Sliding Mode Control Design for Magnetic Levitation System

Alfian Ma'arif, Marco Antonio Marquez Vera, Magdi Sadek Mahmoud, Edwin Umoh, Ahmed Jaber Abougarair, Safinta Nurindra Rahmadhia

Abstract


This paper presents a control system design for a magnetic levitation system (Maglev) or MLS using sliding mode control (SMC). The MLS problem of levitating the object in the air will be solved using the controller. Inductors used in MLS make the system have nonlinear characteristics. Thus, a nonlinear controller is the most suitable control design for MLS. SMC is one of the nonlinear controllers with good robustness and can handle any model mismatch. Based on simulation results with a step as input reference, MLS provided good system performances: 0.0991s rise time, 0.1712s settling time, and 0.0159 overshoot. Moreover, a prominent tracking control for sine wave reference was also shown. Although the augmented system had a chattering effect on the control signal, the chattering control signal did not affect MLS performances.

Keywords


Magnetic levitation system; Sliding mode control; Nonlinear system; Nonlinear control

Full Text:

PDF

References


A. S. Malik, I. Ahmad, A. U. Rahman, and Y. Islam, “Integral Backstepping and Synergetic Control of Magnetic Levitation System,” IEEE Access, vol. 7, pp. 173230–173239, 2019, doi: 10.1109/ACCESS.2019.2952551.

R. Uswarman, S. Istiqphara, and D. H. Tri Nugroho, “Sliding Mode Control with Gain Scheduled for Magnetic Levitation System,” Jurnal Ilmiah Teknik Elektro Komputer dan Informatika, vol. 5, no. 1, pp. 36–43, 2019, doi: 10.26555/jiteki.v5i1.13223.

R. S. Gopi, S. Srinivasan, K. Panneerselvam, Y. Teekaraman, R. Kuppusamy, and S. Urooj, “Enhanced Model Reference Adaptive Control Scheme for Tracking Control of Magnetic Levitation System,” Energies, vol. 14, no. 5, p. 1455, Mar. 2021, doi: 10.3390/EN14051455.

A. H. Takinami, R. B. Cruz, B. L. S. de Lima, and F. Jesus de Almeida, “Design, simulation and development of a magnetic levitation system (MAGLEV),” Results in Physics, vol. 17, p. 103115, Jun. 2020, doi: 10.1016/J.RINP.2020.103115.

Y. Yu, X. Sun, and W. Zhang, “Modeling and decoupling control for rotor system in magnetic levitation wind turbine,” IEEE Access, vol. 5, pp. 15516–15528, Jul. 2017, doi: 10.1109/ACCESS.2017.2732450.

S. Saha, S. M. Amrr, M. U. Nabi, and A. Iqbal, “Reduced order modeling and sliding mode control of active magnetic bearing,” IEEE Access, vol. 7, pp. 113324–113334, 2019, doi: 10.1109/ACCESS.2019.2935541.

I. Murakami, Y. Zhao, and T. Tashiro, “Stabilization of a Magnetic Repulsive Levitation Flywheel System Using a High-Efficiency Superconducting Magnetic Bearing,” Actuators, vol. 11, no. 7, p. 180, Jun. 2022, doi: 10.3390/ACT11070180.

C. Chen, J. Xu, W. Ji, and L. Rong, “Sliding Mode Robust Adaptive Control of Maglev Vehicle’s Nonlinear Suspension System Based on Flexible Track: Design and Experiment,” IEEE Access, vol. 7, pp. 41874–41884, 2019, Accessed: May 15, 2019. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/8669759/

L. Zhou and J. Wu, “Magnetic Levitation Technology for Precision Motion Systems: A Review and Future Perspectives,” International Journal of Automation Technology, vol. 16, no. 4, pp. 386–402, Jul. 2022, doi: 10.20965/IJAT.2022.P0386.

