A Comparative Study of Metaheuristic Optimization Algorithms in Solving Engineering Designing Problems

Authors

DOI:

https://doi.org/10.18196/jrc.v6i4.26410

Keywords:

Swarm Based Optimization Algorithms, Physical Based Optimization Algorithm, Speed Reducer Design, Pressure Vessel Design

Abstract

This paper presents a comprehensive comparative study of several metaheuristic optimization algorithms with the aim of identifying the most effective method for solving well-established engineering design problems. The algorithms selected for this study include Sperm Swarm Optimization (SSO), Chernobyl Disaster Optimizer (CDO), Bermuda Triangle Optimizer (BTO), Marine Predators Algorithm (MPA), and Particle Swarm Optimization (PSO). These algorithms are tested and evaluated through both qualitative and quantitative analyses.The first phase of testing involves applying the algorithms to a set of benchmark functions from the Congress on Evolutionary Computation (CEC) 2017 suite. Key performance indicators such as best fitness value, standard deviation, and mean are used to measure solution quality, while convergence curves are analyzed to assess optimization efficiency over iterations. This allows for a robust evaluation of each algorithm's ability to balance exploration and exploitation in the search space. In the second phase, the algorithms are implemented to solve real-world engineering design problems, including Speed Reducer Design, Pressure Vessel Design, Cantilever Beam Design, and Robot Gripper Optimization. These case studies further validate the practical applicability and versatility of the algorithms in handling complex, multidimensional, and constrained optimization tasks. The results indicate varying levels of performance across different problems, highlighting the strengths and limitations of each method. This comparative insight provides valuable guidance for researchers and practitioners in selecting suitable optimization techniques for specific engineering challenges.

Author Biographies

Widi Aribowo, Universitas Negeri Surabaya

Widi Aribowo is a lecturer in the Department of Electrical Engineering, Universitas Negeri Surabaya, Indonesia. He is B.Sc. in Power Engineering, Sepuluh Nopember Institute of Technology (ITS)-Surabaya in 2005. He is M.Eng. in Power Engineering, Sepuluh Nopember Institute of Technology (ITS)-Surabaya in 2009. He mainly research in the power systems, metaheuristic algorithms, and control. He can be contacted at email: widiaribowo@unesa.ac.id.

Hisham A. Shehadeh, Al-Balqa Applied University

isham A. Shehadeh received the B.S. degree in computer science from Al-Balqa` Applied University, Jordan, in 2012, the M.S. degree in computer science from the Jordan University of Science and Technology, Irbid, Jordan, in 2014, and the Ph.D. degree from the Department of Computer System and Technology, University of Malaya (UM), Kuala Lumpur, Malaysia, in 2018. He was an Assistant professor of CS/AI in Amman Arab University from 2020 to 2024. He was a research assistant at UM from 2017 to2018. He was a Teaching Assistant and a lecturer with CS Department, College of Computer and Information Technology, Jordan University of Science and Technology from 2013 to 2014 and from 2014 to 2016 respectively. Currently, He is an Assistant Professor of Computer Science at the Department of Information Technology, Al-Huson University College, Al-Balqa Applied University, Al-Huson, Jordan. His current research interests are, intelligent computing, metaheuristic algorithms and algorithmic engineering applications of WSN.

References

X. Cui and S. Ge, “Research on Efficiency Coupling Coordination Feature Model of Digital Economy Based on Multi-Objective Machine Learning Algorithm,” Teh. Vjesn., vol. 32, no. 1, pp. 78–87, 2025, doi: 10.17559/TV-20240826001943.

A. N. K. Nasir, M. A. A. Roslan, M. F. M. Jusof, M. R. Ahmad, and A. A. A. Razak, “Mating-Based Manta Ray Foraging Optimization for Fuzzy-Hammerstein Model of an Electric Water Heater,” J. Adv. Res. Appl. Mech., vol. 129, no. 1, pp. 32–43, 2025, doi: 10.37934/ARAM.129.1.3243.

