A Novel Improved Sea-Horse Optimizer for Tuning Parameter Power System Stabilizer

Widi Aribowo

Abstract


Power system stabilizer (PSS) is applied to dampen system oscillations so that the frequency does not deviate beyond tolerance. PSS parameter tuning is increasingly difficult when dealing with complex and nonlinear systems. This paper presents a novel hybrid algorithm developed from incorporating chaotic maps into the sea-horse optimizer. The algorithm developed is called the chaotic sea-horse optimizer (CSHO). The proposed method is adopted from the metaheuristic method, namely the sea-horse optimizer (SHO). The SHO is a method that duplicates the life of a sea-horse in the ocean when it moves, looks for prey and breeds.  In This paper, The CSHO method is used to tune the power system stabilizer parameters on a single machine system. The proposed method validates the benchmark function and performance on a single machine system against transient response. Several metaheuristic methods are used as a comparison to determine the effectiveness and efficiency of the proposed method. From the research, it was found that the application of the logistics Tent map from the chaotic map showed optimal performance. In addition, the application of the PSS shows effective and efficient performance in reducing overshoot in transient conditions.

Keywords


Smib; Chaotic sea-horse optimizer; Metaheuristic; Power system stabilizer; Power system

Full Text:

PDF

References


G. Zhang et al., “Deep reinforcement learning-based approach for proportional resonance power system stabilizer to prevent ultra-low-frequency oscillations,” IEEE Trans. Smart Grid, vol. 11, no. 6, pp. 5260–5272, 2020, doi: 10.1109/TSG.2020.2997790.

J. J. Kim and J. H. Park, “A novel structure of a power system stabilizer for microgrids,” Energies, vol. 14, no. 4, p. 905, 2021, doi: 10.3390/en14040905.

P. Sokólski, T. A. Rutkowski, B. Ceran, D. Horla, and D. Złotecka, “Power System Stabilizer as a Part of a Generator MPC Adaptive Predictive Control System,” Energies, vol. 14, no. 20, p. 6631, 2021, doi: 10.3390/en14206631.

F. Jamsheed and S. J. Iqbal, “A minimal architecture neuro adaptive predictive control scheme for power system stabilizer,” Int. J. Electr. Power Energy Syst., 2022, doi: 10.1016/j.ijepes.2021.107750.

P. Marić, R. Kljajić, H. R. Chamorro, and H. Glavaš, “Power system stabilizer tuning algorithm in a multimachine system based on s-domain and time domain system performance measures,” Energies, vol. 14, no. 18, p. 5644, 2021, doi: 10.3390/en14185644.

J. Qi, Q. Wu, Y. Zhang, G. Weng, and D. Zhou, “Unified residue method for design of compact wide-area damping controller based on power system stabilizer,” J. Mod. Power Syst. Clean Energy, vol. 8, no. 2, pp. 367–376, 2020, doi: 10.35833/MPCE.2018.000370.

J. A. O. Lala and C. F. Gallardo, “Adaptive tuning of power system stabilizer using a damping control strategy considering stochastic time delay,” IEEE Access, vol. 8, pp. 124254–124264, 2020, doi: 10.1109/ACCESS.2020.3004067.

A. A. Canabal, A. G. Loukianov, J. M. C. Castañeda, and V. A. Utkin, “Adaptive power system stabilizer with sliding mode for electric power systems,” Int. J. Electr. Power Energy Syst., vol. 145, p. 108700, 2023, doi: 10.1016/j.ijepes.2022.108700.

I. Davut, “A novel modified arithmetic optimization algorithm for power system stabilizer design,” Sigma J. Eng. Nat. Sci., vol. 40, no. 3, pp. 529–541, 2022, doi: 10.14744/sigma.2022.00056.

D. Acharya and D. K. Das, “An Optimizer to Tune Fractional-Order Power System Stabilizer for Synchronous Generator Considering Governor Effect and Exciter Voltage Fluctuation,” J. Control. Autom. Electr. Syst., pp. 1–13, 2022, doi:10.1007/s40313-022-00962-7.

M. Dehghani, M. Rezaei, B. Shayanfard, N. Vafamand, M. Javadi, and J. P. S. Catalão, “PMU-based power system stabilizer design: Optimal signal selection and controller design,” IEEE Trans. Ind. Appl., vol. 57, no. 6, pp. 5677–5686, 2021, doi: 10.1109/TIA.2021.3109572.