S. R. Dabbagh, M. M. Alseed, M. Saadat, M. Sitti, and S. Tasoglu, “Biomedical Applications of Magnetic Levitation,” Advanced NanoBiomed Research, vol. 2, no. 3, p. 2100103, Mar. 2022, doi: 10.1002/ANBR.202100103.

A. A. Ashkarran and M. Mahmoudi, “Magnetic Levitation Systems for Disease Diagnostics,” Trends in Biotechnology, vol. 39, no. 3, pp. 311–321, Mar. 2021, doi: 10.1016/J.TIBTECH.2020.07.010.

H. Yaghoubi, “The most important maglev applications,” Journal of Engineering (United Kingdom), vol. 2013, 2013, doi: 10.1155/2013/537986.

C. Zhu et al., “Using magnetic levitation for density-based detection of cooking oils,” RSC Advances, vol. 9, no. 32, pp. 18285–18291, Jun. 2019, doi: 10.1039/C9RA02516B.

I. I. I. Al-Nuaimi, M. N. Mahyuddin, and N. K. Bachache, “A Non-Contact Manipulation for Robotic Applications: A Review on Acoustic Levitation,” IEEE Access, vol. 10, pp. 120823–120837, 2022, doi: 10.1109/ACCESS.2022.3222476.

M. Zhai, Z. Long, and X. Li, “Fault-Tolerant Control of Magnetic Levitation System Based on State Observer in High Speed Maglev Train,” IEEE Access, vol. 7, pp. 31624–31633, 2019, doi: 10.1109/ACCESS.2019.2898108.

J. Xu, Y. Sun, D. Gao, W. Ma, S. Luo, and Q. Qian, “Dynamic Modeling and Adaptive Sliding Mode Control for a Maglev Train System Based on a Magnetic Flux Observer,” IEEE Access, vol. 6, pp. 31571–31579, May 2018, doi: 10.1109/ACCESS.2018.2836348.

B. Li, C. Zhao, X. Li, and Z. Long, “Dynamics Modeling Analysis and Experiment of the Guidance Control System of High-Speed Maglev Train,” IEEE Access, vol. 8, pp. 206207–206221, 2020, doi: 10.1109/ACCESS.2020.3038252.

M. Zhai, Z. Long, and X. Li, “A New Strategy for Improving the Tracking Performance of Magnetic Levitation System in Maglev Train,” Symmetry, vol. 11, no. 8, p. 1053, Aug. 2019, doi: 10.3390/SYM11081053.

A. A. Bobtsov, A. A. Pyrkin, R. S. Ortega, and A. A. Vedyakov, “A state observer for sensorless control of magnetic levitation systems,” Automatica, vol. 97, pp. 263–270, Nov. 2018, doi: 10.1016/j.automatica.2018.08.004.

R. Uswarman, A. I. Cahyadi, O. Wahyunggoro, R. Uswarman, A. I. Cahyadi, and O. Wahyunggoro, “Design and Implementation of a Magnetic Levitation System Controller using Global Sliding Mode Control,” Journal of Mechatronics, Electrical Power, and Vehicular Technology, vol. 5, no. 1, p. 17, Jul. 2014, doi: 10.14203/j.mev.2014.v5.17-26.

I. Iswanto and A. Ma’arif, “Robust Integral State Feedback Using Coefficient Diagram in Magnetic Levitation System,” IEEE Access, vol. 8, pp. 57003–57011, Mar. 2020, doi: 10.1109/ACCESS.2020.2981840.

H. M. M. Adil, S. Ahmed, and I. Ahmad, “Control of MagLev System Using Supertwisting and Integral Backstepping Sliding Mode Algorithm,” IEEE Access, vol. 8, pp. 51352–51362, 2020, doi: 10.1109/ACCESS.2020.2980687.

F. Ni, Q. Zheng, J. Xu, and G. Lin, “Nonlinear Control of a Magnetic Levitation System Based on Coordinate Transformations,” IEEE Access, vol. 7, pp. 164444–164452, 2019, doi: 10.1109/ACCESS.2019.2952900.