N. Pokharna and I. P. Tripathi, “Optimality in interval fractional programming problems using d-invexity,” Iran. J. Fuzzy Syst., vol. 22, no. 1, pp. 71–91, 2025, doi: 10.22111/ijfs.2025.48874.8615.

J. D. Rhenals-Julio, H. A. Martínez, J. F. Arango, J. M. M. Fandiño, and M. D. Oviedo, “Economic Assessment of the Potential for Renewable Based Microgrids Generation Systems: An Application in a University Building,” Int. J. Energy Econ. Policy, vol. 15, no. 1, pp. 206–212, 2025, doi: 10.32479/ijeep.17423.

Y. Xu, K. Liu, T. Zhai, X. Xiong, and Y. Wu, “Towards state-of-the-art semiconductor/dielectric interface in two-dimensional electronics,” J. Mater. Sci. Technol., vol. 239, pp. 93–108, 2025, doi: 10.1016/j.jmst.2025.03.049.

W. Aribowo, S. Muslim, Munoto, B. Suprianto, U. T. Kartini, and I. G. P. Asto Buditjahjanto, “Tuning of Power System Stabilizer Using Cascade Forward Backpropagation,” in Proceeding - 2020 3rd International Conference on Vocational Education and Electrical Engineering: Strengthening the framework of Society 5.0 through Innovations in Education, Electrical, Engineering and Informatics Engineering, ICVEE, pp. 1-5, 2020, doi: 10.1109/ICVEE50212.2020.9243204.

V. R. Nippatla and S. Mandava, “Performance analysis of permanent magnet synchronous motor based on transfer function model using PID controller tuned by Ziegler-Nichols method,” Results Eng., vol. 26, 2025, doi: 10.1016/j.rineng.2025.105460.

A. Alhawarat, S. Masmali, I. Masmali, M. Al-Baali, and S. Ismail, “A Modified Conjugate Gradient Method with Taylor Approximation: Applications in Electric Circuits and Image Restoration,” Eur. J. Pure Appl. Math., vol. 18, no. 1, 2025, doi: 10.29020/nybg.ejpam.v18i1.5639.

S. Yang, P. Liu, and C. Pehlevan, “Convex Relaxation for Solving Large-Margin Classifiers in Hyperbolic Space,” Trans. Mach. Learn. Res., vol. 2025, 2025.

L. Yin, J. Liu, H. Wu, H. Wang, and G. Lai, "EGO-DQN Planner: A Path Planner Integrated with Deep Q-Network," International Conference on Image, Vision and Intelligent Systems, pp. 175-189, 2024, doi: 10.1007/978-981-96-2528-4_15.

M. Gan, X.-X. Su, G.-Y. Chen, J. Chen, and C. L. P. Chen, “Online Learning Under a Separable Stochastic Approximation Framework,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 47, no. 2, pp. 1317–1330, 2025, doi: 10.1109/TPAMI.2024.3495783.

S. Touati et al., “Performance analysis of steel W18CR4V grinding using RSM, DNN-GA, KNN, LM, DT, SVM models, and optimization via desirability function and MOGWO,” Heliyon, vol. 11, no. 4, 2025, doi: 10.1016/j.heliyon.2025.e42640.

A. Wadood, H. Albalawi, A. M. Alatwi, H. Anwar, and T. Ali, “Design of a Novel Fractional Whale Optimization-Enhanced Support Vector Regression (FWOA-SVR) Model for Accurate Solar Energy Forecasting,” Fractal Fract., vol. 9, no. 1, 2025, doi: 10.3390/fractalfract9010035.

H. Sharifzadeh, “Handling Multiple-Fuel Options in Economic Dispatch of Thermal Power Plants Through a Tight Model Applying Indicator Variables,” Int. Trans. Electr. Energy Syst., vol. 2025, no. 1, 2025, doi: 10.1155/etep/1572487.

