Vision-Based Soft Mobile Robot Inspired by Silkworm Body and Movement Behavior

Ali A. Abed, Alaa Al-Ibadi, Issa A. Abed

Abstract


Designing an inexpensive, low-noise, safe for individual, mobile robot with an efficient vision system represents a challenge. This paper proposes a soft mobile robot inspired by the silkworm body structure and moving behavior. Two identical pneumatic artificial muscles (PAM) have been used to design the body of the robot by sewing the PAMs longitudinally. The proposed robot moves forward, left, and right in steps depending on the relative contraction ratio of the actuators. The connection between the two artificial muscles gives the steering performance at different air pressures of each PAM. A camera (eye) integrated into the proposed soft robot helps it to control its motion and direction. The silkworm soft robot detects a specific object and tracks it continuously. The proposed vision system is used to help with automatic tracking based on deep learning platforms with real-time live IR camera. The object detection platform, named, YOLOv3 is used effectively to solve the challenge of detecting high-speed tiny objects like Tennis balls. The model is trained with a dataset consisting of images of   Tennis balls. The work is simulated with Google Colab and then tested in real-time on an embedded device mated with a fast GPU called Jetson Nano development kit. The presented object follower robot is cheap, fast-tracking, and friendly to the environment. The system reaches a 99% accuracy rate during training and testing. Validation results are obtained and recorded to prove the effectiveness of this novel silkworm soft robot. The research contribution is designing and implementing a soft mobile robot with an effective vision system.


Keywords


Silkworm; Pneumatic Artificial Muscle; Jetson Nano; Camera Pi, Object Detection; YOLOv3; Google Colab.

Full Text:

PDF

References


S. Kim, C. Laschi, and B. Trimmer, “Soft robotics: a bioinspired evolution in robotics,” Trends Biotechnol., vol. 31, no. 5, pp. 287–294, May 2013, doi: 10.1016/j.tibtech.2013.03.002.

B. Vanderborght et al., “Variable impedance actuators: A review,” Rob. Auton. Syst., vol. 61, no. 12, pp. 1601–1614, Dec. 2013, doi: 10.1016/j.robot.2013.06.009.

D. Liang, N. Sun, Y. Wu, Y. Chen, Y. Fang, and L. Liu, “Energy-Based Motion Control for Pneumatic Artificial Muscle Actuated Robots With Experiments,” IEEE Trans. Ind. Electron., vol. 69, no. 7, pp. 7295–7306, Jul. 2022, doi: 10.1109/TIE.2021.3095788.

T. George Thuruthel, Y. Ansari, E. Falotico, and C. Laschi, “Control Strategies for Soft Robotic Manipulators: A Survey,” Soft Robot., vol. 5, no. 2, pp. 149–163, Apr. 2018, doi: 10.1089/soro.2017.0007.

A. Al-Ibadi, S. Nefti-Meziani, and S. Davis, “Design, implementation and modelling of the single and multiple extensor pneumatic muscle actuators,” Syst. Sci. Control Eng., vol. 6, no. 1, pp. 80–89, Jan. 2018, doi: 10.1080/21642583.2018.1451787.

A. Al-Ibadi, S. Nefti-Meziani, and S. Davis, “The Design, Kinematics and Torque Analysis of the Self-Bending Soft Contraction Actuator,” Actuators, vol. 9, no. 2, p. 33, Apr. 2020, doi: 10.3390/act9020033.

H. Al-Fahaam, S. Davis, and S. Nefti-Meziani, “The design and mathematical modelling of novel extensor bending pneumatic artificial muscles (EBPAMs) for soft exoskeletons,” Rob. Auton. Syst., vol. 99, pp. 63–74, Jan. 2018, doi: 10.1016/j.robot.2017.10.010.

A. Al-Ibadi, S. Nefti-Meziani, and S. Davis, “A circular pneumatic muscle actuator (CPMA) inspired by human skeletal muscles,” in 2018 IEEE International Conference on Soft Robotics (RoboSoft), pp. 7–12, Apr. 2018, doi: 10.1109/ROBOSOFT.2018.8404889.

P. Wu, W. Jiangbei, and F. Yanqiong, “The Structure, Design, and Closed-Loop Motion Control of a Differential Drive Soft Robot,” Soft Robot., vol. 5, no. 1, pp. 71–80, 2018, doi: 10.1089/soro.2017.0042.

