Work Fatigue Detection of Search and Rescue Officers Based on Hjorth EEG Parameters

Yuri Pamungkas, Ratri Dwi Indriani, Padma Nyoman Crisnapati, Yamin Thwe

Abstract


Work fatigue can cause a decrease in cognitive function, such as decreased thinking ability, concentration, and memory. A tired brain cannot work optimally, interfering with a person's ability to perform tasks that require complex thinking. In general, to evaluate work fatigue in a person, self-assessment activities using the Perceived Stress Scale (PSS) are the method most often used by researchers or practitioners. However, this method is prone to bias because sometimes people try to hide or exaggerate their tiredness at work. Therefore, we propose to evaluate people's work fatigue based on their EEG data in this study. A total of 25 participants from SAR officers recorded their EEG data in relaxed conditions (pre-SAR operations) and fatigue conditions (post-SAR operations). Recording was performed on the brain's left (fp1 & t7) and right (fp2 & t8) hemispheres. The EEG data is then processed by filtering, artifact removal using ICA method, signal decomposition into several frequency bands, and Hjorth feature extraction (activity, mobility, and complexity). The main advantage of Hjorth parameters compared to other EEG features is its ability to provide rich information about the complexity and mobility of the EEG signal in a relatively simple and fast way. Based on the results of activity feature extraction, feature values will tend to increase during the post-SAR operation conditions compared to the pre-operation SAR conditions. In addition, the results of the classification of pre-and post-operative SAR conditions using Bagged Tree algorithm (10-fold cross validation) show that the highest accuracy can be obtained is 94.8%.

Keywords


Work Fatigue; Electroencephalography; Brain Hemisphere; Hjorth Parameters; Machine Learning.

Full Text:

PDF

References


A. Boffet, V. Deschodt-Arsac, and E. Grivel, “Studying LF and HF Time Series to Characterize Cardiac Physiological Responses to Mental Fatigue,” Engineering Proceedings, vol. 68, no. 1), p. 6, 2024, doi: 10.3390/engproc2024068006.

I. Zollars, T. I. Poirier, and J. Pailden, “Effects of mindfulness meditation on mindfulness, mental well-being, and perceived stress,” Currents Pharmacy Teaching Learn., vol. 11, no. 10, pp. 1022–1028, Oct. 2019, doi: 10.1016/j.cptl.2019.06.005.

G. Masi, G. Amprimo, C. Ferraris, and L. Priano, “Stress and Workload Assessment in Aviation—A Narrative Review,” Sensors, vol. 23, no. 7, p. 3556, Mar. 2023, doi: 10.3390/s23073556.

A.-B. A. Al-Mekhlafi, A. S. N. Isha, N. Chileshe, M. Abdulrab, A. A. H. Saeed, and A. F. Kineber, “Modelling the Relationship between the Nature of Work Factors and Driving Performance Mediating by Role of Fatigue,” International Journal of Environmental Research and Public Health, vol. 18, no. 13, p. 6752, Jun. 2021, doi: 10.3390/ijerph18136752.

A. Frantz and K. Holmgren, “The Work Stress Questionnaire (WSQ) – reliability and face validity among male workers,” BMC Public Health, vol. 19, no. 1, Nov. 2019, doi: 10.1186/s12889-019-7940-5

L. I. Izhar, A. Babiker, E. E. Rizki, C.-K. Lu, and M. Abdul Rahman, “Emotion Self-Regulation in Neurotic Students: A Pilot Mindfulness-Based Intervention to Assess Its Effectiveness through Brain Signals and Behavioral Data,” Sensors, vol. 22, no. 7, p. 2703, Apr. 2022, doi: 10.3390/s22072703

A. Manelis et al., “Working Memory Recovery in Adolescents with Concussion: Longitudinal fMRI Study,” Journal of Clinical Medicine, vol. 13, no. 12, p. 3585, Jun. 2024, doi: 10.3390/jcm13123585.

B. Thielmann, I. Zavgorodnii, K. Zub, and I. Böckelmann, “The perception of stress, behavior in stressful situations and mental health of bank employees within a German-Ukrainian comparative study,” Int. J. Occupational Medicine Environmental Health, vol. 35, no. 1, 81, 2021, doi: 10.13075/ijomeh.1896.01739.