Š. Chamraz, M. Huba, and K. Žáková, “Stabilization of the Magnetic Levitation System,” Applied Sciences, vol. 11, no. 21, p. 10369, Nov. 2021, doi: 10.3390/APP112110369.

D. Rosinová and M. Hypiusová, “Comparison of Nonlinear and Linear Controllers for Magnetic Levitation System,” Applied Sciences, vol. 11, no. 17, p. 7795, Aug. 2021, doi: 10.3390/APP11177795.

W. Xia, Z. Long, and F. Dou, “Disturbance rejection control using a novel velocity fusion estimation method for levitation control systems,” IEEE Access, vol. 8, pp. 173092–173102, 2020, doi: 10.1109/ACCESS.2020.3024665.

H. M. S. Yaseen, S. A. Siffat, I. Ahmad, and A. S. Malik, “Nonlinear adaptive control of magnetic levitation system using terminal sliding mode and integral backstepping sliding mode controllers,” ISA Transactions, vol. 126, pp. 121–133, Jul. 2022, doi: 10.1016/J.ISATRA.2021.07.026.

A. Ma’arif, A. imam Cahyadi, and O. Wahyunggoro, “CDM Based Servo State Feedback Controller with Feedback Linearization for Magnetic Levitation Ball System,” International Journal on Advanced Science, Engineering and Information Technology, vol. 8, no. 3, pp. 930–937, Jun. 2018, doi: 10.18517/ijaseit.8.3.1218.

A. V. Starbino and S. Sathiyavathi, “Real-time implementation of SMC–PID for Magnetic Levitation System,” Sādhanā, vol. 44, no. 5, pp. 1–13, Apr. 2019, doi: 10.1007/S12046-019-1074-4.

A. Ghosh, T. Rakesh Krishnan, P. Tejaswy, A. Mandal, J. K. Pradhan, and S. Ranasingh, “Design and implementation of a 2-DOF PID compensation for magnetic levitation systems,” ISA Transactions, vol. 53, no. 4, pp. 1216–1222, Jul. 2014, doi: 10.1016/j.isatra.2014.05.015.

E. Giraldo, “Real-time Control of a Magnetic Levitation System for Time-varying Reference Tracking,” IAENG International Journal of Applied Mathematics, vol. 51, no. 3, 2021.

S. Dey, J. Dey, and S. Banerjee, “Optimization Algorithm Based PID Controller Design for a Magnetic Levitation System,” in 2020 IEEE Calcutta Conference, CALCON 2020 - Proceedings, Feb. 2020, pp. 258–262. doi: 10.1109/CALCON49167.2020.9106522.

S. Kadry and V. Rajinikanth, “Design of PID Controller for Magnetic Levitation System using Harris Hawks Optimization,” Jurnal Ilmiah Teknik Elektro Komputer dan Informatika, vol. 6, no. 2, p. 70, 2021, doi: 10.26555/jiteki.v6i2.19167.

W. Bauer and J. Baranowski, “Fractional PIλD Controller Design for a Magnetic Levitation System,” Electronics, vol. 9, no. 12, p. 2135, Dec. 2020, doi: 10.3390/ELECTRONICS9122135.

B. Ataşlar-Ayyıldız, O. Karahan, and S. Yılmaz, “Control and Robust Stabilization at Unstable Equilibrium by Fractional Controller for Magnetic Levitation Systems,” Fractal and Fractional, vol. 5, no. 3, p. 101, Aug. 2021, doi: 10.3390/FRACTALFRACT5030101.

M. H. A. Yaseen and H. J. Abd, “Modeling and control for a magnetic levitation system based on SIMLAB platform in real time,” Results in Physics, vol. 8, pp. 153–159, Mar. 2018, doi: 10.1016/J.RINP.2017.11.026.

