and G. Legnani, “On the trajectory tracking control of industrial SCARA robot manipulators,” IEEE Trans. Ind. Electron., vol. 49, no. 1, pp. 224–232, 2002, doi: 10.1109/41.982266.
D. A. Jimenez-Nixon, M. C. Paredes-Sánchez, and A. M. Reyes-Duke, "Design, construction and control of a SCARA robot prototype with 5 DOF," 2022 IEEE International Conference on Machine Learning and Applied Network Technologies (ICMLANT), pp. 1-6, 2022, doi: 10.1109/ICMLANT56191.2022.9996479.
F. Wang and Z. Zhao, “Research on Inverse Kinematics of Robot Based on Motion Controller,” 2018 IEEE Int. Conf. Intell. Robot. Control Eng. IRCE 2018, pp. 91–98, 2018, doi: 10.1109/IRCE.2018.8492954.
K. S. Hong, J. G. Kim, C. D. Huh, K. H. Choi, and S. Lee, “A PC-based open robot control system: PC-ORC,” IEEE Int. Symp. Ind. Electron., vol. 3, pp. 1901–1907, 2001, doi: 10.1109/isie.2001.932002.
A. K. Abduljabbar, Y. Al Mashhadany and S. Algburi, "Q-Learning for Path Planning in Complex Environments: A YOLO and Vision-Based Approach," 2024 21st International Multi-Conference on Systems, Signals & Devices (SSD), pp. 626-630, 2024, doi: 10.1109/SSD61670.2024.10549642.
S. Pradhan, K. Rajarajan, and A. S. Shetty, “Prototype, emulation, implementation and evaluation of SCARA Robot in industrial environment,” Procedia Comput. Sci., vol. 133, pp. 331–337, 2018, doi: 10.1016/j.procs.2018.07.041.
Y. I. Al-Mashhadany, "Inverse Kinematics Problem (IKP) of 6-DOF Manipulator by Locally Recurrent Neural Networks (LRNNs)," 2010 International Conference on Management and Service Science, pp. 1-5, 2010, doi: 10.1109/ICMSS.2010.5577613.
M. S. Alshamasin, F. Ionescu, and R. T. Al-Kasasbeh, “Kinematic Modeling and Simulation of a SCARA Robot by Using Solid Dynamics and Verification by MATLAB/Simulink,” Int. J. Model. Identif. Control, vol. 15, no. 1, pp. 28–38, 2009, doi: 10.1504/IJMIC.2012.043938.
T. P. Kapusi, T. I. Erdei, G. Husi, and A. Hajdu, “Application of Deep Learning in the Deployment of an Industrial SCARA Machine for Real-Time Object Detection,” Robotics, vol. 11, no. 4, 2022, doi: 10.3390/robotics11040069.
S. D. Mahmood, A. K. Hamoody, M. J. Marie, K. S. Gaeid, and Y. Al Mashhadany, "Computer Based Control For Compensation of Power System Application," 2020 13th International Conference on Developments in eSystems Engineering (DeSE), pp. 134-139, 2020, doi: 10.1109/DeSE51703.2020.9450788.
J. McDonald. Hybrid Force-Position Control of a 4-DOF SCARA Manipulator. eSpace, Royal Military College of Canada, 2022.
S. Ibaraki and R. Usui, “A novel error mapping of bi-directional angular positioning deviation of rotary axes in a SCARA-type robot by ‘open-loop’ tracking interferometer measurement,” Precis. Eng., vol. 74, pp. 60–68, 2022, doi: 10.1016/j.precisioneng.2021.11.002.
A. K. Abbas, Y. Al Mashhadany, M. J. Hameed, and S. Algburi, “Review of Intelligent Control Systems with Robotics,” Indones. J. Electr. Eng. Informatics, vol. 10, no. 4, pp. 734–753, 2022.
A. Das and F. L. Lewis, “Cooperative adaptive control for synchronization of second-order systems,” Int. J. Robust Nonlinear Control, vol. 18, pp. 557–569, 2010.
W. Sun, Y. Wu, and L. Wang, “Trajectory tracking of constrained robotic systems via a hybrid control strategy,” Neurocomputing, vol. 330, pp. 188–195, 2019, doi: 10.1016/j.neucom.2018.11.008.
Y. Al Mashhadany, A. F. Shafeeq, and K. S. Gaeid, “Design and Implementation of Submarine Robot with Video Monitoring for Body Detection Based on Microcontroller,” Proc. - Int. Conf. Dev. eSystems Eng. DeSE, pp. 128–133, 2020.