A. Balzeri et al., “The Cognitive Reserve May Influence Fatigue after Rehabilitation in Progressive Multiple Sclerosis: A Secondary Analysis of the RAGTIME Trial,” Sclerosis, vol. 2, no. 2, pp. 108–116, May 2024, doi: 10.3390/sclerosis2020008.

S. Ansari, H. Du, Fazel Naghdy, A. A. Hoshu, and D. Stirling, “A Semantic Hybrid Temporal Approach for Detecting Driver Mental Fatigue,” Safety, vol. 10, no. 1, Jan. 2024, doi: 10.3390/safety10010009.

B. Roy et al., “Hybrid Deep Learning Approach for Stress Detection Using Decomposed EEG Signals,” Diagnostics, vol. 13, no. 11, p. 1936, Jun. 2023, doi: 10.3390/diagnostics13111936.

D. A. Martínez Vásquez, H. F. Posada-Quintero, and D. M. Rivera Pinzón, “Mutual Information between EDA and EEG in Multiple Cognitive Tasks and Sleep Deprivation Conditions,” Behavioral Sciences, vol. 13, no. 9, p. 707, Sep. 2023, doi: 10.3390/bs13090707.

I. Zorzos, I. Kakkos, S. T. Miloulis, A. Anastasiou, E. M. Ventouras, and G. K. Matsopoulos, “Applying Neural Networks with Time-Frequency Features for the Detection of Mental Fatigue,” Applied sciences, vol. 13, no. 3, Jan. 2023, doi: 10.3390/app13031512.

N. Kascakova, J. Furstova, R. Trnka, J. Hasto, A. M. Geckova, and P. Tavel, “Subjective perception of life stress events affects long-term pain: the role of resilience,” BMC Psychol., vol. 10, no. 1, Mar. 2022, doi: 10.1186/s40359-022-00765-0.

A. A. Alrasheedi et al., “Utilizing Dry Electrode Electroencephalography and AI Robotics for Cognitive Stress Monitoring in Video Gaming,” Applied System Innovation, vol. 7, no. 4, Jul. 2024, doi: 10.3390/asi7040068.

R. A. Allegretta, K. Rovelli, and M. Balconi, “The Role of Emotion Regulation and Awareness in Psychosocial Stress: An EEG-Psychometric Correlational Study,” Healthcare, vol. 12, no. 15, Jul. 2024, doi: 10.3390/healthcare12151491.

R. Ron-Angevín et al., “Comparison of Two Paradigms Based on Stimulation with Images in a Spelling Brain–Computer Interface,” Sensors, vol. 23, no. 3, Jan. 2023, doi: 10.3390/s23031304.

E. T. Attar, V. Balasubramanian, E. Subasi, and M. Kaya, “Stress Analysis Based on Simultaneous Heart Rate Variability and EEG Monitoring,” IEEE J. Translational Eng. Health Medicine, vol. 9, pp. 1–7, 2021, doi: 10.1109/jtehm.2021.3106803.

Q. Yao, H. Gu, S. Wang, G. Liang, X. Zhao, and X. Li, “Exploring EEG characteristics of multi-level mental stress based on human-machine system,” J. Neural Eng., vol. 20, no. 5, p. 056023, 2023, doi: 10.1088/1741-2552/acfbba.

Y. Lu, W. Wang, B. Lian, and C. He, “Feature Extraction and Classification of Motor Imagery EEG Signals in Motor Imagery for Sustainable Brain–Computer Interfaces,” Sustainability, vol. 16, no. 15, Aug. 2024, doi: 10.3390/su16156627.

L. Liu, Y. Ji, Y. Gao, T. Li, and W. Xu, “A Novel Stress State Assessment Method for College Students Based on EEG,” Comput. Intell. Neurosci., vol. 2022, pp. 1–11, Jun. 2022, doi: 10.1155/2022/4565968.

R. Zavala-Yoé, H. M. N. Iqbal, R. Parra-Saldívar, and R. A. Ramírez-Mendoza, “Stress Response Analysis via Dynamic Entropy in EEG: Caregivers in View,” Int. J. Environmental Res. Public Health, vol. 20, no. 10, p. 5913, May 2023, doi: 10.3390/ijerph20105913.

