Early Diagnosis for Dengue Disease Prediction Using Efficient Machine Learning Techniques Based on Clinical Data

Bilal Abdualgalil, Sajimon Abraham, Waleed M. Ismael

Abstract


Dengue fever is a worldwide issue, especially in Yemen. Although early detection is critical to reducing dengue disease deaths, accurate dengue diagnosis requires a long time due to the numerous clinical examinations. Thus, this issue necessitates the development of a new diagnostic schema. The objective of this work is to develop a diagnostic model for the earlier diagnosis of dengue disease using Efficient Machine Learning Techniques (EMLT). This paper proposed prediction models for dengue disease based on EMLT. Five different efficient machine learning models, including K-Nearest Neighbor (KNN), Gradient Boosting Classifier (GBC), Extra Tree Classifier (ETC), eXtreme Gradient Boosting (XGB), and Light Gradient Boosting Machine (LightGBM). All classifiers are trained and tested on the dataset using 10-Fold Cross-Validation and Holdout Cross-Validation approaches. On a test set, all models were evaluated using different metrics: accuracy, F1-sore, Recall, Precision, AUC, and operating time. Based on the findings, the ETC model achieved the highest accuracy in Hold-out and 10-fold cross-validation, with 99.12 % and 99.03 %, respectively. In the Holdout cross-validation approach, we conclude that the best classifier with high accuracy is ETC, which achieved 99.12 %. Finally, the experimental results indicate that classifier performance in holdout cross-validation outperforms 10-fold cross-validation. Accordingly, the proposed dengue prediction system demonstrates its efficacy and effectiveness in assisting doctors in accurately predicting dengue disease.

Keywords


Dengue Disease; Machine Learning; Extra Tree; SMOTE+ENN; balanced dataset

Full Text:

PDF

References


S. Bhatt, P. W. Gething, O. J. Brady, J. P. Messina, A. W. Farlow, C. L. Moyes, J. M. Drake, J. S. Brownstein, A. G. Hoen, O. Sankoh, M. F. Myers, D. B. George, T. Jaenisch, G. R. W. Wint, C. P. Simmons, T. W. Scott, J. J. Farrar, and S. I. Hay, “The global distribution and burden of dengue,” Nature, vol. 496, no. 7446, pp. 504–507, Apr. 2013, https://doi.org/10.1038/nature12060.

WHO. (2022, Mar. 11). Dengue and severe dengue Online].Available: https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue

I. S. Abubakar, S. B. Abubakar, A. G. Habib, A. Nasidi, N. Durfa, P. O. Yusuf, S. Larnyang, J. Garnvwa, E. Sokomba, L. Salako, R. D. G. Theakston, E. Juszczak, N. Alder, and D. A. Warrell, “Randomised Controlled Double-Blind Non-Inferiority Trial of Two Antivenoms for Saw-Scaled or Carpet Viper (Echis ocellatus) Envenoming in Nigeria,” PLoS Neglected Tropical Diseases, vol. 4, no. 7, p. e767, Jul. 2010. https://doi.org/10.1371/journal.pntd.0000767.

A. A. H. Nassar, A. A. Torbosh, Y. A. Mahyoub, and M. A. A. Amad, “Risk Factors Associated With Dengue Fever Outbreak in Taiz Governorate, Yemen, 2018: Case-control Study,” Jul. 2021, https://doi.org/10.21203/rs.3.rs-624873/v1.

S. S. Nimmannitya, “Dengue and Dengue Haemorrhagic Fever,” Manson’s Tropical Diseases, pp. 753–761, 2009, https://doi.org/10.1016/b978-1-4160-4470-3.50045-8.

D. J. GUBLER, “Dengue and Dengue Hemorrhagic Fever,” Tropical Infectious Diseases, pp. 813–822, 1997., https://doi.org/10.1016/b978-0-443-06668-9.50077-6.

Marimuthu, T., and V. Balamurugan. "A novel bio-computational model for mining the dengue gene sequences," International Journal of Computer Engineering & Technology, vol. 6, no. 10, pp. 17-33, Oct. 2015.

Rao, NK Kameswara, GP Saradhi Varma, D. Rao, and P. Cse. "Classification rules using decision tree for dengue disease," International Journal of Research in Computer and Communication Technology, vol. 3, no. 3, pp. 340-343, Mar.2014.

P. Manivannan and P. I. Devi, “Dengue fever prediction using K-means clustering algorithm,” 2017 IEEE International Conference on Intelligent Techniques in Control, Optimization and Signal Processing (INCOS), Mar. 2017, https://doi.org/10.1109/itcosp.2017.8303126.

K. S. Ahmed Bin and S. Kamran Jabbar, “Dengue Fever in Perspective of Clustering Algorithms,” Journal of Data Mining in Genomics & Proteomics, vol. 06, no. 03, 2015, https://doi.org/10.4172/2153-0602.1000176.