A. A. El-Soud, S. H. Elbanna, and W. Sabry, “A strong action power system stabilizer employment to improve large scale power systems’ stability,” J. Electr. Syst., vol. 17, no. 3, pp. 288–297, 2021.

X. Zhou, M. Usman, P. He, M. S. Mastoi, and S. Liu, “Parameter design of governor power system stabilizer to suppress ultra-low-frequency oscillations based on phase compensation,” Electr. Eng., vol. 103, no. 1, pp. 685–696, 2021, doi: 10.1007/s00202-020-01101-8.

J. Huang, J. Liu, C. Zhang, Y. Kuang, and S. Weng, “Application of Improved Quasi-Affine Transformation Evolutionary Algorithm in Power System Stabilizer Optimization,” Electronics, vol. 11, no. 17, p. 2785, 2022, doi: 10.3390/electronics11172785.

T. F. Do Nascimento and A. O. Salazar, “Power System Stabilizer Applied to VSG-Based Power Flow Control of DG Systems in Low-Voltage Networks,” in 2022 14th Seminar on Power Electronics and Control (SEPOC), 2022, pp. 1–6, doi: 10.1109/SEPOC54972.2022.9976432.

A. Faraji, A. H. Naghshbandy, and A. G. Baayeh, “A Hybrid Coordinated Design Method for Power System Stabilizer and FACTS Device Based on Synchrosqueezed Wavelet Transform and Stochastic Subspace Identification,” J. Mod. Power Syst. Clean Energy, vol. 9, no. 4, pp. 910–918, 2020, doi: 10.35833/MPCE.2019.000496.

K. M. Sreedivya, P. A. Jeyanthy, and D. Devaraj, “Improved design of interval type-2 fuzzy based wide area power system stabilizer for inter-area oscillation damping,” Microprocess. Microsyst., vol. 83, p. 103957, 2021, doi: 10.1016/j.micpro.2021.103957.

S. Essallah, A. Bouallegue, and A. Khedher, “Integration of automatic voltage regulator and power system stabilizer: small-signal stability in DFIG-based wind farms,” J. Mod. Power Syst. Clean Energy, vol. 7, no. 5, pp. 1115–1128, 2019, doi: 10.1007/s40565-019-0539-0.

L. Swarupa, S. Lakshmi, O. Rubanenko, and D. Danylchenko, “Modeling, Simulation and Simultaneous Tuning Employing Genetic Algorithm in Power System With Power System Stabilizer with TCSC Controller,” in 2022 IEEE 3rd KhPI Week on Advanced Technology (KhPIWeek), 2022, pp. 1–5, doi: 10.1109/KhPIWeek57572.2022.9916504.

G. M. Giannuzzi, D. Lauria, C. Pisani, and S. Tessitore, “An optimization procedure for power system stabilizer tuning,” in 2022 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), 2022, pp. 112–117, doi: 10.1109/SPEEDAM53979.2022.9842034.

R. M. A. Velásquez, T. T. P. Ezcurra, and L. F. V. Aldon, “Power System Stabilizer Design with meta-heuristic methods in a Peruvian case study,” in 2022 IEEE XXIX International Conference on Electronics, Electrical Engineering and Computing (INTERCON), 2022, pp. 1–4, doi: 10.1109/INTERCON55795.2022.9870161.

R. Hemmati, “Power system stabilizer design based on optimal model reference adaptive system,” Ain Shams Eng. J., vol. 9, no. 2, pp. 311–318, 2018, doi: 10.1016/j.asej.2016.03.002.

K. Eltag, M. S. Aslamx, and R. Ullah, “Dynamic stability enhancement using fuzzy PID control technology for power system,” Int. J. Control. Autom. Syst., vol. 17, no. 1, pp. 234–242, 2019, doi: 10.1007/s12555-018-0109-7.

P. Chaubey, J. S. Lather, S. Yelisetti, S. Manda, and N. K. Yadav, “Robust power system stabilizer based on static output feedback approach to enhance power system stability,” Energy Procedia, vol. 158, pp. 2960–2965, 2019, doi: 10.1016/j.egypro.2019.01.959.

B. Douidi, L. Mokrani, and M. Machmoum, “A new cascade fuzzy power system stabilizer for multi-machine system stability enhancement,” J. Control. Autom. Electr. Syst., vol. 30, no. 5, pp. 765–779, 2019, doi: 10.1007/s40313-019-00486-7.