S. M. U. Saeed, S. M. Anwar, H. Khalid, M. Majid, and U. Bagci, “EEG Based Classification of Long-Term Stress Using Psychological Labeling,” Sensors, vol. 20, no. 7, p. 1886, Mar. 2020, doi: 10.3390/s20071886.

Q. Wang, Y. Li, and X. Liu, “Analysis of Feature Fatigue EEG Signals Based on Wavelet Entropy,” Int. J. Pattern Recognit. Artif. Intell., vol. 32, no. 8, p. 1854023, Apr. 2018, doi: 10.1142/s021800141854023x.

Y. Zhang, H. Guo, Y. Zhou, C. Xu, and Y. Liao, “Recognising drivers’ mental fatigue based on EEG multi-dimensional feature selection and fusion,” Biomed. Signal Process. Control, vol. 79, p. 104237, Jan. 2023, doi: 10.1016/j.bspc.2022.104237.

J. Chen, H. Wang, Q. Wang, and C. Hua, “Exploring the fatigue affecting electroencephalography based functional brain networks during real driving in young males,” Neuropsychologia, vol. 129, pp. 200–211, Jun. 2019, doi: 10.1016/j.neuropsychologia.2019.04.004.

T. Tuncer, S. Dogan, and A. Subasi, “EEG-based driving fatigue detection using multilevel feature extraction and iterative hybrid feature selection,” Biomedical Signal Processing and Control, vol. 68, p. 102591, Jul. 2021, doi: 10.1016/j.bspc.2021.102591.

A. Aldridge et al., “Accessible Electroencephalograms (EEGs): A Comparative Review with OpenBCI’s Ultracortex Mark IV Headset,” 2019 29th International Conference Radioelektronika (RADIOELEKTRONIKA), pp. 1-6, Apr. 2019, doi: 10.1109/radioelek.2019.8733482.

Y. N. Cardona-Álvarez, A. M. Álvarez-Meza, D. A. Cárdenas-Peña, G. A. Castaño-Duque, and G. Castellanos-Dominguez, “A Novel OpenBCI Framework for EEG-Based Neurophysiological Experiments,” Sensors, vol. 23, no. 7, p. 3763, Apr. 2023, doi: 10.3390/s23073763.

Z. Y. Lim and N. Yong Quan, "Convolutional Neural Network Based Electroencephalogram Controlled Robotic Arm," 2021 IEEE International Conference on Automatic Control & Intelligent Systems (I2CACIS), pp. 26-31, 2021, doi: 10.1109/I2CACIS52118.2021.9495879.

A. Ksibi, M. Zakariah, L. J. Menzli, O. Saidani, L. Almuqren, and R. A. M. Hanafieh, “Electroencephalography-Based Depression Detection Using Multiple Machine Learning Techniques,” Diagnostics, vol. 13, no. 10, p. 1779, May 2023, doi: 10.3390/diagnostics13101779.

S. Zhou et al., “The Effect of Task Performance and Partnership on Interpersonal Brain Synchrony during Cooperation,” Brain Sciences, vol. 12, no. 5, p. 635, May 2022, doi: 10.3390/brainsci12050635.

T. Roy, K. S. Saroka, V. L. Hossack, and B. T. Dotta, “The Effects of Exam-Induced Stress on EEG Profiles and Memory Scores,” Behav. Sci., vol. 13, no. 5, p. 373, May 2023, doi: 10.3390/bs13050373.

E. Lutin, W. De Raedt, J. Steyaert, C. Van Hoof, and K. Evers, “Exploring the perception of stress in childhood and early adolescence,” J. Exp. Child Psychol., vol. 228, p. 105604, Apr. 2023, doi: 10.1016/j.jecp.2022.105604.

M. Aljalal, S. A. Aldosari, K. AlSharabi, and F. A. Alturki, “EEG-Based Detection of Mild Cognitive Impairment Using DWT-Based Features and Optimization Methods,” Diagnostics, vol. 14, no. 15, Jul. 2024, doi: 10.3390/diagnostics14151619.

M. Alwhaibi, A. Alotaibi, and B. Alsaadi, “Perceived Stress among Healthcare Students and Its Association with Anxiety and Depression: A Cross-Sectional Study in Saudi Arabia,” Healthcare, vol. 11, no. 11, p. 1625, Jun. 2023, doi: 10.3390/healthcare11111625.