A. Demirören, S. Ekinci, B. Hekimoğlu, and D. Izci, “Opposition-based artificial electric field algorithm and its application to FOPID controller design for unstable magnetic ball suspension system,” Engineering Science and Technology, an International Journal, vol. 24, no. 2, pp. 469–479, Apr. 2021, doi: 10.1016/J.JESTCH.2020.08.001.

S. Yadav, S. K. Verma, and S. K. Nagar, “Performance enhancement of magnetic levitation system using teaching learning based optimization,” Alexandria Engineering Journal, vol. 57, no. 4, pp. 2427–2433, Dec. 2018, doi: 10.1016/J.AEJ.2017.08.016.

M. Hypiusova, D. Rosinova, and A. Kozakova, “Comparison of State Feedback Controllers for the Magnetic Levitation System,” in 2020 Cybernetics & Informatics (K&I), Jan. 2020, pp. 1–6. doi: 10.1109/KI48306.2020.9039889.

A. Ma’arif, A. I. Cahyadi, O. Wahyunggoro, and Herianto, “Servo state feedback based on Coefficient Diagram Method in magnetic levitation system with feedback linearization,” in 2017 3rd International Conference on Science and Technology - Computer (ICST), Jul. 2017, pp. 22–27. doi: 10.1109/ICSTC.2017.8011846.

A. Winursito and G. N. P. Pratama, “LQR state feedback controller with precompensator for magnetic levitation system,” Journal of Physics: Conference Series, vol. 2111, no. 1, p. 012004, Nov. 2021, doi: 10.1088/1742-6596/2111/1/012004.

D. Wang, F. Meng, and S. Meng, “Linearization Method of Nonlinear Magnetic Levitation System,” Mathematical Problems in Engineering, vol. 2020, 2020, doi: 10.1155/2020/9873651.

J. Zhang, X. Wang, and X. Shao, “Design and Real-Time Implementation of Takagi-Sugeno Fuzzy Controller for Magnetic Levitation Ball System,” IEEE Access, vol. 8, pp. 38221–38228, 2020, doi: 10.1109/ACCESS.2020.2971631.

G. García-Gutiérrez et al., “Fuzzy Logic Controller Parameter Optimization Using Metaheuristic Cuckoo Search Algorithm for a Magnetic Levitation System,” Applied Sciences, vol. 9, no. 12, p. 2458, Jun. 2019, doi: 10.3390/APP9122458.

O. Akbatı, H. D. Üzgün, and S. Akkaya, “Hardware-in-the-loop simulation and implementation of a fuzzy logic controller with FPGA: case study of a magnetic levitation system,” Transactions of the Institute of Measurement and Control, vol. 41, no. 8, pp. 2150–2159, Dec. 2018, doi: 10.1177/0142331218813425.

W. Yang, F. Meng, S. Meng, S. Man, and A. Pang, “Tracking Control of Magnetic Levitation System Using Model-Free RBF Neural Network Design,” IEEE Access, vol. 8, pp. 204563–204572, Nov. 2020, doi: 10.1109/access.2020.3037352.

P. Majewski, D. Pawuś, K. Szurpicki, and W. P. Hunek, “Toward Optimal Control of a Multivariable Magnetic Levitation System,” Applied Sciences, vol. 12, no. 2, p. 674, Jan. 2022, doi: 10.3390/APP12020674.

J. de Jesús Rubio, L. Zhang, E. Lughofer, P. Cruz, A. Alsaedi, and T. Hayat, “Modeling and control with neural networks for a magnetic levitation system,” Neurocomputing, vol. 227, pp. 113–121, Mar. 2017, doi: 10.1016/J.NEUCOM.2016.09.101.

F. M. Zaihidee, S. Mekhilef, and M. Mubin, “Robust Speed Control of PMSM Using Sliding Mode Control (SMC)—A Review,” Energies, vol. 12, no. 9, p. 1669, May 2019, doi: 10.3390/EN12091669.