J. Sun, B. Tighe, Y. Liu, and J. Zhao, “Twisted-and-Coiled Actuators with Free Strokes Enable Soft Robots with Programmable Motions,” Soft Robot., vol. 8, no. 2, pp. 213–225, Apr. 2021, doi: 10.1089/soro.2019.0175.

H. D. Yang, B. T. Greczek, and A. T. Asbeck, “Modeling and analysis of a high-displacement pneumatic artificial muscle with integrated sensing,” Front. Robot. AI, vol. 5, 2018, doi: 10.3389/frobt.2018.00136.

J. Bačík et al., “Phollower—The Universal Autonomous Mobile Robot for Industry and Civil Environments with COVID-19 Germicide Addon Meeting Safety Requirements,” Appl. Sci., vol. 10, no. 21, p. 7682, Oct. 2020, doi: 10.3390/app10217682.

C. Kim, J. Suh, and J. H. Han, “Development of a hybrid path planning algorithm and a bio-inspired control for an omni-wheel mobile robot,” Sensors (Switzerland), vol. 20, no. 15, pp. 1–22, 2020, doi: 10.3390/s20154258.

B. Hichri, J. C. Fauroux, L. Adouane, I. Doroftei, and Y. Mezouar, “Design of cooperative mobile robots for co-manipulation and transportation tasks,” Robot. Comput. Integr. Manuf., vol. 57, pp. 412–421, 2019, doi: 10.1016/j.rcim.2019.01.002.

V. G. Gradetsky, M. O. Tokhi, N. N. Bolotnik, M. Silva, and G. S. Virk, Robots in human life. 2020.

A. Wajiansyah, S. Supriadi, A. F. O. Gaffar, and A. B. W. Putra, “Modeling of 2-DOF Hexapod leg using analytical method,” J. Robot. Control, vol. 2, no. 5, 2021, doi: 10.18196/jrc.25119.

S. Guccione and G. Muscato, “The wheeleg robot - Control strategies, computing architectures, and experimental results of the hybrid wheeled/legged robot,” IEEE Robot. Autom. Mag., vol. 10, no. 4, pp. 33–43, Dec. 2003, doi: 10.1109/MRA.2003.1256296.

J. Carpentier and P.-B. Wieber, “Recent Progress in Legged Robots Locomotion Control,” Curr. Robot. Reports, vol. 2, no. 3, pp. 231–238, Sep. 2021, doi: 10.1007/s43154-021-00059-0.

A. Al-Ibadi, S. Nefti-Meziani, and S. Davis, “Design, Kinematics and Controlling a Novel Soft Robot Arm with Parallel Motion,” Robotics, vol. 7, no. 2, p. 19, May 2018, doi: 10.3390/robotics7020019.

Y. Tian, Y.-A. Yao, W. Ding, and Z. Xun, “Design and locomotion analysis of a novel deformable mobile robot with worm-like, self-crossing and rolling motion,” Robotica, vol. 34, no. 9, pp. 1961–1978, Sep. 2016, doi: 10.1017/S0263574714002689.

W. Rahmaniar and A. E. Rakhmania, “Mobile Robot Path Planning in a Trajectory with Multiple Obstacles Using Genetic Algorithms,” J. Robot. Control, vol. 3, no. 1, pp. 1–7, Jun. 2021, doi: 10.18196/jrc.v3i1.11024.

Y. Khairullah, A. Marhoon, M. Rashid, and A. Rashid, “Multi Robot System Dynamics and Path Tracking,” Iraqi J. Electr. Electron. Eng., vol. 16, no. 2, pp. 1–7, Dec. 2020, doi: 10.37917/ijeee.16.2.8.

L. Zhang, L. Liu, and S. Zhang, “Design, Implementation, and Validation of Robust Fractional-Order PD Controller for Wheeled Mobile Robot Trajectory Tracking,” Complexity, vol. 2020, pp. 1–12, Feb. 2020, doi: 10.1155/2020/9523549.

J. Liu, Y. Tong, and J. Liu, “Review of snake robots in constrained environments,” Rob. Auton. Syst., vol. 141, p. 103785, Jul. 2021, doi: 10.1016/j.robot.2021.103785.

M. Bujňák et al., “Spherical Robots for Special Purposes: A Review on Current Possibilities,” Sensors, vol. 22, no. 4, p. 1413, Feb. 2022, doi: 10.3390/s22041413.