N. A. Husin, N. Salim, and A. R. Ahmad, “Modeling of dengue outbreak prediction in Malaysia: A comparison of Neural Network and Nonlinear Regression Model,” 2008 International Symposium on Information Technology, Aug. 2008, https://doi.org/10.1109/itsim.2008.4632022.

A. Padmapriya and N. Subitha, “Clustering Algorithm for Spatial Data Mining: An Overview,” International Journal of Computer Applications, vol. 68, no. 10, pp. 28–33, Apr. 2013, https://doi.org/10.5120/11617-7014.

Omkar, Buchade, Dalsania Preet, Deshpande Swarada, and Doddamani Poonam. "Dengue fever classification using smo optimization algorithm," Int. Res. J. Eng. Technol, vol. 4, no. 10, pp. 1683-1686, 2017.

M. V. Martinez, C. Molinaro, J. Grant, and V. S. Subrahmanian, “Customized Policies for Handling Partial Information in Relational Databases,” IEEE Transactions on Knowledge and Data Engineering, vol. 25, no. 6, pp. 1254–1271, Jun. 2013, https://doi.org/10.1109/tkde.2012.91.

Bhavani, M., and S. Vinod Kumar. "A data mining approach for precise diagnosis of dengue fever," International journal of latest trends in engineering and technology, vol. 7, no. 4, 2016, https://doi.org/10.21172/1.74.048.

P. H.M.NishanthiHerath, A. A. I. Perera, and H. P. Wijekoon, “Prediction of Dengue Outbreaks in Sri Lanka using Artificial Neural Networks,” International Journal of Computer Applications, vol. 101, no. 15, pp. 1–5, Sep. 2014, https://doi.org/10.5120/17760-8862.

Y. Mulyani, E. F. Rahman, Herbert, and L. S. Riza, “A new approach on prediction of fever disease by using a combination of Dempster Shafer and Naïve bayes,” 2016 2nd International Conference on Science in Information Technology (ICSITech), Oct. 2016, https://doi.org/10.1109/icsitech.2016.7852664.

K. Shaukat Dar and S. M. Ulya Azmeen, “Dengue Fever Prediction: A Data Mining Problem,” Journal of Data Mining in Genomics & Proteomics, vol. 06, no. 03, 2015, https://doi.org/10.4172/2153-0602.1000181.

Siriyasatien, Padet, Atchara Phumee, Phatsavee Ongruk, Katechan Jampachaisri, and Kraisak Kesorn. "Analysis of significant factors for dengue fever incidence prediction," BMC bioinformatics, vol. 17, no. 1, pp. 1-9, Dec. 2016, https://doi.org/10.1186/s12859-016-1034-5.

Gambhir, Shalini, Sanjay Kumar Malik, and Yugal Kumar. "PSO-ANN based diagnostic model for the early detection of dengue disease." New Horizons in Translational Medicine, vol. 4, no.1-4, pp. 1-8, Nov. 2017, https://doi.org/10.1016/j.nhtm.2017.10.001.

Sarma, Dhiman, Sohrab Hossain, Tanni Mittra, Md Abdul Motaleb Bhuiya, Ishita Saha, and Ravina Chakma. "Dengue Prediction using Machine Learning Algorithms." In IEEE 8th R10 Humanitarian Technology Conference (R10-HTC), Kuching, Malaysia, pp. 1-6. IEEE, Dec. 2020, https://doi.org/10.1109/r10-htc49770.2020.9357035.

S. Gambhir, S. K. Malik, and Y. Kumar, “The Diagnosis of Dengue Disease,” International Journal of Healthcare Information Systems and Informatics, vol. 13, no. 3, pp. 1–19, Jul. 2018, https://doi.org/10.4018/ijhisi.2018070101.

N. Iqbal and M. Islam, “Machine learning for dengue outbreak prediction: A performance evaluation of different prominent classifiers,” Informatica, vol. 43, no. 3, Sep. 2019, https://doi.org/10.31449/inf.v43i3.1548.

Rajathi, N., S. Kanagaraj, R. Brahmanambika, and K. Manjubarkavi. "Early detection of dengue using machine learning algorithms," International Journal of Pure and Applied Mathematics, vol. 118, no. 18, pp. 3881-3887, 2018.

S. A. alias Balamurugan, M. S. M. Mallick, and G. Chinthana, “Improved prediction of dengue outbreak using combinatorial feature selector and classifier based on entropy weighted score based optimal ranking,” Informatics in Medicine Unlocked, vol. 20, p. 100400, 2020, https://doi.org/10.1016/j.imu.2020.100400.

J. D. Mello-Román, J. C. Mello-Román, S. Gómez-Guerrero, and M. García-Torres, “Predictive Models for the Medical Diagnosis of Dengue: A Case Study in Paraguay,” Computational and Mathematical Methods in Medicine, vol. 2019, pp. 1–7, Jul. 2019, https://doi.org/10.1155/2019/7307803.