V. S. A. and S. S., “Design of sliding mode controller for magnetic levitation system,” Computers and Electrical Engineering, vol. 78, pp. 184–203, Sep. 2019, doi: 10.1016/j.compeleceng.2019.07.007.

P. Roy and B. K. Roy, “Sliding Mode Control Versus Fractional-Order Sliding Mode Control: Applied to a Magnetic Levitation System,” Journal of Control, Automation and Electrical Systems 2020 31:3, vol. 31, no. 3, pp. 597–606, Apr. 2020, doi: 10.1007/S40313-020-00587-8.

X. Yu, Y. Feng, and Z. Man, “Terminal Sliding Mode Control - An Overview,” IEEE Open Journal of the Industrial Electronics Society, vol. 2, pp. 36–52, 2021, doi: 10.1109/OJIES.2020.3040412.

M. F. Ghani, R. Ghazali, H. I. Jaafar, C. C. Soon, Y. M. Sam, and Z. Has, “Improved Third Order PID Sliding Mode Controller for Electrohydraulic Actuator Tracking Control,” Journal of Robotics and Control (JRC), vol. 3, no. 2, pp. 219–226, Feb. 2022, doi: 10.18196/JRC.V3I2.14236.

C. C. Soon, R. Ghazali, M. F. Ghani, C. M. Shern, Y. M. Sam, and Z. Has, “Chattering Analysis of an Optimized Sliding Mode Controller for an Electro-Hydraulic Actuator System,” Journal of Robotics and Control (JRC), vol. 3, no. 2, pp. 160–165, Feb. 2022, doi: 10.18196/JRC.V3I2.13671.

M. S. Mahmoud, A. Alameer, and M. M. Hamdan, “An Adaptive Sliding Mode Control for Single Machine Infinite Bus System under Unknown Uncertainties,” International Journal of Robotics and Control Systems, vol. 1, no. 3, pp. 226–243, 2021.

Y. Rizal, M. Wahyu, I. Noor, J. Riadi, and R. Mantala, “Design of an Adaptive Super-Twisting Control for the Cart-Pole Inverted Pendulum System,” Jurnal Ilmiah Teknik Elektro Komputer dan Informatika, vol. 7, no. 1, pp. 161–174, 2021, doi: 10.26555/jiteki.v7i1.20420.

M. S. Mahmoud, R. A. A. Saleh, and A. Ma’arif, “Stabilizing of Inverted Pendulum System Using Robust Sliding Mode Control,” International Journal of Robotics and Control Systems, vol. 2, no. 2, pp. 230–239, Mar. 2022, doi: 10.31763/IJRCS.V2I2.594.

A. Ma’arif, M. A. M. Vera, M. S. Mahmoud, S. Ladaci, A. Çakan, and J. N. Parada, “Backstepping Sliding Mode Control for Inverted Pendulum System with Disturbance and Parameter Uncertainty,” Journal of Robotics and Control (JRC), vol. 3, no. 1, pp. 86–92, Nov. 2022, doi: 10.18196/JRC.V3I1.12739.

A. Ma’arif and A. Çakan, “Simulation and Arduino Hardware Implementation of DC Motor Control Using Sliding Mode Controller,” Journal of Robotics and Control (JRC), vol. 2, no. 6, pp. 582–587, 2021, doi: 10.18196/jrc.26140.

Y. Zahraoui, M. Akherraz, and A. Ma’arif, “A Comparative Study of Nonlinear Control Schemes for Induction Motor Operation Improvement,” International Journal of Robotics and Control Systems, vol. 2, no. 1, pp. 1–17, Dec. 2022, doi: 10.31763/ijrcs.v2i1.521.