D. Nataraj and M. Subramanian, “Design and optimal tuning of fractional order PID controller for paper machine headbox using jellyfish search optimizer algorithm,” Sci. Rep., vol. 15, no. 1, 2025, doi: 10.1038/s41598-025-85810-9.

E. Cuevas, O. Barba, and H. Escobar, “A novel cheetah optimizer hybrid approach based on opposition-based learning (OBL) and diversity metrics,” Computing, vol. 107, no. 2, 2025, doi: 10.1007/s00607-024-01397-5.

O. Said Solaiman, R. Sihwail, H. Shehadeh, I. Hashim, and K. Alieyan, "Hybrid Newton–sperm swarm optimization algorithm for nonlinear systems," Mathematics, vol. 11, no. 6, p. 1473, 2023, doi: 10.3390/math11061473.

A. Prapanca, Nasreddine Belhaouas, and Imed Mahmoud, “Modified FATA Morgana Algorithm Based on Levy Flight,” Vokasi Unesa Bull. Eng. Technol. Appl. Sci., vol. 2, no. 1, pp. 1–11, Mar. 2025, doi: 10.26740/vubeta.v2i1.37066.

W. Aribowo, B. Suprianto, I. G. P. A. Buditjahjanto, M. Widyartono, and M. Rohman, “An improved neural network based on the parasitism – predation algorithm for an automatic voltage regulator,” ECTI Trans. Electr. Eng. Electron. Commun., vol. 19, no. 2, pp. 136–144, 2021, doi: 10.37936/ecti-eec.2021192.241628.

A. Yaqoob and N. K. Verma, “Feature Selection in Breast Cancer Gene Expression Data Using KAO and AOA with SVM Classification,” J. Med. Syst., vol. 49, no. 1, 2025, doi: 10.1007/s10916-025-02171-6.

S. Lv, J. Zhuang, Z. Li, H. Zhang, H. Jin, and S. Lü, “An enhanced walrus optimization algorithm for flexible job shop scheduling with parallel batch processing operation,” Sci. Rep., vol. 15, no. 1, 2025, doi: 10.1038/s41598-025-89527-7.

O. E. Turgut, H. Genceli, M. Asker, M. T. Çoban, and M. Akrami, “Predicting the chemical equilibrium point of reacting components in gaseous mixtures through a novel Hierarchical Manta-Ray Foraging Optimization Algorithm,” Sci. Rep., vol. 15, no. 1, 2025, doi: 10.1038/s41598-025-93524-1.

J. Shao, Y. Lu, Y. Sun, and L. Zhao, “An improved multi-objective particle swarm optimization algorithm for the design of foundation pit of rail transit upper cover project,” Sci. Rep., vol. 15, no. 1, 2025, doi: 10.1038/s41598-025-87350-8.

F. Kiani, “A multi-objective metaheuristic method for node placement in dynamic IoT environments,” Discov. Internet Things, vol. 5, no. 1, 2025, doi: 10.1007/s43926-025-00153-1.

B. Tian, “A Crow Search Algorithm integrated with Lévy flight and dynamic awareness probability for optimized numerical control machining parameters,” J. Eng. Appl. Sci., vol. 72, no. 1, 2025, doi: 10.1186/s44147-025-00612-0.

N. Sabangban et al., “Comparative Performance of Meta-Heuristic Algorithms for Low-Speed Wind Turbine Blade Structural Optimization,” J. Res. Appl. Mech. Eng., vol. 13, no. 1, 2025, doi: 10.14456/jrame.2025.11.

G. A. Rolim and M. S. Nagano, “Designing state-of-the-art metaheuristics: What have we learned from the parallel-machine scheduling problem with setups?,” Comput. Oper. Res., vol. 182, 2025, doi: 10.1016/j.cor.2025.107110.