M. A. Prakasa and I. Robandi, “Power System Stabilizer Tuning Improvement for Single-Machine Infinite Bus using Equilibrium Optimizer Algorithm,” in 2022 International Seminar on Intelligent Technology and Its Applications (ISITIA), 2022, pp. 320–325, doi: 10.1109/ISITIA56226.2022.9855203.

P. Kibet, H. A. Ouma, and P. M. Moses, “Improvement of Small Signal Stability by Tuning Power System Stabilizer Parameters for Geothermal Generation,” in 2022 IEEE PES/IAS PowerAfrica, 2022, pp. 1–5, doi: 10.1109/PowerAfrica53997.2022.9905319.

W. Hu, J. Liang, Y. Jin, and F. Wu, “Model of power system stabilizer adapting to multi-operating conditions of local power grid and parameter tuning,” Sustainability, vol. 10, no. 6, p. 2089, 2018, doi: 10.3390/su10062089.

X. Li, J. Fu, X. Zhang, H. Cao, Z. Lin, and Y. Niu, “A neural power system stabilizer of DFIGs for power system stability support,” Int. Trans. Electr. Energy Syst., vol. 28, no. 6, p. e2547, 2018, doi: 10.1002/etep.2547.

A. Salgotra and S. Pan, “Model based PI power system stabilizer design for damping low frequency oscillations in power systems,” ISA Trans., vol. 76, pp. 110–121, 2018, doi: 10.1016/j.isatra.2018.03.013.

S. Tusun, I. Erceg, M. Mehmedović, and D. Sumina, “Decentralized synergetic power system stabilizer,” Electr. Eng., vol. 100, no. 1, pp. 311–320, 2018, doi: 10.1007/s00202-016-0506-y.

A. Hadap and S. Vaishnav, “H-robust technique based ant optimal power system for solar energy power system stabilizer,” Materials Today: Proceedings, vol. 51, pp. 118-124, 2022, doi: 10.1016/j.matpr.2021.04.602.

J. Shen et al., “Small signal stability analysis of isolated power system with different load types and power system stabilizer,” 11th International Conference on Renewable Power Generation - Meeting net zero carbon (RPG 2022), 2022, pp. 85-89, doi: 10.1049/icp.2022.1676.

B. M. Alshammari, A. Farah, K. Alqunun, and T. Guesmi, “Robust Design of Dual-Input Power System Stabilizer Using Chaotic JAYA Algorithm,” Energies, vol. 14, no. 17, p. 5294, 2021, doi: 10.3390/en14175294.

I. M. Alotaibi, S. Ibrir, M. A. Abido, and M. Khalid, “Nonlinear Power System Stabilizer Design for Small Signal Stability Enhancement,” Arab. J. Sci. Eng., pp. 1–13, 2022, doi: 10.1007/s13369-022-06566-2.

A. Sabo, N. I. Abdul Wahab, M. L. Othman, M. Z. A. Mohd Jaffar, and H. Beiranvand, “Optimal design of power system stabilizer for multimachine power system using farmland fertility algorithm,” Int. Trans. Electr. Energy Syst., vol. 30, no. 12, p. e12657, 2020, doi: 10.1002/2050-7038.12657.

H. Mohammed and T. Rashid, “FOX: a FOX-inspired optimization algorithm,” Appl. Intell., pp. 1–21, 2022, doi: 10.1007/s10489-022-03533-0.

H. T. Sadeeq and A. M. Abdulazeez, “Giant Trevally Optimizer (GTO): A Novel Metaheuristic Algorithm for Global Optimization and Challenging Engineering Problems,” IEEE Access, vol. 10, pp. 121615–121640, 2022, doi: 10.1109/ACCESS.2022.3223388.

J. Xue and B. Shen, “Dung beetle optimizer: a new meta-heuristic algorithm for global optimization,” J. Supercomput., pp. 1–32, 2022, doi: 10.1007/s11227-022-04959-6.

O. N. Oyelade, A. E. S. Ezugwu, T. I. A. Mohamed, and L. Abualigah, “Ebola Optimization Search Algorithm: A New Nature-Inspired Metaheuristic Optimization Algorithm,” IEEE Access, 2022, doi: 10.1109/ACCESS.2022.3147821.

J. O. Agushaka, A. E. Ezugwu, and L. Abualigah, “Dwarf Mongoose Optimization Algorithm,” Comput. Methods Appl. Mech. Eng., 2022, doi: 10.1016/j.cma.2022.114570.