M. Y. Özkars, S. Çevik, S. Ata, A. Sarısaltık, and U. Altaş, “Evaluation of Sleep Quality in Asthmatic Children with the Paediatric Sleep Questionnaire (PSQ),” Children, vol. 11, no. 6, Jun. 2024, doi: 10.3390/children11060728.

Y. Du, G. Li, M. Wu, and F. Chen, “Unsupervised Multivariate Feature-Based Adaptive Clustering Analysis of Epileptic EEG Signals,” Brain Sciences, vol. 14, no. 4, Mar. 2024, doi: 10.3390/brainsci14040342.

C. Page, C. C. Liu, J. Meltzer, and S. G. Hajra, “Blink-Related Oscillations Provide Naturalistic Assessments of Brain Function and Cognitive Workload within Complex Real-World Multitasking Environments,” Sensors, vol. 24, no. 4, Feb. 2024, doi: 10.3390/s24041082.

Y. Matsuda and K. Yamaguchi, “Unique estimation in EEG analysis by the ordering ICA,” PLOS ONE, vol. 17, no. 10, Oct. 2022, doi: 10.1371/journal.pone.0276680.

H. Wu, J. Qi, E. Purwanto, X. Zhu, P. Yang, and J. Chen, “Multi-Scale Feature and Multi-Channel Selection toward Parkinson’s Disease Diagnosis with EEG,” Sensors, vol. 24, no. 14, Jul. 2024, doi: 10.3390/s24144634.

A. Malekzadeh, A. Zare, M. Yaghoobi, and R. Alizadehsani, “Automatic Diagnosis of Epileptic Seizures in EEG Signals Using Fractal Dimension Features and Convolutional Autoencoder Method,” Big Data and Cognitive Computing, vol. 5, no. 4, p. 78, Dec. 2021, doi: doi: 10.3390/bdcc5040078.

S. Tiwari, S. Goel, and A. Bhardwaj, “Classification of imagined speech of vowels from EEG signals using multi-headed CNNs feature fusion network,” Digital Signal Processing, vol. 148, May 2024, doi: 10.1016/j.dsp.2024.104447.

A. D. Wibawa, U. W. Astuti, N. H. Saputra, A. Mas, and Y. Pamungkas, "Classifying Stress Mental State by using Power Spectral Density of Electroencephalography (EEG)," 2022 14th International Conference on Information Technology and Electrical Engineering (ICITEE), pp. 235-240, 2022, doi: 10.1109/ICITEE56407.2022.9954069.

I. M. Haresign et al., “Automatic classification of ICA components from infant EEG using MARA,” Developmental Cogn. Neurosci., vol. 52, p. 101024, Dec. 2021, doi: 10.1016/j.dcn.2021.101024.

N. H. Saputra, A. D. Wibawa, M. H. Purnomo, and Y. Pamungkas, "EEG-based Statistical Analysis on Determining the Stress Mental State on Police Personnel," 2022 1st International Conference on Information System & Information Technology (ICISIT), pp. 181-186, 2022, doi: 10.1109/ICISIT54091.2022.9872909.

O. Dimigen, “Optimizing the ICA-based removal of ocular EEG artifacts from free viewing experiments,” NeuroImage, vol. 207, p. 116117, Feb. 2020, doi: 10.1016/j.neuroimage.2019.116117.

I. Atti, P. Belardinelli, R. J. Ilmoniemi, and J. Metsomaa, “Measuring the accuracy of ICA-based artifact removal from TMS-evoked potentials,” Brain stimulation, vol. 17, no. 1, pp. 10–18, Jan. 2024, doi: 10.1016/j.brs.2023.12.001.

P. Bomatter, J. Paillard, P. Garces, J. Hipp, and D.-A. Engemann, “Machine learning of brain-specific biomarkers from EEG,” EBioMedicine, vol. 106, Aug. 2024, doi: 10.1016/j.ebiom.2024.105259.

X. Geng et al., “A motor imagery EEG signal optimized processing algorithm,” Alexandria Engineering Journal, vol. 101, pp. 38–51, Aug. 2024, doi: 10.1016/j.aej.2024.05.077.