W. Wang, B. Zhang, P. Zhu, and Z. Liu, “Diversity-enhanced adaptive golden jackal optimization based on multi-strategy and its engineering applications,” Cluster Comput., vol. 28, no. 5, 2025, doi: 10.1007/s10586-024-04987-2.

S. Khastar, F. Bashirizadeh, J. Jafari-Asl, and N. Safaeian Hamzehkolaei, “Predicting the cooling and heating loads of energy efficient buildings: a hybrid machine learning approach,” Cluster Comput., vol. 28, no. 5, 2025, doi: 10.1007/s10586-024-04993-4.

A. Llanza, A. Nakib, and N. Shvai, “FDS: Fractal decomposition based direct search approach for continuous dynamic optimization,” Inf. Sci. (Ny)., vol. 715, 2025, doi: 10.1016/j.ins.2025.122237.

R. Zhang, C. Liu, J. Wang, K. Su, H. Ishibuchi, and Y. Jin, “Synergistic integration of metaheuristics and machine learning: latest advances and emerging trends,” Artif. Intell. Rev., vol. 58, no. 9, 2025, doi: 10.1007/s10462-025-11266-y.

A. Maqbool, A. U. Rehman, A. Arshad, K. Mahmoud, and M. Lehtonen, “Hybrid metaheuristic optimization based DSM approach towards effective energy recommender system,” Electr. Power Syst. Res., vol. 246, 2025, doi: 10.1016/j.epsr.2025.111645.

J. Wang, J. Dong, X. Dong, and H. Zhou, “Population-Based Meta-Heuristic Optimization Algorithm Booster: An Evolutionary and Learning Competition Scheme,” Neurocomputing, vol. 643, 2025, doi: 10.1016/j.neucom.2025.130405.

S. K. Mogha, S. Deshwal, and P. Kumar, “Current-to-Best Crossover for Modified Jaya Algorithm,” Int. J. Math. Eng. Manag. Sci., vol. 10, no. 4, pp. 1055–1079, 2025, doi: 10.33889/IJMEMS.2025.10.4.051.

J.-S. Chou, J.-S. Lien, and C.-Y. Liu, “Integrative AI and UAV-based visual recognition with metaheuristics for automated repair cost analysis of bridge structural deterioration,” Autom. Constr., vol. 176, 2025, doi: 10.1016/j.autcon.2025.106273.

R. Nekoueian, T. Servranckx, and M. Vanhoucke, “A dynamic learning-based genetic algorithm for scheduling resource-constrained projects with alternative subgraphs,” Appl. Soft Comput., vol. 180, 2025, doi: 10.1016/j.asoc.2025.113316.

P. Sharma and S. Raju, “Metaheuristic optimization algorithms: a comprehensive overview and classification of benchmark test functions,” Soft Comput., vol. 28, no. 4, pp. 3123–3186, 2024, doi: 10.1007/s00500-023-09276-5.

A. Sinha, D. Pujara, and H. K. Singh, "Bilevel Optimization-Based Decomposition for Solving Single and Multiobjective Optimization Problems," International Conference on Evolutionary Multi-Criterion Optimization, pp. 88-102, 2025, doi: 10.1007/978-981-96-3506-1_7.

G. Tian et al., “A novel water distribution model considering the dynamic coupling of canals and gates,” Comput. Electron. Agric., vol. 236, 2025, doi: 10.1016/j.compag.2025.110434.

A. Seyyedabbasi, P. J. Canatalay, G. Hu, H. A. Shehadeh, and X. Wang, “V-shaped and S-shaped binary artificial protozoa optimizer (APO) algorithm for wrapper feature selection on biological data,” Cluster Comput., vol. 28, no. 3, 2025, doi: 10.1007/s10586-024-04927-0.

P. Vijai and P. Bagavathi Sivakumar, “A hybrid multi-objective optimization approach with NSGA-II for feature selection,” Decis. Anal. J., vol. 14, 2025, doi: 10.1016/j.dajour.2025.100550.