E. Samsuria, Y. M. Sam, and F. Hassan, “Enhanced Sliding Mode Control for a Nonlinear Active Suspension Full Car Model,” International Journal of Robotics and Control Systems, vol. 1, no. 4, pp. 501–522, Dec. 2021, doi: 10.31763/IJRCS.V1I4.473.

O. J. Tola, E. A. Umoh, E. A. Yahaya, and O. E. Olusegun, “Permanent Magnet Synchronous Generator Connected to a Grid via a High Speed Sliding Mode Control,” International Journal of Robotics and Control Systems, vol. 2, no. 2, pp. 379–395, Jun. 2022, doi: 10.31763/IJRCS.V2I2.701.

E. A. Umoh and O. J. Tola, “Robust Global Synchronization of a Hyperchaotic System with Wide Parameter Space via Integral Sliding Mode Control Technique,” International Journal of Robotics and Control Systems, vol. 1, no. 4, pp. 453–462, Oct. 2021, doi: 10.31763/IJRCS.V1I4.485.

A. Daadi et al., “Sliding Mode Controller Based on the Sliding Mode Observer for a QBall 2+ Quadcopter with Experimental Validation,” International Journal of Robotics and Control Systems, vol. 2, no. 2, pp. 332–356, May 2022, doi: 10.31763/IJRCS.V2I2.693.

I. Hassani, I. Ergui, and C. Rekik, “Turning Point and Free Segments Strategies for Navigation of Wheeled Mobile Robot,” International Journal of Robotics and Control Systems, vol. 2, no. 1, pp. 172–186, Mar. 2022, doi: 10.31763/IJRCS.V2I1.586.

I. Reguii, I. Hassani, and C. Rekik, “Mobile Robot Navigation Using Planning Algorithm and Sliding Mode Control in a Cluttered Environment,” Journal of Robotics and Control (JRC), vol. 3, no. 2, pp. 166–175, Feb. 2022, doi: 10.18196/JRC.V3I2.13765.

M. S. Mahmoud and A. H. AlRamadhan, “Optimizing the Parameters of Sliding Mode Controllers for Stepper Motor through Simulink Response Optimizer Application,” International Journal of Robotics and Control Systems, vol. 1, no. 2, pp. 209–225, 2021, doi: 10.31763/ijrcs.v1i2.345.

M. G. Ghogare, A. R. Laware, S. L. Patil, and C. Y. Patil, “Design and Analysis of Decentralized Dynamic Sliding Mode Controller for TITO Process,” International Journal of Robotics and Control Systems, vol. 2, no. 2, pp. 277–296, Apr. 2022, doi: 10.31763/IJRCS.V2I2.648.

H. Quang Thinh Ngo, M. Hoang Nguyen, H. Chi Minh City, L. Trung Ward, and T. Duc District, “Enhancement of the Tracking Performance for Robot Manipulator by Using the Feed-forward Scheme and Reasonable Switching Mechanism,” Journal of Robotics and Control (JRC), vol. 3, no. 3, pp. 328–337, May 2022, doi: 10.18196/JRC.V3I3.14585.

H. Maghfiroh, A. Sujono, C. Hermanu, and B. Apribowo, “Basic Tutorial on Sliding Mode Control in Speed Control of DC-motor,” Journal of Electrical, Electronic, Information, and Communication Technology, vol. 2, no. 1, pp. 1–4, Apr. 2020, doi: 10.20961/JEEICT.2.1.41354.




DOI: https://doi.org/10.18196/jrc.v3i6.12389

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Alfian Ma'arif

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 


Journal of Robotics and Control (JRC)

P-ISSN: 2715-5056 || E-ISSN: 2715-5072
Organized by Peneliti Teknologi Teknik Indonesia
Published by Universitas Muhammadiyah Yogyakarta in collaboration with Peneliti Teknologi Teknik Indonesia, Indonesia and the Department of Electrical Engineering
Website: http://journal.umy.ac.id/index.php/jrc
Email: jrcofumy@gmail.com


Kuliah Teknik Elektro Terbaik