X. Xu, J. Tang, T. Xu, and M. Lin, “Mental Fatigue Degree Recognition Based on Relative Band Power and Fuzzy Entropy of EEG,” Int. J. Environmental Res. Public Health, vol. 20, no. 2, p. 1447, Jan. 2023, doi: 10.3390/ijerph20021447.

Q. Hu, M. Li, and Y. Li, “Single-channel EEG signal extraction based on DWT, CEEMDAN, and ICA method,” Frontiers Human Neurosci., vol. 16, Sep. 2022, doi: 10.3389/fnhum.2022.1010760

M. Aljalal, M. Molinas, S. A. Aldosari, K. AlSharabi, A. M. Abdurraqeeb, and F. A. Alturki, “Mild cognitive impairment detection with optimally selected EEG channels based on variational mode decomposition and supervised machine learning,” Biomedical Signal Processing and Control, vol. 87, p. 105462, Jan. 2024, doi: 10.1016/j.bspc.2023.105462.

B. Zhang, C. Wang, G. Yan, Y. Su, L. Tao, and H. Cai, “Functional brain network based on improved ensemble empirical mode decomposition of EEG for anxiety analysis and detection,” Biomedical Signal Processing and Control, vol. 91, p. 106030, May 2024, doi: 10.1016/j.bspc.2024.106030.

C.-S. Ouyang, R.-C. Yang, R.-C. Wu, C.-T. Chiang, and L.-C. Lin, “Determination of Antiepileptic Drugs Withdrawal Through EEG Hjorth Parameter Analysis,” Int. J. Neural Syst., vol. 30, no. 11, p. 2050036, Aug. 2020, doi: 10.1142/s0129065720500367.

R. Yuvaraj, P. Thagavel, J. Thomas, J. Fogarty, and F. Ali, “Comprehensive Analysis of Feature Extraction Methods for Emotion Recognition from Multichannel EEG Recordings,” Sensors, vol. 23, no. 2, p. 915, Jan. 2023, doi: 10.3390/s23020915.

T. M. Velu et al., “EEG-BCI Features Discrimination between Executed and Imagined Movements Based on FastICA, Hjorth Parameters, and SVM,” Mathematics, vol. 11, no. 21, Oct. 2023.

R. Vempati and L. D. Sharma, “EEG rhythm-based emotion recognition using multivariate decomposition and ensemble machine learning classifier,” J. Neurosci. Methods, p. 109879, May 2023.

A. Yahya, F. Al-Shargie, D. Handayani, and H. Asadi, “Mental Stress Classification Based on Selected Electroencephalography Channels Using Correlation Coefficient of Hjorth Parameters,” Brain Sciences, vol. 13, no. 9, Sep. 2023, doi: 10.3390/brainsci13091340.

J. C. Chow et al., “Novel method using Hjorth mobility analysis for diagnosing attention-deficit hyperactivity disorder in girls,” Brain Develop., vol. 41, no. 4, pp. 334–340, Apr. 2019.

I. Al-Hussaini and C. S. Mitchell, “SeizFt: Interpretable Machine Learning for Seizure Detection Using Wearables,” Bioengineering, vol. 10, no. 8, Aug. 2023, doi: 10.3390/bioengineering10080918.

A. Rizal, S. Hadiyoso, and A. Z. Ramdani, “FPGA-Based Implementation for Real-Time Epileptic EEG Classification Using Hjorth Descriptor and KNN,” Electronics, vol. 11, no. 19, p. 3026, Sep. 2022, doi: 10.3390/electronics11193026.

B. F. O. Coelho, A. B. R. Massaranduba, C. A. dos S. Souza, G. G. Viana, I. Brys, and R. P. Ramos, “Parkinson’s disease effective biomarkers based on Hjorth features improved by machine learning,” Expert Systems with Applications, vol. 212, p. 118772, Feb. 2023.

R. M. Mehmood, M. Bilal, S. Vimal, and S.-W. Lee, “EEG-based affective state recognition from human brain signals by using Hjorth-activity,” Measurement, vol. 202, p. 111738, Oct. 2022.

S. Sarkar and K. Mali, “Firefly-SVM predictive model for breast cancer subgroup classification with clinicopathological parameters,” Digit. Health, vol. 9, Jan. 2023, doi: 10.1177/20552076231207203.