H. Hajimiri and A. Bagheri, “A new R&D-based algorithm for optimization of large-scale problems,” Neural Comput. Appl., vol. 37, no. 15, pp. 9063–9094, 2025, doi: 10.1007/s00521-025-11057-0.

Y. Gong, S. Zhong, S. Zhao, F. Xiao, W. Wang, and Y. Jiang, “Optimizing green splits in high-dimensional traffic signal control with trust region Bayesian optimization,” Comput. Aided Civ. Infrastruct. Eng., vol. 40, no. 6, pp. 741–763, 2025, doi: 10.1111/mice.13293.

J. Zhang, J. Yang, and F. Yan, “Binary plant rhizome growth-based optimization algorithm: an efficient high-dimensional feature selection approach,” J. Big Data, vol. 12, no. 1, 2025, doi: 10.1186/s40537-025-01066-0.

K. Joni, “Parameter Estimation Of Photovoltaic based on Chaotic Elite Mountain Gazelle Optimizer,” Vokasi Unesa Bull. Eng. Technol. Appl. Sci., pp. 30–37, 2024.

W. Aribowo, B. Suprianto, and A. Prapanca, “A novel modified dandelion optimizer with application in power system stabilizer,” Int J Artif Intell, vol. 12, no. 4, pp. 2033–2041, 2023.

G. Dei, D. K. Gupta, B. K. Sahu, M. Bajaj, V. Blazek, and L. Prokop, “A novel TID + IDN controller tuned with coatis optimization algorithm under deregulated hybrid power system,” Sci. Rep., vol. 15, no. 1, 2025, doi: 10.1038/s41598-025-89237-0.

A. S. Ebrie and Y. J. Kim, “Reinforcement learning-based optimization for power scheduling in a renewable energy connected grid,” Renew. Energy, vol. 230, 2024, doi: 10.1016/j.renene.2024.120886.

A.-Q. Tian, X.-Y. Wang, H. Xu, H.-X. Lv, J.-S. Pan, and V. Snášel, “Multi-objective optimization model for railway heavy-haul traffic: Addressing carbon emissions reduction and transport efficiency improvement,” Energy, vol. 294, 2024, doi: 10.1016/j.energy.2024.130927.

H. A. Shehadeh, “Bermuda Triangle Optimizer (BTO): A Novel Metaheuristic Method for Global Optimization,” Int. J. Adv. Soft Compu. Appl, vol. 17, no. 2, 2025, doi: 10.15849/IJASCA.250730.01.

W. Zhao, L. Wang, and Z. Zhang, “Atom search optimization and its application to solve a hydrogeologic parameter estimation problem,” Knowledge-Based Syst., 2019, doi: 10.1016/j.knosys.2018.08.030.

H. A. Shehadeh, “Chernobyl disaster optimizer (CDO): a novel meta-heuristic method for global optimization,” Neural Comput. Appl., vol. 35, no. 15, pp. 10733–10749, 2023.

A. Seyyedabbasi and F. Kiani, “Sand Cat swarm optimization: a nature-inspired algorithm to solve global optimization problems,” Eng. Comput., vol. 39, pp. 2627–2651, 2023, doi: 10.1007/s00366-022-01604-x.

H. A. Shehadeh, I. Ahmedy, and M. Y. I. Idris, “Sperm swarm optimization algorithm for optimizing wireless sensor network challenges,” in ACM International Conference Proceeding Series, 2018, pp. 53–59. doi: 10.1145/3193092.3193100.

E.-S. M. El-kenawy, N. Khodadadi, S. Mirjalili, A. A. Abdelhamid, M. M. Eid, and A. Ibrahim, “Greylag Goose Optimization: Nature-inspired optimization algorithm,” Expert Syst. Appl., vol. 238, 2024, doi: 10.1016/j.eswa.2023.122147.