F. A. Hashim and A. G. Hussien, “Snake Optimizer: A novel meta-heuristic optimization algorithm,” Knowledge-Based Syst., 2022, doi: 10.1016/j.knosys.2022.108320.

L. Abualigah, A. Diabat, S. Mirjalili, M. Abd Elaziz, and A. H. Gandomi, “The arithmetic optimization algorithm,” Comput. Methods Appl. Mech. Eng., vol. 376, p. 113609, 2021, doi: 10.1016/j.cma.2020.113609.

F. A. Hashim, K. Hussain, E. H. Houssein, M. S. Mabrouk, and W. Al-Atabany, “Archimedes optimization algorithm: a new metaheuristic algorithm for solving optimization problems,” Appl. Intell., vol. 51, no. 3, pp. 1531–1551, 2021, doi: 10.1007/s10489-020-01893-z.

H. Jia, X. Peng, and C. Lang, “Remora optimization algorithm,” Expert Syst. Appl., vol. 185, p. 115665, 2021, doi: 10.1016/j.eswa.2021.115665.

B. Abdollahzadeh, F. S. Gharehchopogh, and S. Mirjalili, “African vultures optimization algorithm: A new nature-inspired metaheuristic algorithm for global optimization problems,” Comput. Ind. Eng., vol. 158, p. 107408, 2021, doi: 10.1016/j.cie.2021.107408.

F. MiarNaeimi, G. Azizyan, and M. Rashki, “Horse herd optimization algorithm: a nature-inspired algorithm for high-dimensional optimization problems,” Knowledge-Based Syst., vol. 213, p. 106711, 2021, doi: 10.1016/j.knosys.2020.106711.

T. Rahkar Farshi, “Battle royale optimization algorithm,” Neural Comput. Appl., vol. 33, no. 4, pp. 1139–1157, 2021, doi: 10.1007/s00521-020-05004-4.

M. Khishe and M. R. Mosavi, “Chimp optimization algorithm,” Expert Syst. Appl., vol. 149, p. 113338, 2020, doi: 10.1016/j.eswa.2020.113338.

P. Trojovský and M. Dehghani, “Pelican optimization algorithm: A novel nature-inspired algorithm for engineering applications,” Sensors, vol. 22, no. 3, p. 855, 2022, doi: 10.3390/s22030855.

A. E. Ezugwu, J. O. Agushaka, L. Abualigah, S. Mirjalili, and A. H. Gandomi, “Prairie dog optimization algorithm,” Neural Comput. Appl., pp. 1–49, 2022, doi: 10.3390/s22030855.

L. Abualigah, “Group search optimizer: a nature-inspired meta-heuristic optimization algorithm with its results, variants, and applications,” Neural Comput. Appl., vol. 33, no. 7, pp. 2949–2972, 2021, doi: 10.1007/s00521-020-05107-y.

D. Izci, “A novel improved atom search optimization algorithm for designing power system stabilizer,” Evol. Intell., vol. 15, no. 3, pp. 2089–2103, 2022, doi: 10.1007/s12065-021-00615-9.

H. Setiadi, F. Arrazi, M. Abdillah, and A. U. Krismanto, “Smart DIPSS for Dynamic Stability Enchancement on Multi-Machine Power System,” Indones. J. Electr. Eng. Informatics, vol. 10, no. 1, pp. 43–50, 2022, doi: 10.52549/ijeei.v10i1.3429.

M. A. Kamarposhti, I. Colak, C. Iwendi, S. S. Band, and E. Ibeke, “Optimal coordination of PSS and SSSC controllers in power system using ant colony optimization algorithm,” J. circuits, Syst. Comput., vol. 31, no. 04, p. 2250060, 2022, doi: 10.1142/S0218126622500608.

H. Yokus and A. Ozturk, “A robust crow search algorithm-based power system stabilizer for the SMIB system,” Neural Comput. Appl., vol. 34, no. 11, pp. 9161–9173, 2022, doi: 10.1007/s00521-022-06943-w.

J. H. Tayeb, M. R. Islam, M. Shafiullah, S. M. A. Gani, and M. I. Hossain, “Robust Power System Stabilizer for Multi-machine Power Networks using Tunicate Swarm Algorithm,” in 2022 Second International Conference on Artificial Intelligence and Smart Energy (ICAIS), 2022, pp. 1761–1766, doi: 10.1109/ICAIS53314.2022.9741828.