E. Reynolds, B. Callaghan, and M. Banerjee, “SVM–CART for disease classification,” J. Appl. Statist., vol. 46, no. 16, pp. 2987–3007, Jun. 2019, doi: 10.1080/02664763.2019.1625876.

M. Rippa et al., “Evaluation of Machine Learning Classification Models for False-Positive Reduction in Prostate Cancer Detection Using MRI Data,” Diagnostics, vol. 14, no. 15, Aug. 2024.

M. A. Aswathy and M. Jagannath, “An SVM approach towards breast cancer classification from H&E-stained histopathology images based on integrated features,” Med. & Biol. Eng. & Comput., vol. 59, no. 9, Jul. 2021, doi: 10.1007/s11517-021-02403-0.

Y. Pamungkas, A. D. Wibawa, and M. H. Purnomo, "EEG Data Analytics to Distinguish Happy and Sad Emotions Based on Statistical Features," 2021 4th International Seminar on Research of Information Technology and Intelligent Systems (ISRITI), pp. 345-350, 2021, doi: 10.1109/ISRITI54043.2021.9702766.

M. Nilashi et al., “Electroencephalography (EEG) eye state classification using learning vector quantization and bagged trees,” Heliyon, vol. 9, no. 4, Apr. 2023, doi: 10.1016/j.heliyon.2023.e15258.

Z. Zhang, S. Kong, T. Xiao, and A. Yang, “A Network Intrusion Detection Method Based on Bagging Ensemble,” Symmetry, vol. 16, no. 7, Jul. 2024, doi: 10.3390/sym16070850.

C. Zhao et al., “BoostTree and BoostForest for Ensemble Learning,” IEEE Trans. Pattern Anal. Mach. Intell., pp. 1–17, 2022, doi: 10.1109/tpami.2022.3227370.

M.-G. Jang, S. Cha, S. Kim, S. Lee, K. E. Lee, and K.-H. Shin, “Application of tree-based machine learning classification methods to detect signals of fluoroquinolones using the Korea Adverse Event Reporting System (KAERS) database,” Expert Opinion Drug Saf., vol. 22, no. 7, pp. 629-636, Feb. 2023, doi: 10.1080/14740338.2023.2181341.

M. M. Ghiasi, S. Zendehboudi, and A. A. Mohsenipour, “Decision tree-based diagnosis of coronary artery disease: CART model,” Comput. Methods Programs Biomedicine, vol. 192, p. 105400, Aug. 2020, doi: 10.1016/j.cmpb.2020.105400.

M. Sharma, V. Patel, J. Tiwari, and U. R. Acharya, “Automated Characterization of Cyclic Alternating Pattern Using Wavelet-Based Features and Ensemble Learning Techniques with EEG Signals,” Diagnostics, vol. 11, no. 8, p. 1380, Jul. 2021.

R. Ehsani and F. Drabløs, “Robust Distance Measures for kNN Classification of Cancer Data,” Cancer Inform., vol. 19, Jan. 2020, doi: 10.1177/1176935120965542

S. N. Hernández Pérez, F. D. Pérez Reynoso, C. A. G. Gutiérrez, M. D. l. Á. Cosío León, and R. Ortega Palacios, “EOG Signal Classification with Wavelet and Supervised Learning Algorithms KNN, SVM and DT,” Sensors, vol. 23, no. 9, p. 4553, 2023, doi: 10.3390/s23094553.

F. Yang et al., “Missing Value Estimation Methods Research for Arrhythmia Classification Using the Modified Kernel Difference-Weighted KNN Algorithms,” BioMed Res. Int., vol. 2020, pp. 1–9, Jun. 2020, doi: 10.1155/2020/7141725.

M. A. Khan, “A Comparative Study on Imputation Techniques: Introducing a Transformer Model for Robust and Efficient Handling of Missing EEG Amplitude Data,” Bioengineering, vol. 11, no. 8, 2024.

K. M. Alalayah, E. M. Senan, H. F. Atlam, I. A. Ahmed, and H. S. A. Shatnawi, “Effective Early Detection of Epileptic Seizures through EEG Signals Using Classification Algorithms Based on t-Distributed Stochastic Neighbor Embedding and K-Means,” Diagnostics, vol. 13, no. 11, p. 1957, Jun. 2023, doi: 10.3390/diagnostics13111957.

