Application of Odometry and Dijkstra Algorithm as Navigation and Shortest Path Determination System of Warehouse Mobile Robot

Achmad Ubaidillah, Hanifudin Sukri

Abstract


One of the technologies in the industrial world that utilizes robots is the delivery of goods in warehouses, especially in the goods distribution process. This is very useful, especially in terms of resource efficiency and reducing human error. The existing system in this process usually uses the line follower concept on the robot's path with a camera sensor to determine the destination location. If the line and destination are not detected by the sensor or camera, the robot's navigation system will experience an error. it can happen if the sensor is dirty or the track is faded. The aim of this research is to develop a robot navigation system for efficient goods delivery in warehouses by integrating odometry and Dijkstra's algorithm for path planning. Holonomic robot is a robot that moves freely without changing direction to produce motion with high mobility. Dijkstra's algorithm is added to the holonomic robot to obtain the fastest trajectory. by calculating the distance of the node that has not been passed from the initial position, if in the calculation the algorithm finds a shorter distance it will be stored as a new route replacing the previously recorded route. the distance traversed by the djikstra algorithm is 780 mm while a distance of 1100 mm obtains the other routes. The time for using the Djikstra method is proven to be 5.3 seconds faster than the track without the Djikstra method with the same speed. Uneven track terrain can result in a shift in the robot's position so that it can affect the travel data. The conclusion is that odometry and Dijkstra's algorithm as a planning system and finding the shortest path are very efficient for warehouse robots to deliver goods than ordinary line followers without Dijkstra, both in terms of distance and travel time.

Keywords


Warehouse Robot; Navigation; Shortest Path; Dijkstra; Odometry.

Full Text:

PDF

References


Y. Jia, B. Zhang, M. Li, B. King, and A. Meghdari, “Human-Robot Interaction,” J. Robot., vol. 2018, 2018, doi: 10.1155/2018/3879547.

M. Hamaya, T. Matsubara, T. Teramae, T. Noda, and J. Morimoto, “Design of physical user–robot interactions for model identification of soft actuators on exoskeleton robots,” Int. J. Rob. Res., vol. 40, no. 1, pp. 397–410, 2021, doi: 10.1177/0278364919853618.

S. Rossi, M. Staffa, and A. Tamburro, “Correction to: Socially Assistive Robot for Providing Recommendations: Comparing a Humanoid Robot with a Mobile Application,” Int. J. Soc. Robot., vol. 11, no. 1, p. 207, 2019, doi: 10.1007/s12369-018-0489-0.

J. F. Hoorn, “Theory of Robot Communication: II. Befriending a Robot over Time,” Int. J. Humanoid Robot., vol. 17, no. 6, pp. 1–25, 2020, doi: 10.1142/S0219843620500279.

H. Choi et al., “Intuitive Bilateral Teleoperation of a Cable-driven Parallel Robot Controlled by a Cable-driven Parallel Robot,” Int. J. Control. Autom. Syst., vol. 18, no. 7, pp. 1792–1805, 2020, doi: 10.1007/s12555-019-0549-8.

D. Ji, T. H. Kang, S. Shim, and J. Hong, “Analysis of twist deformation in wire-driven continuum surgical robot,” International Journal of Control, Automation and Systems, vol. 18, no. 1, pp. 10-20, 2020 doi: 10.1007/s12555-018-0400-7.

S. Shaju, T. George, J. K. Francis, M. Joseph, and M. J. Thomas, “Conceptual design and simulation study of an autonomous indoor medical waste collection robot,” IAES Int. J. Robot. Autom., vol. 12, no. 1, p. 29, 2023, doi: 10.11591/ijra.v12i1.pp29-40.

W. J. Jang, J. G. Kim, S. H. Lee, and D. H. Kim, “Mechanism design for walking typed solar panel-cleaning robot using triple driving lines,” IAES Int. J. Robot. Autom., vol. 12, no. 1, p. 1, 2023, doi: 10.11591/ijra.v12i1.pp1-19.

R. Khalesi, H. Nejat Pishkenari, and G. Vossoughi, “Independent control of multiple magnetic microrobots: design, dynamic modelling, and control,” J. Micro-Bio Robot., vol. 16, no. 2, pp. 215–224, 2020, doi: 10.1007/s12213-020-00136-1.

A. Amin, X. Wang, A. Alroichdi, and A. Ibrahim, “Designing and Manufacturing a Robot for Dry-Cleaning PV Solar Panels,” International Journal of Energy Research., vol. 2023, 2023, doi:10.1155/2023/231554.

Y. Sakata and T. Suzuki, “Coverage Motion Planning Based on 3D Model’s Curved Shape for Home Cleaning Robot,” J. Robot. Mechatronics, vol. 35, no. 1, pp. 30–42, 2023, doi: 10.20965/jrm.2023.p0030.