L. Chaib, A. Choucha, S. Arif, H. G. Zaini, A. El-Fergany, and S. S. M. Ghoneim, “Robust design of power system stabilizers using improved harris hawk optimizer for interconnected power system,” Sustainability, vol. 13, no. 21, p. 11776, 2021, doi: 10.3390/su132111776.

S. R. Paital, P. K. Ray, and S. R. Mohanty, “A robust dual interval type-2 fuzzy lead–lag based upfc for stability enhancement using harris hawks optimization,” ISA Trans., vol. 123, pp. 425–442, 2022, doi: 10.1016/j.isatra.2021.05.029.

N. Razmjooy, S. Razmjooy, Z. Vahedi, V. V Estrela, and G. G. de Oliveira, “A new design for robust control of power system stabilizer based on Moth search algorithm,” in Metaheuristics and Optimization in Computer and Electrical Engineering, pp. 187–202, 2021, doi: 10.1007/978-3-030-56689-0_10 .

D. K. Lal and A. K. Barisal, “Combined load frequency and terminal voltage control of power systems using moth flame optimization algorithm,” J. Electr. Syst. Inf. Technol., vol. 6, no. 1, pp. 1–24, 2019, doi: 10.1186/s43067-019-0010-3.

E. V Fortes, L. F. B. Martins, M. V. S. Costa, L. Carvalho, L. H. Macedo, and R. Romero, “Mayfly Optimization Algorithm Applied to the Design of PSS and SSSC-POD Controllers for Damping Low-Frequency Oscillations in Power Systems,” Int. Trans. Electr. Energy Syst., vol. 2022, 2022, doi: 10.1155/2022/5612334.

R. Devarapalli and B. Bhattacharyya, “Optimal controller parameter tuning of PSS using sine-cosine algorithm,” in Metaheuristic and Evolutionary Computation: Algorithms and Applications, pp. 337–360, 2021, doi: 10.1007/978-981-15-7571-6_15.

A. Toolabi Moghadam, M. Aghahadi, M. Eslami, S. Rashidi, B. Arandian, and S. Nikolovski, “Adaptive Rat Swarm Optimization for Optimum Tuning of SVC and PSS in a Power System,” Int. Trans. Electr. Energy Syst., vol. 2022, 2022, doi: 10.1155/2022/4798029.

P. R. Sahu, P. K. Hota, and S. Panda, “Modified whale optimization algorithm for coordinated design of fuzzy lead‐lag structure‐based SSSC controller and power system stabilizer,” Int. Trans. Electr. Energy Syst., vol. 29, no. 4, p. e2797, 2019, doi: 10.1002/etep.2797.

B. Dasu, M. Sivakumar, and R. Srinivasarao, “Interconnected multi-machine power system stabilizer design using whale optimization algorithm,” Prot. Control Mod. Power Syst., vol. 4, no. 1, pp. 1–11, 2019, doi: 10.1186/s41601-019-0116-6.

D. Wang, N. Ma, M. Wei, and Y. Liu, “Parameters tuning of power system stabilizer PSS4B using hybrid particle swarm optimization algorithm,” Int. Trans. Electr. Energy Syst., vol. 28, no. 9, p. e2598, 2018, doi: 10.1002/etep.2598.

T. H. Elmenfy, “Design of Velocity PID-Fuzzy Power System Stabilizer Using Particle Swarm Optimization,” WSEAS Trans. Syst., vol. 20, pp. 9–14, 2021, doi: 10.37394/23202.2021.20.2.

S. Latif, S. Irshad, M. Ahmadi Kamarposhti, H. Shokouhandeh, I. Colak, and K. Eguchi, “Intelligent Design of Multi-Machine Power System Stabilizers (PSSs) Using Improved Particle Swarm Optimization,” Electronics, vol. 11, no. 6, p. 946, 2022, doi: 10.3390/electronics11060946.

S. K. Mony, A. J. Peter, and D. Durairaj, “Gaussian quantum particle swarm optimization-based wide-area power system stabilizer for damping inter-area oscillations,” World J. Eng., 2021, doi: 10.1108/WJE-05-2021-0303.

M. K. Gude and U. Salma, “A novel approach of PSS optimal parameter tuning in a multi-area power system using hybrid butterfly optimization algorithm-particle swarm optimization,” Int. J. Syst. Assur. Eng. Manag., pp. 1–10, 2022, doi: 10.1007/s13198-022-01678-2.