R. Chase and A. Pandya, “A Review of Active Mechanical Driving Principles of Spherical Robots,” Robotics, vol. 1, no. 1, pp. 3–23, Nov. 2012, doi: 10.3390/robotics1010003.

L. Hou, L. Zhang, and J. Kim, “Energy Modeling and Power Measurement for Mobile Robots,” Energies, vol. 12, no. 1, p. 27, Dec. 2018, doi: 10.3390/en12010027.

I. S. A. AL-Forati, A. Rashid, and A. Al-Ibadi, “IR Sensors Array for Robots Localization Using K Means Clustering Algorithm,” Int. J. Simul. Syst. Sci. Technol., vol. 20, no. S1, 2019, doi: 10.5013/IJSSST.a.20.S1.12.

H. Jiang, H. Wang, W.-Y. Yau, and K.-W. Wan, “A Brief Survey: Deep Reinforcement Learning in Mobile Robot Navigation,” in 2020 15th IEEE Conference on Industrial Electronics and Applications (ICIEA), pp. 592–597, 2020, doi: 10.1109/ICIEA48937.2020.9248288.

Y. H. Jung et al., “Development of Multi-Sensor Module Mounted Mobile Robot for Disaster Field Investigation,” Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci., vol. 43, pp. 1103–1108, 2022, doi: 10.5194/isprs-archives-XLIII-B3-2022-1103-2022.

B. Nalepa, A. Gwiazda, and W. Banas, “Investigation of movement of mobile robot work,” IOP Conf. Ser. Mater. Sci. Eng., vol. 400, p. 052007, Sep. 2018, doi: 10.1088/1757-899X/400/5/052007.

W. Rahmaniar and A. Wicaksono, “Design and Implementation of a Mobile Robot for Carbon Monoxide Monitoring,” J. Robot. Control, vol. 2, no. 1, 2020, doi: 10.18196/jrc.2143.

Y. Girdhar and G. Dudek, “Modeling curiosity in a mobile robot for long-term autonomous exploration and monitoring,” Auton. Robots, vol. 40, no. 7, pp. 1267–1278, Oct. 2016, doi: 10.1007/s10514-015-9500-x.

T. Sumiya, Y. Matsubara, M. Nakano, and M. Sugaya, “A Mobile Robot for Fall Detection for Elderly-Care,” Procedia Comput. Sci., vol. 60, pp. 870–880, 2015, doi: 10.1016/j.procs.2015.08.250.

S. M. H. Rostami, A. K. Sangaiah, J. Wang, and X. Liu, “Obstacle avoidance of mobile robots using modified artificial potential field algorithm,” EURASIP J. Wirel. Commun. Netw., vol. 2019, no. 1, p. 70, Dec. 2019, doi: 10.1186/s13638-019-1396-2.

D. Hutabarat, M. Rivai, D. Purwanto, and H. Hutomo, “Lidar-based Obstacle Avoidance for the Autonomous Mobile Robot,” in 2019 12th International Conference on Information & Communication Technology and System (ICTS), pp. 197–202, 2019, doi: 10.1109/ICTS.2019.8850952.

T. Y. Abdalla, A. A. Abed, and A. A. Ahmed, “Mobile robot navigation using PSO-optimized fuzzy artificial potential field with fuzzy control,” J. Intell. Fuzzy Syst., vol. 32, no. 6, pp. 3893–3908, May 2017, doi: 10.3233/IFS-162205.

J. Abdouni, T. Jarou, A. Waga, S. El Idrissi, M. El mahri, and I. Sefrioui, “A new sampling strategy to improve the performance of mobile robot path planning algorithms,” in 2022 International Conference on Intelligent Systems and Computer Vision (ISCV), pp. 1–7, May 2022, doi: 10.1109/ISCV54655.2022.9806128.

A. A.Ahmed, T. Y. Abdalla, and A. A. Abed, “Path Planning of Mobile Robot by using Modified Optimized Potential Field Method,” Int. J. Comput. Appl., vol. 113, no. 4, pp. 6–10, Mar. 2015, doi: 10.5120/19812-1614.

B. César-Tondreau, G. Warnell, K. Kochersberger, and N. R. Waytowich, “Towards Fully Autonomous Negative Obstacle Traversal via Imitation Learning Based Control,” Robotics, vol. 11, no. 4, p. 67, Jun. 2022, doi: 10.3390/robotics11040067.