S. Manjaree, B. C. Nakra, and V. Agarwal, “Comparative analysis for kinematics of 5-DOF industrial robotic manipulator,” Acta Mech. Autom., vol. 9, no. 4, pp. 229–240, 2015.
Y. Al Mashhadany, S. Algburi, M. A. Jasim, A. Q. Khalaf, and I. Basem, "Human-Robot Arm Interaction Based on Electromyography Signal," 2021 14th International Conference on Developments in eSystems Engineering (DeSE), pp. 475-480, 2021, doi: 10.1109/DeSE54285.2021.9719553.
W. Lai, L. Cao, J. Liu, S. Chuan Tjin, and S. J. Phee, “A Three-Axial Force Sensor Based on Fiber Bragg Gratings for Surgical Robots,” IEEE/ASME Trans. Mechatronics, vol. 27, no. 2, pp. 777–789, Apr. 2022, doi: 10.1109/TMECH.2021.3071437.
B. A. Taha et al., “State-of-the-art telemodule-enabled intelligent optical nano-biosensors for proficient SARS-CoV-2 monitoring,” Microchem. J., vol. 197, p. 109774, 2024, doi: 10.1016/j.microc.2023.109774.
Y. A. Mashhadany, K. S. Gaeid, and M. K. Awsaj, "Intelligent Controller for 7-DOF Manipulator Based upon Virtual Reality Model," 2019 12th International Conference on Developments in eSystems Engineering (DeSE), pp. 687-692, 2019, doi: 10.1109/DeSE.2019.00128.
M. Hofer, C. Sferrazza, and R. D’Andrea, “A Vision-Based Sensing Approach for a Spherical Soft Robotic Arm,” Front. Robot. AI, vol. 8, Feb. 2021, doi: 10.3389/frobt.2021.630935.
F. G. Rossomando and C. M. Soria, “Discrete-time sliding mode neuro-adaptive controller for SCARA robot arm,” Neural Comput. Appl., vol. 28, no. 12, pp. 3837–3850, 2017, doi: 10.1007/s00521-016-2242-7.
R. Ahmed and Y. Al Mashhadany, “Design and Analysis of ANFIS Controller for High Accuracy Magnetic Levitation (ML) System,” International Journal of Electrical and Electronics Research, vol. 11, no. 1, 2023, doi: 10.37391/IJEER.110126.
J. Narayan and A. Singla, “ANFIS based kinematic analysis of a 4-DOFs SCARA robot,” 4th IEEE Int. Conf. Signal Process. Comput. Control. ISPCC 2017, pp. 205–211, 2017, doi: 10.1109/ISPCC.2017.8269676.
R. B. Burns, H. Lee, H. Seifi, R. Faulkner, and K. J. Kuchenbecker, “Endowing a NAO Robot With Practical Social-Touch Perception,” Front. Robot. AI, vol. 9, Apr. 2022, doi: 10.3389/frobt.2022.840335.
A. Misra, A. Sharma, G. Singh, A. Kumar, and V. Rastogi, “Design and Development ofa Low-Cost CNC Alternative SCARA Robotic Arm,” Procedia Comput. Sci., vol. 171, pp. 2459–2468, 2020, doi: 10.1016/j.procs.2020.04.266.
Y. Al Mashhadany, A. K. Abbas, and S. Algburi, “Hybrid Intelligent Controller for Magnetic Levitation System based on Virtual Reality Model,” Proc. - Int. Conf. Dev. eSystems Eng. DeSE, pp. 323–328, 2021, doi: 10.1109/DESE54285.2021.9719424.
J. Yan and Y. Chen, “Design and implementation of a real-time control system for industrial robots based on virtual reality technology,” Proc. Int. Conf. Ind. Eng. Oper. Manag., pp. 30–38, 2021.
J. Iqbal, R. Islam, and H. Khan, “Modeling and Analysis of a 6 DOF Robotic Arm Manipulator,” Electr. Electron. Eng., vol. 3, no. 6, pp. 300–306, 2012.
Y. Al Mashhadany, “Design, Analysis, Simulation, and Virtual Reality Verified Intelligent Controller for Industrial Application SCARA Robot,” Int. J. Adv. Comput., vol. 46, no. 3, pp. 2051–0845, 2013.
E. P. Okabe and P. Masarati, “Modeling and simulation of a 3D printer based on a SCARA mechanism,” Comput. Methods Appl. Sci., vol. 42, pp. 93–114, 2016, doi: 10.1007/978-3-319-30614-8_5.
Y. I. Al Mashhadany, “Design and analysis of 7-DOF human-link manipulator based on hybrid intelligent controller,” SPIIRAS Proc., vol. 19, no. 4, pp. 774–802, 2020, doi: 10.15622/sp.2020.19.4.3.