J. Yan and H. Cheng, “Designing and Manufacturing of Industrial Robots with Dual- Angle Sensors Taking into Account Vibration Signal Fusion,” Journal of Robotics., vol. 2023, 2023, doi: 10.1155/2023/1855226.

X. Xie, “Industrial Robot Assembly Line Design Using Machine Vision,” J. Robot., vol. 2023, 2023, doi: 10.1155/2023/4409033.

F. Ore, B. Vemula, L. Hanson, M. Wiktorsson, and B. Fagerström, “Simulation methodology for performance and safety evaluation of human–industrial robot collaboration workstation design,” Int. J. Intell. Robot. Appl., vol. 3, no. 3, pp. 269–282, 2019, doi: 10.1007/s41315-019-00097-0.

J. Hažík, M. Dekan, P. Beňo, and F. Duchoň, “Fleet Management System for an Industry Environment,” Journal of Robotics and Control (JRC), vol. 3, no. 6, pp. 779–789, 2022, doi: 10.18196/jrc.v3i6.16298.

A. A. N. Kumaar, S. Kochuvila, and S. R. Nagaraja, “A Scalable Tree Based Path Planning for A service Robot,” Journal of Automation, Mobile Robotics and Intelligent Systems, vol. 16, pp. 31–45, 2022, doi: 10.14313/JAMRIS/1.

A. Latif, H. A. Widodo, R. Rahim, and K. Kunal, “Implementation of line follower robot based microcontroller atmega32a,” Journal of Robotics and Control (JRC), vol. 1, no. 3, pp. 70–74, 2020, doi: 10.18196/jrc.1316.

Y. Zhao, Y. Zhang, and J. Lee, “Lyapunov and Sliding Mode Based Leader-follower Formation Control for Multiple Mobile Robots with an Augmented Distance-angle Strategy,” Int. J. Control. Autom. Syst., vol. 17, pp. 1314-1321, 2019, doi: 10.1007/s12555-018-0194-7.

S. M. Swadi, A. K. Kadhim, and G. M. Ali, “Design of Path Planning Controller of Autonomous Wheeled Mobile Robot Based on Triple Pendulum Behaviour,” Int. J. Mech. Eng. Robot. Res., vol. 12, no. 1, pp. 23–31, 2023, doi: 10.18178/ijmerr.12.1.23-31.

Y. Wang, K. Gong, Y. Duan, B. He, and H. Ma, “Dynamic Modelling and Continuous Trajectory Tracking Control of Space Robots Based on Lie Group SE (3),” International Journal of Aerospace Engineering, vol. 2023, 2023, doi: 10.1155/2023/7435217.

I. Kostavelis, E. Boukas, L. Nalpantidis, and A. Gasteratos, “Stereo-based visual odometry for autonomous robot navigation,” International Journal of Advanced Robotic Systems, vol. 13, no. 1, p. 21, 2016, doi: 10.5772/62099.

H. Wu, Y. Gao, and S. Li, “Odometry Estimation Utilizing 6-DOF Force Sensors and IMU for Legged Robot,” 2020 Chinese Automation Congress (CAC), pp. 6901-6905, 2020, doi: 10.1109/CAC51589.2020.9326974.

S. Takeda and T. Umetani, “Initial Localization of Mobile Robot Based on Expansion Resetting Without Manual Pose Adjustment in Robot Challenge Experiment,” Journal of Robotics and Mechatronics, vol. 35, no. 2, pp. 380–386, 2023, doi: 10.20965/jrm.2023.p0380.

Y. Gao and L. Zhao, “Coarse TRVO: A Robust Visual Odometry with Detector-Free Local Feature,” J. Adv. Comput. Intell. Intell. Informatics, vol. 26, no. 5, pp. 731–739, 2022, doi: 10.20965/jaciii.2022.p0731.

Q. Wang, J. Zhang, Y. Liu, and X. Zhang, “High-Precision and Fast LiDAR Odometry and Mapping Algorithm,” J. Adv. Comput. Intell. Intell. Informatics, vol. 26, no. 2, pp. 206–216, 2022, doi: 10.20965/jaciii.2022.p0206.

G. Xie, Q. Zong, X. Zhang, and B. Tian, “Loosely-coupled lidar-inertial odometry and mapping in real time,” Int. J. Intell. Robot. Appl., vol. 5, no. 2, pp. 119–129, 2021, doi: 10.1007/s41315-021-00164-5.

F. Spiess, J. Friesslich, T. Kaupp, S. Kounev, and N. Strobel, “Survey and Experimental Comparison of RGB-D Indoor Robot Navigation Methods Supported by ROS and Their Expansion via Fusion with Wheel Odometry and IMU Data,” Int. J. Mech. Eng. Robot. Res., vol. 9, no. 12, pp. 1532–1540, 2020, doi: 10.18178/IJMERR.9.12.1532-1540.