J. I. Kim, M. Hong, K. Lee, D. Kim, Y. L. Park, and S. Oh, “Learning to Walk a Tripod Mobile Robot Using Nonlinear Soft Vibration Actuators with Entropy Adaptive Reinforcement Learning,” IEEE Robot. Autom. Lett., vol. 5, no. 2, pp. 2317–2324, 2020, doi: 10.1109/LRA.2020.2970945.

C. D. Onal, X. Chen, G. M. Whitesides, and D. Rus, “Soft Mobile Robots with On-Board Chemical Pressure Generation,” Robotics Research, vol. 100, pp. 525–540, 2017, https://doi.org/10.1007/978-3-319-29363-9_30.

J. Guo, C. Xiang, A. Conn, and J. Rossiter, “All-Soft Skin-Like Structures for Robotic Locomotion and Transportation,” Soft Robot., vol. 7, no. 3, pp. 309–320, Jun. 2020, doi: 10.1089/soro.2019.0059.

R. F. Shepherd et al., “Multigait soft robot,” Proc. Natl. Acad. Sci. U. S. A., vol. 108, no. 51, pp. 20400–20403, 2011, doi: 10.1073/pnas.1116564108.

W. Yang, C. Yang, R. Zhang, and W. Zhang, “A Novel Worm-inspired Wall Climbing Robot with Sucker-microspine Composite Structure,” in 2018 3rd International Conference on Advanced Robotics and Mechatronics (ICARM), pp. 744–749, Jul. 2018, doi: 10.1109/ICARM.2018.8610723.

D. Drotman, S. Chopra, N. Gravish, and M. T. Tolley, “Anisotropic Forces for a Worm-Inspired Digging Robot,” in 2022 IEEE 5th International Conference on Soft Robotics (RoboSoft), pp. 261–266, Apr. 2022, doi: 10.1109/RoboSoft54090.2022.9762155.

L. Xu et al., “Locomotion of an untethered, worm-inspired soft robot driven by a shape-memory alloy skeleton,” Sci. Rep., vol. 12, no. 1, pp. 1–16, 2022, doi: 10.1038/s41598-022-16087-5.

G. Qin et al., “A Snake-Inspired Layer-Driven Continuum Robot,” Soft Robot., vol. 9, no. 4, pp. 788–797, Aug. 2022, doi: 10.1089/soro.2020.0165.

Y. Yang, M. Zhang, D. Li, and Y. Shen, “Graphene-Based Light-Driven Soft Robot with Snake-Inspired Concertina and Serpentine Locomotion,” Adv. Mater. Technol., vol. 4, no. 1, p. 1800366, Jan. 2019, doi: 10.1002/admt.201800366.

C. Wang, V. R. Puranam, S. Misra, and V. K. Venkiteswaran, “A Snake-Inspired Multi-Segmented Magnetic Soft Robot Towards Medical Applications,” IEEE Robot. Autom. Lett., vol. 7, no. 2, pp. 5795–5802, Apr. 2022, doi: 10.1109/LRA.2022.3160753.

A. Al-Ibadi, S. Nefti-Meziani, and S. Davis, “Design, Kinematics and Controlling a Novel Soft Robot Arm with Parallel Motion,” Robotics, vol. 7, no. 2, p. 19, May 2018, doi: 10.3390/robotics7020019.

T. Park and Y. Cha, “Soft mobile robot inspired by animal-like running motion,” Sci. Rep., vol. 9, no. 1, p. 14700, Dec. 2019, doi: 10.1038/s41598-019-51308-4.

N. Cheng et al., “Design and analysis of a soft mobile robot composed of multiple thermally activated joints driven by a single actuator,” Proc. - IEEE Int. Conf. Robot. Autom., pp. 5207–5212, 2010, doi: 10.1109/ROBOT.2010.5509247.

J. Ashby, S. Rosset, E. F. M. Henke, and I. A. Anderson, “One Soft Step: Bio-Inspired Artificial Muscle Mechanisms for Space Applications,” Front. Robot. AI, vol. 8, no. January, pp. 1–14, 2022, doi: 10.3389/frobt.2021.792831.

M. Duduta, D. R. Clarke, and R. J. Wood, “A high speed soft robot based on dielectric elastomer actuators,” in 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 4346–4351, May 2017, doi: 10.1109/ICRA.2017.7989501.