M. J. Mahmoodabadi and A. Ziaei, “Inverse Dynamics Based Optimal Fuzzy Controller for a Robot Manipulator via Particle Swarm Optimization,” J. Robot., vol. 2019, pp. 26–30, 2019, doi: 10.1155/2019/5052185.
V. Popov, S. Ahmed, N. Skakev, and A. Topalov, “Gesture-based interface for real-time control of a mitsubishi scara robot manipulator,” IFAC-PapersOnLine, vol. 52, no. 25, pp. 180–185, 2019, doi: 10.1016/j.ifacol.2019.12.469.
Y. I. Al Mashhadany and W. M. Jasim, “Real time modified programmable universal machine for assembly (PUMA) 560 with intelligent controller,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 20, no. 3, 2020, doi: 10.11591/ijeecs.v20.i3.pp1194-1202.
A. K. Abduljabbar, Y. A. Mashhadany and S. Algburi, "High-Performance of Mobile Robot Behavior Based on Intelligent System," 2023 16th International Conference on Developments in eSystems Engineering (DeSE), pp. 445-450, 2023, doi: 10.1109/DeSE60595.2023.10469524.
N. Prajumkhaiy and C. Mitsantisuk, “Sensorless Force Estimation of SCARA Robot System with Friction Compensation,” Procedia Comput. Sci., vol. 86, pp. 120–123, 2016, doi: 10.1016/j.procs.2016.05.030.
S. M. Raafat and S. M. Mahdi, “Improved Trajectory Tracking Control for a Three Axis SCARA Robot Using Fuzzy Logic,” IJCCCE, vol. 16, no. 1, pp. 11–19, 2016.
Y. Al Mashhadany, M. A. Lilo, and S. Algburi, “Optimal Stability of Brushless DC Motor System Based on Multilevel Inverter,” in Proceedings - International Conference on Developments in eSystems Engineering, DeSE, pp. 422-427, 2023, doi: 10.1109/DeSE58274.2023.10099574.
M. E. Uk, F. B. Sajjad Ali Shah, M. Soyaslan, and O. Eldogan, “Modeling, control, and simulation of a SCARA PRR-type robot manipulator,” Sci. Iran., vol. 27, no. 1, pp. 330–340, 2020.
C. Urrea, J. Cortés, and J. Pascal, “Design, construction and control of a SCARA manipulator with 6 degrees of freedom,” J. Appl. Res. Technol., vol. 14, no. 6, pp. 396–404, 2016, doi: 10.1016/j.jart.2016.09.005.
Y. I. Al Mashhadany, “Optimal Results Presentation Style for Engineering Research Article,” in AIP Conference Proceedings, vol. 2400, no. 1, 2022, doi: 10.1063/5.0112145.
J. Babič et al., “Challenges and solutions for application and wider adoption of wearable robots,” Wearable Technol., vol. 2, 2021, doi: 10.1017/wtc.2021.13.
B. A. Taha et al., "Next-generation nanophotonic-enabled biosensors for intelligent diagnosis of SARS-CoV-2 variants," Science of The Total Environment, vol. 880, p. 163333, 2023.
Y. Al Mashhadany, S. Jassam, and E. H. Yahia, “Design and Simulation of Modified Type-2 Fuzzy Logic Controller for Power System,” International Journal of Electrical and Electronics Research, vol. 10, no. 3, 2022, doi: 10.37391/IJEER.100352.
X. Yang et al., “Sensor Fusion-Based Teleoperation Control of Anthropomorphic Robotic Arm,” Biomimetics, vol. 8, no. 2, p. 169, Apr. 2023, doi: 10.3390/biomimetics8020169.
J. Chi, H. Yu, and J. Yu, “Hybrid Tracking Control of 2-DOF SCARA Robot via Port-Controlled Hamiltonian and Backstepping,” IEEE Access, vol. 6, pp. 17354–17360, 2018, doi: 10.1109/ACCESS.2018.2820681.
DOI: https://doi.org/10.18196/jrc.v5i6.23158
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Yousif Al Mashhadany, Ahmed K. Abbas, Sameer Algburi, Bakr Ahmed Taha
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Journal of Robotics and Control (JRC)
P-ISSN: 2715-5056 || E-ISSN: 2715-5072
Organized by Peneliti Teknologi Teknik Indonesia
Published by Universitas Muhammadiyah Yogyakarta in collaboration with Peneliti Teknologi Teknik Indonesia, Indonesia and the Department of Electrical Engineering
Website: http://journal.umy.ac.id/index.php/jrc
Email: jrcofumy@gmail.com