K. Kalegowda, A. D. I. Srinivasan, and N. Chinnamadha, “Particle swarm optimization and Taguchi algorithm-based power system stabilizer-effect of light loading condition.,” Int. J. Electr. Comput. Eng., vol. 12, no. 5, 2022, doi: 10.11591/ijece.v12i5.pp4672-4679.

R. Devarapalli, B. Bhattacharyya, and N. K. Sinha, “An intelligent EGWO‐SCA‐CS algorithm for PSS parameter tuning under system uncertainties,” Int. J. Intell. Syst., vol. 35, no. 10, pp. 1520–1569, 2020, doi: 10.1002/int.22263.

G. Penchalaiah and R. Ramya, “Stability enhancement of power system based on HHO-TSA control scheme,” Int. J. Electron., pp. 1–27, 2021, doi: 10.1080/00207217.2021.2001871.

S. Zhao, T. Zhang, S. Ma, and M. Wang, “Sea-horse optimizer: a novel nature-inspired meta-heuristic for global optimization problems,” Appl. Intell., pp. 1–28, 2022, doi: 10.1007/s10489-022-03994-3.

B. Hekimoğlu, “Optimal tuning of fractional order PID controller for DC motor speed control via chaotic atom search optimization algorithm,” IEEE Access, vol. 7, pp. 38100–38114, 2019, doi: 10.1109/ACCESS.2019.2905961.

A. Rodríguez-Molina, M. G. Villarreal-Cervantes, O. Serrano-Pérez, J. Solís-Romero, and R. Silva-Ortigoza, “Optimal Tuning of the Speed Control for Brushless DC Motor Based on Chaotic Online Differential Evolution,” Mathematics, vol. 10, no. 12, p. 1977, 2022, doi: 10.3390/math10121977.

E. S. Bayu, B. Khan, Z. M. Ali, Z. M. Alaas, and O. P. Mahela, “Mitigation of Low-Frequency Oscillation in Power Systems through Optimal Design of Power System Stabilizer Employing ALO,” Energies, vol. 15, no. 10, p. 3809, 2022, doi: 10.3390/en15103809.

W. Aribowo, S. Muslim, B. Suprianto, S. Haryudo, and A. C. Hermawan, “Intelligent Control of Power System Stabilizer Based on Archimedes Optimization Algorithm–Feed Forward Neural Network,” Int. J. Intell. Eng. Syst., vol. 14, no. 3, pp. 43–53, 2021, doi: 10.22266/ijies2021.0630.05.

N. Azizi, H. Moradi CheshmehBeigi, and K. Rouzbehi, “HVDC grids stability improvement by direct current power system stabilizer,” IET Gener. Transm. Distrib., vol. 16, no. 3, pp. 492–502, 2022, doi: 10.1049/gtd2.12295.

W. Aribowo, S. Muslim, B. Suprianto, and S. I. H. Joko, “Tunicate swarm algorithm-neural network for adaptive power system stabilizer parameter,” Sci. Technol. Asia, vol. 26, no. 3, pp. 50–63, 2021, doi: 10.14456/scitechasia.2021.46.

L. Xie, T. Han, H. Zhou, Z.-R. Zhang, B. Han, and A. Tang, “Tuna swarm optimization: a novel swarm-based metaheuristic algorithm for global optimization,” Comput. Intell. Neurosci., vol. 2021, 2021, doi: 10.1155/2021/9210050.

T. S. L. V Ayyarao et al., “War strategy optimization algorithm: a new effective metaheuristic algorithm for global optimization,” IEEE Access, vol. 10, pp. 25073–25105, 2022, doi: 10.1109/ACCESS.2022.3153493.




DOI: https://doi.org/10.18196/jrc.v4i1.16445

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 widi aribowo

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 


Journal of Robotics and Control (JRC)

P-ISSN: 2715-5056 || E-ISSN: 2715-5072
Organized by Peneliti Teknologi Teknik Indonesia
Published by Universitas Muhammadiyah Yogyakarta in collaboration with Peneliti Teknologi Teknik Indonesia, Indonesia and the Department of Electrical Engineering
Website: http://journal.umy.ac.id/index.php/jrc
Email: jrcofumy@gmail.com


Kuliah Teknik Elektro Terbaik