N. Y. Ko and T. Y. Kuc, “Fusing range measurements from ultrasonic beacons and a laser range finder for localization of a mobile robot,” Sensors (Switzerland), vol. 15, no. 5, pp. 11050–11075, 2015, doi: 10.3390/s150511050.

T. Mohammad, “Using ultrasonic and infrared sensors for distance measurement,” World academy of science, engineering and technology, vol. 51, pp. 293-299, 2009.

B. Esiyok, A. C. Turkmen, O. Kaplan, and C. Celik, “Autonomous car parking system with various trajectories,” Period. Eng. Nat. Sci., vol. 5, no. 3, pp. 364–370, 2017, doi: 10.21533/pen.v5i3.127.

F. de Ponte Müller, “Survey on ranging sensors and cooperative techniques for relative positioning of vehicles,” Sensors (Switzerland), vol. 17, no. 2, pp. 1–27, 2017, doi: 10.3390/s17020271.

M. Skoczeń et al., “Obstacle detection system for agricultural mobile robot application using rgb-d cameras,” Sensors, vol. 21, no. 16, 2021, doi: 10.3390/s21165292.

B. Mei, W. Zhu, K. Yuan, and Y. Ke, “Robot base frame calibration with a 2D vision system for mobile robotic drilling,” Int. J. Adv. Manuf. Technol., vol. 80, no. 9–12, pp. 1903–1917, 2015, doi: 10.1007/s00170-015-7031-4.

I. H. Kim, D. E. Kim, Y. S. Cha, K. H. Lee, and T. Y. Kuc, “An embodiment of stereo vision system for mobile robot for real-time measuring distance and object tracking,” ICCAS 2007 - Int. Conf. Control. Autom. Syst., pp. 1029–1033, 2007, doi: 10.1109/ICCAS.2007.4407049.

M. Dirik, A. F. Kocamaz, and O. Castillo, “Global Path Planning and Path-Following for Wheeled Mobile Robot Using a Novel Control Structure Based on a Vision Sensor,” Int. J. Fuzzy Syst., vol. 22, no. 6, pp. 1880–1891, 2020, doi: 10.1007/s40815-020-00888-9.

T. Ran, L. Yuan, and J. B. Zhang, “Scene perception based visual navigation of mobile robot in indoor environment,” ISA Trans., vol. 109, pp. 389–400, 2021, doi: 10.1016/j.isatra.2020.10.023.

S. Sethi, M. Kathuria, and T. Kaushik, “Face mask detection using deep learning: An approach to reduce risk of Coronavirus spread,” J. Biomed. Inform., vol. 120, p. 103848, 2021, doi: 10.1016/j.jbi.2021.103848.

A. Das, M. W. Ansari, and R. Basak, “Covid-19 Face Mask Detection Using TensorFlow, Keras and OpenCV,” 2020 IEEE 17th India Council International Conference (INDICON), pp. 1-5, 2020, doi: 10.1109/INDICON49873.2020.9342585.

T. S. Rao, S. A. Devi, P. Dileep, and M. S. Ram, “A Novel Approach to Detect Face Mask to Control Covid Using Deep Learning,” Eur. J. Mol. Clin. Med., vol. 7, no. 6, pp. 658–668, 2020.

K. Suresh, M. Palangappa, and S. Bhuvan, “Face Mask Detection by using Optimistic Convolutional Neural Network,” in 2021 6th International Conference on Inventive Computation Technologies (ICICT), pp. 1084–1089, 2021, doi: 10.1109/ICICT50816.2021.9358653.

S. Sen and K. Sawant, “Face mask detection for covid_19 pandemic using pytorch in deep learning,” IOP Conf. Ser. Mater. Sci. Eng., vol. 1070, no. 1, p. 012061, Feb. 2021, doi: 10.1088/1757-899X/1070/1/012061.

R. Mohandas, M. Bhattacharya, M. Penica, K. Van Camp, and M. J. Hayes, “On the use of Deep Learning Enabled Face Mask Detection For Access/Egress Control Using TensorFlow Lite Based Edge Deployment on a Raspberry Pi,” in 2021 32nd Irish Signals and Systems Conference (ISSC), pp. 1–6, Jun. 2021, doi: 10.1109/ISSC52156.2021.9467841.