D. U. Rijalusalam and I. Iswanto, “Implementation kinematics modeling and odometry of four omni wheel mobile robot on the trajectory planning and motion control based microcontroller,” Journal of Robotics and Control (JRC), vol. 2, no. 5, pp. 448–455, 2021, doi: 10.18196/jrc.25121.

A. Kostusiak and P. Skrzypczyński, “On the Efficiency of Population-Based Optimization in Finding Best Parameters for RGB-D Visual Odometry,” J. Autom. Mob. Robot. Intell. Syst., vol. 13, no. 2, pp. 5–14, 2019, doi: 10.14313/JAMRIS/2-2019/13.

N. I. Giannoccaro, T. Nishida, A. Lay-Ekuakille, R. Velazquez, and P. Visconti, “Processing of LiDAR and IMU data for target detection and odometry of a mobile robot,” Journal of Automation, Mobile Robotics and Intelligent Systems, vol. 16, no. 1, pp. 3-13, 2022, doi: 10.14313/JAMRIS/1-2022/1.

X. Fu et al., “Self-supervised learning of LiDAR odometry based on spherical projection,” Int. J. Adv. Robot. Syst., vol. 19, no. 1, pp. 1–13, 2022, doi: 10.1177/17298806221078669.

Z. Zhao, Y. Zhang, L. Long, Z. Lu, and J. Shi, “Efficient and adaptive lidar–visual–inertial odometry for agricultural unmanned ground vehicle,” Int. J. Adv. Robot. Syst., vol. 19, no. 2, pp. 1–15, 2022, doi: 10.1177/17298806221094925.

A. N. Albab, E. Rahmawati, M. Yantidewi, I. Sucahyo, Dzulkiflih, and R. R. Firmansyah, “Control Position of Mobile Robot Based on Odometry Method and PID Controller,” J. Phys. Conf. Ser., vol. 1491, no. 1, p. 012039, 2020, doi: 10.1088/1742-6596/1491/1/012039.

M. Taufiqqurohman and N. F. Sari, “Odometry Method and Rotary Encoder for Wheeled Soccer Robot,” IOP Conf. Ser. Mater. Sci. Eng., vol. 407, no. 1, 2018, doi: 10.1088/1757-899X/407/1/012103.

S. Saeedvand, H. S. Aghdasi, and J. Baltes, “Novel lightweight odometric learning method for humanoid robot localization,” Mechatronics, vol. 55, pp. 38–53, 2018, doi: 10.1016/j.mechatronics.2018.08.007.

G. Gong, S. Zeng, J. Gao, Q. Zhang, and X. Wang, “Discovery and Discrimination of Bridge Engineering Safety Issues by BIM Virtual Scene Combined with Robotic Mapping,” Journal of Robotics, vol. 2023, 2023, doi: 10.1155/2023/3028505.

B. Sebastian and P. Ben-Tzvi, “Support vector machine based real-time terrain estimation for tracked robots,” Mechatronics, vol. 62, p. 102260, 2019, doi: 10.1016/j.mechatronics.2019.102260.

A. Deo, A. Gupta, H. Khemani, and R. R. Das, “Path tracking mobile robot using steppers,” E3S Web Conf., vol. 87, p. 01028, 2019, doi: 10.1051/e3sconf/20198701028.

T. Zhang, M. Zhang, and Y. Zou, “Time-optimal and Smooth Trajectory Planning for Robot Manipulators,” Int. J. Control. Autom. Syst., vol. 19, no. 1, pp. 521–531, 2021, doi: 10.1007/s12555-019-0703-3.

J. Ahmed Abdulsaheb and D. Jasim Kadhim, “Real-Time SLAM Mobile Robot and Navigation Based on Cloud-Based Implementation,” Journal of Robotics, vol. 2023, 2023, doi: 10.1155/2023/9967236.

D. H. T. Kim et al., “Adaptive Control for Uncertain Model of Omni-directional Mobile Robot Based on Radial Basis Function Neural Network,” Int. J. Control. Autom. Syst., vol. 19, no. 4, pp. 1715–1727, 2021, doi: 10.1007/s12555-019-1004-6.

N. Zijie, L. Qiang, C. Yonjie, and S. Zhijun, “Fuzzy Control Strategy for Course Correction of Omnidirectional Mobile Robot,” Int. J. Control. Autom. Syst., vol. 17, no. 9, pp. 2354–2364, 2019, doi: 10.1007/s12555-018-0633-5.

Y. Ueno, I. Ikemura, T. Tanaka, and Y. Matsuo, “Development of a Front-Wheel-Steering-Drive Dual-Wheel Caster Drive Mechanism for Omni-Directional Wheelchairs with High Step Climbing Performance,” J. Robot. Mechatronics, vol. 34, no. 6, pp. 1431–1440, 2022, doi: 10.20965/jrm.2022.p1431.