M. A. Al-Betar, M. A. Awadallah, M. S. Braik, S. Makhadmeh, and I. A. Doush, “Elk herd optimizer: a novel nature-inspired metaheuristic algorithm,” Artif. Intell. Rev., vol. 57, no. 3, 2024, doi: 10.1007/s10462-023-10680-4.

T. T. Dhivyaprabha, P. Subashini, and M. Krishnaveni, “Synergistic fibroblast optimization: a novel nature-inspired computing algorithm,” Front. Inf. Technol. Electron. Eng., vol. 19, pp. 815–833, 2018.

R. Storn and K. Price, “Differential Evolution - A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces,” J. Glob. Optim., vol. 11, no. 4, pp. 341-359, 1997, doi: 10.1023/A:1008202821328.

Y. Tan and Y. Zhu, "Fireworks algorithm for optimization," International conference in swarm intelligence, pp. 355-364, 2010, doi: 10.1007/978-3-642-13495-1_44.

Z. W. Geem, J. H. Kim, and G. V. Loganathan, “A new heuristic optimization algorithm: harmony search,” Simulation, vol. 76, no. 2, pp. 60–68, 2001.

A. Baihan et al., “A Hybrid Meta-heuristic Algorithm for Optimum Micro-robotic Position Control with PID Controller,” Int. J. Comput. Intell. Syst., vol. 18, no. 1, 2025, doi: 10.1007/s44196-025-00799-3.

H. G. Murtza Qamar, X. Guo, E. Seif Ghith, M. Tlija, and A. Siddique, “Assessment of energy management and power quality improvement of hydrogen based microgrid system through novel PSO-MWWO technique,” Sci. Rep., vol. 15, no. 1, 2025, doi: 10.1038/s41598-024-78153-4.

S. Ekinci et al., “Advanced control parameter optimization in DC motors and liquid level systems,” Sci. Rep., vol. 15, no. 1, 2025, doi: 10.1038/s41598-025-85273-y.

M. Braik, H. Al-Hiary, A. Hammouri, M. A. Awadallah, H. Alzoubi, and M. Azmi Al-Betar, “Tornado optimizer with Coriolis force: a novel bio-inspired meta-heuristic algorithm for solving engineering problems,” Artif. Intell. Rev., vol. 58, no. 4, 2025, doi: 10.1007/s10462-025-11118-9.

V. Rajput, P. Mulay, and C. M. Mahajan, “Bio-inspired algorithms for feature engineering: analysis, applications and future research directions,” Inf. Discov. Deliv., vol. 53, no. 1, pp. 56–71, 2025, doi: 10.1108/IDD-11-2022-0118.

R. Priyadarshi and R. R. Kumar, “Evolution of Swarm Intelligence: A Systematic Review of Particle Swarm and Ant Colony Optimization Approaches in Modern Research,” Arch. Comput. Methods Eng., pp. 1-42, 2025, doi: 10.1007/s11831-025-10247-2.

X. Wang, V. Snášel, S. Mirjalili, J.-S. Pan, L. Kong, and H. A. Shehadeh, “Artificial Protozoa Optimizer (APO): A novel bio-inspired metaheuristic algorithm for engineering optimization,” Knowledge-Based Syst., vol. 295, p. 111737, 2024.

B. G. Thengvall, M. P. Deskevich, and S. N. Hall, “Measuring the effectiveness and efficiency of simulation optimization metaheuristic algorithms,” J. Heuristics, vol. 31, no. 1, 2025, doi: 10.1007/s10732-025-09549-2.

M. T. Hussain et al., “Enhanced MPP Tracking in Partial Shading Conditions for Solar PV Systems: A Metaheuristic Approach Utilizing Projectile Search Algorithm,” IEEE Access, vol. 13, pp. 50895–50917, 2025, doi: 10.1109/ACCESS.2025.3546351.