D.-L. Nguyen, M. D. Putro, and K.-H. Jo, “Facemask Wearing Alert System Based on Simple Architecture With Low-Computing Devices,” IEEE Access, vol. 10, pp. 29972–29981, 2022, doi: 10.1109/ACCESS.2022.3158304.

J. Magoshi, Y. Magoshi, and S. Nakamura, “Mechanism of Fiber Formation of Silkworm,” ACS Symposium Series, vol. 544, pp. 292–310, 1993.

C. Kaito, N. Akimitsu, H. Watanabe, and K. Sekimizu, “Silkworm larvae as an animal model of bacterial infection pathogenic to humans,” Microb. Pathog., vol. 32, no. 4, pp. 183–190, Apr. 2002, doi: 10.1006/mpat.2002.0494.

H. Hamamoto, K. Kamura, I. M. Razanajatovo, K. Murakami, T. Santa, and K. Sekimizu, “Effects of molecular mass and hydrophobicity on transport rates through non-specific pathways of the silkworm larva midgut,” Int. J. Antimicrob. Agents, vol. 26, no. 1, pp. 38–42, Jul. 2005, doi: 10.1016/j.ijantimicag.2005.03.008.

S. Panthee, A. Paudel, H. Hamamoto, and K. Sekimizu, “Advantages of the Silkworm As an Animal Model for Developing Novel Antimicrobial Agents,” Front. Microbiol., vol. 8, no. MAR, pp. 1–8, Mar. 2017, doi: 10.3389/fmicb.2017.00373.

A. Al-Ibadi, S. Nefti-Meziani, and S. Davis, “Efficient Structure-Based Models for the McKibben Contraction Pneumatic Muscle Actuator: The Full Description of the Behaviour of the Contraction PMA,” Actuators, vol. 6, no. 4, p. 32, Oct. 2017, doi: 10.3390/act6040032.

Y. C. Hou, S. H. Su, C. H. Tseng, and Z. H. Fong, “An efficient optimum design procedure for bicycle rear derailleurs,” Int. J. Veh. Des., vol. 17, no. 4, pp. 483–503, 1996, doi: https://doi.org/10.1504/IJVD.1996.061973.

W. H. Lai, C. K. Sung, and J. B. Wang, “Motion analysis of a bicycle rear derailleur during the shifting process,” Mech. Mach. Theory, vol. 33, no. 4, pp. 365–378, May 1998, doi: 10.1016/S0094-114X(97)00045-1.

J. Redmon and A. Farhadi, “YOLOv3: An Incremental Improvement,” In Computer vision and pattern recognition, vol. 1804, pp. 1-6, 2018.

D. H. Dos Reis, D. Welfer, M. A. De Souza Leite Cuadros, and D. F. T. Gamarra, “Mobile Robot Navigation Using an Object Recognition Software with RGBD Images and the YOLO Algorithm,” Appl. Artif. Intell., vol. 33, no. 14, pp. 1290–1305, 2019, doi: 10.1080/08839514.2019.1684778.

B. Tian, D. Zhang, and C. Zhang, “High-Speed Tiny Tennis Ball Detection Based on Deep Convolutional Neural Networks,” 2020 IEEE 14th International Conference on Anti-counterfeiting, Security, and Identification (ASID), pp. 30-33, 2020, doi: 10.1109/ASID50160.2020.9271695..

N. F. A. Hassan, A. A. Abed, and T. Y. Abdalla, “Surveillance system of mask detection with infrared temperature sensor on Jetson Nano Kit,” Bull. Electr. Eng. Informatics, vol. 11, no. 2, pp. 1047–1055, Apr. 2022, doi: 10.11591/eei.v11i2.3369.




DOI: https://doi.org/10.18196/jrc.v4i3.16622

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Ali A. Abed, Alaa Al-Ibadi, Issa A. Abed

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 


Journal of Robotics and Control (JRC)

P-ISSN: 2715-5056 || E-ISSN: 2715-5072
Organized by Peneliti Teknologi Teknik Indonesia
Published by Universitas Muhammadiyah Yogyakarta in collaboration with Peneliti Teknologi Teknik Indonesia, Indonesia and the Department of Electrical Engineering
Website: http://journal.umy.ac.id/index.php/jrc
Email: jrcofumy@gmail.com


Kuliah Teknik Elektro Terbaik