G. Feng, H. Wang, M. Wang, X. Zheng, and R. Zhang, “A Research on Emotion Recognition of the Elderly Based on Transformer and Physiological Signals,” Electronics, vol. 13, no. 15, Jul. 2024.

M.-P. Hosseini, A. Hosseini, and K. Ahi, “A Review on Machine Learning for EEG Signal Processing in Bioengineering,” IEEE Rev. Biomed. Eng., vol. 14, pp. 204-218, 2020, doi: 10.1109/rbme.2020.2969915

M.-G. Murariu, F.-R. Dorobanțu, and D. Tărniceriu, “A Novel Automated Empirical Mode Decomposition (EMD) Based Method and Spectral Feature Extraction for Epilepsy EEG Signals Classification,” Electronics, vol. 12, no. 9, p. 1958, Apr. 2023.

R. Rong, R. Zhang, Y. Xu, X. Wang, H. Wang, and X. Wang, “The Role of EEG microstates in predicting oxcarbazepine treatment outcomes in patients with newly-diagnosed focal epilepsy,” Seizure, vol. 119, pp. 63–70, Jul. 2024, doi: 10.1016/j.seizure.2024.05.015.

X. Shao, M. Ying, J. Zhu, X. Li, and B. Hu, “Achieving EEG-based depression recognition using Decentralized-Centralized structure,” Biomedical Signal Processing and Control, vol. 95, Sep. 2024.

Y. Ji et al., “A novel hybrid decoding neural network for EEG signal representation,” Pattern Recognition, vol. 155, p. 110726, Jun. 2024.

D. Shon, K. Im, J.-H. Park, D.-S. Lim, B. Jang, and J.-M. Kim, “Emotional Stress State Detection Using Genetic Algorithm-Based Feature Selection on EEG Signals,” Int. J. Environmental Res. Public Health, vol. 15, no. 11, p. 2461, Nov. 2018.

R.-u. Alam, H. Zhao, A. Goodwin, O. Kavehei, and A. McEwan, “Differences in Power Spectral Densities and Phase Quantities Due to Processing of EEG Signals,” Sensors, vol. 20, no. 21, p. 6285, Nov. 2020, doi: 10.3390/s20216285.

H. Javaid, M. Nouman, D. Cheaha, E. Kumarnsit, and S. Chatpun, “Complexity Measures Reveal Age-Dependent Changes in Electroencephalogram during Working Memory Task,” Behavioural Brain Research, vol. 470, Jul. 2024, doi: 10.1016/j.bbr.2024.115070.

V. Quiles, L. Ferrero, E. Iáñez, M. Ortiz, J. M. Cano, and J. M. Azorín, “Detecting the Speed Change Intention from EEG Signals: From the Offline and Pseudo-Online Analysis to an Online Closed-Loop Validation,” Appl. Sci., vol. 12, no. 1, p. 415, Jan. 2022.

O. K. Cura, A. Akan, and S. K. Atli, “Detection of Attention Deficit Hyperactivity Disorder based on EEG feature maps and deep learning,” Journal of Applied Biomedicine, vol. 44, no. 3, pp. 450–460, Jul. 2024.

Y. Liu et al., “CEEMDAN fuzzy entropy-based fatigue driving detection using single-channel EEG,” Biomedical Signal Processing and Control, vol. 95, Sep. 2024, doi: 10.1016/j.bspc.2024.106460.




DOI: https://doi.org/10.18196/jrc.v5i6.23511

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Yuri Pamungkas, Ratri Dwi Indriani, Padma Nyoman Crisnapati, Yamin Thwe

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 


Journal of Robotics and Control (JRC)

P-ISSN: 2715-5056 || E-ISSN: 2715-5072
Organized by Peneliti Teknologi Teknik Indonesia
Published by Universitas Muhammadiyah Yogyakarta in collaboration with Peneliti Teknologi Teknik Indonesia, Indonesia and the Department of Electrical Engineering
Website: http://journal.umy.ac.id/index.php/jrc
Email: jrcofumy@gmail.com


Kuliah Teknik Elektro Terbaik