N. A. Mansour, M. S. Saraya, and A. I. Saleh, “Groupers and moray eels (GME) optimization: a nature-inspired metaheuristic algorithm for solving complex engineering problems,” Neural Comput. Appl., vol. 37, no. 1, pp. 63–90, 2025, doi: 10.1007/s00521-024-10384-y.

Z. Guo, G. Liu, and F. Jiang, “Chinese Pangolin Optimizer: a novel bio-inspired metaheuristic for solving optimization problems,” J. Supercomput., vol. 81, no. 4, 2025, doi: 10.1007/s11227-025-07004-4.

W. Aribowo, “Comparison Study On Economic Load Dispatch Using Metaheuristic Algorithm,” Gazi Univ. J. Sci., vol. 35, no. 1, pp. 26-40, 2022, doi: 10.35378/gujs.820805.

H. A. Shehadeh and N. M. Shagari, "A hybrid grey wolf optimizer and sperm swarm optimization for global optimization," Handbook of intelligent computing and optimization for sustainable development, pp. 487-507, 2022, doi: 10.1002/9781119792642.ch24.

L. Abualigah, D. Oliva, T. Mzili, A. Sabo, and H. A. Shehadeh, “Frilled Lizard Optimization to optimize parameters Proportional Integral Derivative of DC Motor,” Vokasi Unesa Bull. Eng. Technol. Appl. Sci., pp. 14–21, 2024, doi: 10.26740/vubeta.v1i1.33973.

W. Aribowo and H. A. Shehadeh, "Novel Modified Chernobyl Disaster Optimizer for Controlling DC Motor," Indonesian J. Electr. Eng. Comput. Sci., vol. 35, pp. 1361-1369, 2024, doi: 10.11591/ijeecs.v35.i3.pp1361-1369.

A. Faramarzi, M. Heidarinejad, S. Mirjalili, and A. H. Gandomi, “Marine Predators Algorithm: A nature-inspired metaheuristic,” Expert Syst. Appl., vol. 152, p. 113377, 2020, doi: 10.1016/j.eswa.2020.113377.

J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of ICNN’95-international conference on neural networks, pp. 1942–1948, 1995.

E. H. Haro, D. Oliva, L. A. Beltrán, and A. Casas-Ordaz, “Enhanced differential evolution through chaotic and Euclidean models for solving flexible process planning,” Knowl. Based Syst., vol. 314, 2025, doi: 10.1016/j.knosys.2025.113189.

R. Lin, Z. Xu, L. Yu, and T. Wei, “EABC-AS: Elite-driven artificial bee colony algorithm with adaptive population scaling,” Swarm Evol. Comput., vol. 94, 2025, doi: 10.1016/j.swevo.2025.101893.

M. Yu et al., “A multi-strategy enhanced Dung Beetle Optimization for real-world engineering problems and UAV path planning,” Alexandria Eng. J., vol. 118, pp. 406–434, 2025, doi: 10.1016/j.aej.2025.01.055.

P. Kumar and M. Ali, “Solving the Economic Load Dispatch Problem by Attaining and Refining Knowledge-Based Optimization,” Mathematics, vol. 13, no. 7, 2025, doi: 10.3390/math13071042.

X. Zhu, J. Zhang, C. Jia, Y. Liu, and M. Fu, “A Hybrid Black-Winged Kite Algorithm with PSO and Differential Mutation for Superior Global Optimization and Engineering Applications,” Biomimetics, vol. 10, no. 4, 2025, doi: 10.3390/biomimetics10040236.

Downloads

Published

2025-07-15

How to Cite

[1]
W. Aribowo and H. A. Shehadeh, “A Comparative Study of Metaheuristic Optimization Algorithms in Solving Engineering Designing Problems”, J Robot Control (JRC), vol. 6, no. 4, pp. 1885–1898, Jul. 2025.

Issue

Section

Articles