S. Malik, S. Harous, and H. El-Sayed, “Comparative Analysis of Machine Learning Algorithms for Early Prediction of Diabetes Mellitus in Women,” Lecture Notes in Networks and Systems, pp. 95–106, Sep. 2020, https://doi.org/10.1007/978-3-030-58861-8_7.

G. E. A. P. A. Batista, R. C. Prati, and M. C. Monard, “A study of the behavior of several methods for balancing machine learning training data,” ACM SIGKDD Explorations Newsletter, vol. 6, no. 1, pp. 20–29, Jun. 2004, https://doi.org/10.1145/1007730.1007735.

V. N. Vapnik, “The Nature of Statistical Learning Theory,” 1995, https://doi.org/10.1007/978-1-4757-2440-0.

M. H. Lino Ferreira da Silva Barros, G. Oliveira Alves, L. Morais Florêncio Souza, É. da Silva Rocha, J. F. Lorenzato de Oliveira, T. Lynn, V. Sampaio, and P. T. Endo, “Benchmarking of Machine Learning Models to Assist the Prognosis of Tuberculosis,” Apr. 2021, https://doi.org/10.20944/preprints202103.0284.v2.

T. Chen and C. Guestrin, “XGBoost,” Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Aug. 2016, https://doi.org/10.1145/2939672.2939785.

A. Sharaff and H. Gupta, “Extra-Tree Classifier with Metaheuristics Approach for Email Classification,” Advances in Computer Communication and Computational Sciences, pp. 189–197, 2019, https://doi.org/10.1007/978-981-13-6861-5_17.

M. R. Machado, S. Karray, and I. T. de Sousa, “LightGBM: an Effective Decision Tree Gradient Boosting Method to Predict Customer Loyalty in the Finance Industry,” 2019 14th International Conference on Computer Science & Education (ICCSE), Aug. 2019, https://doi.org/10.1109/iccse.2019.8845529.

S. Gomathi and V. Narayani, “A proposed framework using CAC algorithm to predict systemic lupus erythematosus (SLE),” 2016 World Conference on Futuristic Trends in Research and Innovation for Social Welfare (Startup Conclave), Feb. 2016, https://doi.org/10.1109/startup.2016.7583974.

B. Abdualgalil and S. Abraham, “Applications of Machine Learning Algorithms and Performance Comparison: A Review,” 2020 International Conference on Emerging Trends in Information Technology and Engineering (ic-ETITE), Feb. 2020, https://doi.org/10.1109/ic-etite47903.2020.490.

T. B. Alakus and I. Turkoglu, “Comparison of deep learning approaches to predict COVID-19 infection,” Chaos, Solitons & Fractals, vol. 140, p. 110120, Nov. 2020, https://doi.org/10.1016/j.chaos.2020.110120.

F. Itoo, Meenakshi, and S. Singh, “Comparison and analysis of logistic regression, Naïve Bayes and KNN machine learning algorithms for credit card fraud detection,” International Journal of Information Technology, vol. 13, no. 4, pp. 1503–1511, Feb. 2020, https://doi.org/10.1007/s41870-020-00430-y.

L. Akter, Ferdib-Al-Islam, M. M. Islam, M. S. Al-Rakhami, and M. R. Haque, “Prediction of Cervical Cancer from Behavior Risk Using Machine Learning Techniques,” SN Computer Science, vol. 2, no. 3, Mar. 2021, https://doi.org/10.1007/s42979-021-00551-6.

M. Bracher-Smith, K. Crawford, and V. Escott-Price, “Machine learning for genetic prediction of psychiatric disorders: a systematic review,” Molecular Psychiatry, vol. 26, no. 1, pp. 70–79, Jun. 2020, https://doi.org/10.1038/s41380-020-0825-2.

J. Xu, Y. Zhang, and D. Miao, “Three-way confusion matrix for classification: A measure driven view,” Information Sciences, vol. 507, pp. 772–794, Jan. 2020, https://doi.org/10.1016/j.ins.2019.06.064.




DOI: https://doi.org/10.18196/jrc.v3i3.14387

Refbacks



Copyright (c) 2022 Bilal Sultan Abdualgalil, Sajimon Abraham, Waleed M. Ismael

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 


Journal of Robotics and Control (JRC)

P-ISSN: 2715-5056 || E-ISSN: 2715-5072
Organized by Peneliti Teknologi Teknik Indonesia
Published by Universitas Muhammadiyah Yogyakarta in collaboration with Peneliti Teknologi Teknik Indonesia, Indonesia and the Department of Electrical Engineering
Website: http://journal.umy.ac.id/index.php/jrc
Email: jrcofumy@gmail.com


Kuliah Teknik Elektro Terbaik