R. T. Yunardi, D. Arifianto, F. Bachtiar, J. I. Prananingrum, and U. Airlangga, “Holonomic Implementation of Three Wheels Omnidirectional Mobile Robot using DC Motors,” Journal of Robotics and Control (JRC), vol. 2, no. 2, 2021, doi: 10.18196/jrc.2254.

B. Wu, D. Qin, Y. Chen, T. Q. Cao, and M. Wu, “Structure design of an omni-directional wheeled handling robot,” J. Phys. Conf. Ser., vol. 1885, no. 5, 2021, doi: 10.1088/1742-6596/1885/5/052013.

X. Yang, “The invention relates to a small logistics handling trolley based on omni-directional wheel movement,” J. Phys. Conf. Ser., vol. 2246, no. 1, 2022, doi: 10.1088/1742-6596/2246/1/012005.

L. Song, H. Ju, W. Li, C. Sun, and B. Yuan, “Design and Research of Omni-directional Moving AGV,” J. Phys. Conf. Ser., vol. 1575, no. 1, 2020, doi: 10.1088/1742-6596/1575/1/012095.

Y. Wang, H. Zhu, Y. Yu, and B. Hu, “The Path Planning and Location Method of Inspection Robot in a Large Storage Tank Bottom,” Computational Intelligence and Neuroscience, vol. 2023, 2023, doi: 10.1155/2023/3029545.

Z. Pan, D. Wang, H. Deng, and K. Li, “A Virtual Spring Method for the Multi-robot Path Planning and Formation Control,” Int. J. Control. Autom. Syst., vol. 17, no. 5, pp. 1272–1282, 2019, doi: 10.1007/s12555-018-0690-9.

C. Ye, D. Zhao, S. Yu, C. Jiang, and P. Li, “Stability Improvement of Mobile Robot with Mutative Driving Axial Distance Omni-Directional Wheels,” 2018 IEEE International Conference on Real-time Computing and Robotics (RCAR), pp. 325-330, 2018, doi: 10.1109/RCAR.2018.8621658.

M. Fronita, R. Gernowo, and V. Gunawan, “Comparison of Genetic Algorithm and Hill Climbing for Shortest Path Optimization Mapping,” E3S Web Conf., vol. 31, pp. 1–5, 2018, doi: 10.1051/e3sconf/20183111017.

W. Liao, X. Wei, J. Lai, and H. Sun, “Numerical Method with High Real-time Property Based on Shortest Path Algorithm for Optimal Control,” Int. J. Control. Autom. Syst., vol. 19, no. 6, pp. 2038–2046, 2021, doi: 10.1007/s12555-020-0196-0.

Y. Liu and Y. Jiang, “Robotic Path Planning Based on a Triangular Mesh Map,” Int. J. Control. Autom. Syst., vol. 18, no. 10, pp. 2658–2666, 2020, doi: 10.1007/s12555-019-0396-z.

X. Li, “Path planning of intelligent mobile robot based on Dijkstra algorithm,” J. Phys. Conf. Ser., vol. 2083, no. 4, 2021, doi: 10.1088/1742-6596/2083/4/042034.

I. G. S. Rahayuda and N. P. L. Santiari, “Dijkstra and Bidirectional Dijkstra on Determining Evacuation Routes,” J. Phys. Conf. Ser., vol. 1803, no. 1, 2021, doi: 10.1088/1742-6596/1803/1/012018.

D. Verma, D. Messon, M. Rastogi, and A. Singh, “Comparative Study Of Various Approaches Of Dijkstra Algorithm,” 2021 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS), pp. 328-336, 2021, doi: 10.1109/ICCCIS51004.2021.9397200.

K. Wei, Y. Gao, W. Zhang, and S. Lin, “A Modified Dijkstra’s Algorithm for Solving the Problem of Finding the Maximum Load Path,” 2019 IEEE 2nd International Conference on Information and Computer Technologies (ICICT), pp. 10-13, 2019, doi: 10.1109/INFOCT.2019.8711024.

G. Deepa, M. Angamuthu, K. Rajakumar, and K. Venkatesan, “Dijkstra Algorithm Application: Shortest Distance between Buildings,” International Journal of Engineering and Technology, vol. 7, no. 4.10, pp. 974-976, 2018, doi: 10.14419/ijet.v7i4.10.26638.

I. E. Salem, M. M. Mijwil, A. W. Abdulqader, and M. M. Ismaeel, “Flight-schedule using Dijkstra’s algorithm with comparison of routes findings,” Int. J. Electr. Comput. Eng., vol. 12, no. 2, pp. 1675–1682, 2022, doi: 10.11591/ijece.v12i2.pp1675-1682.

M. Lotfi et al., “A Dijkstra-Inspired Algorithm for Optimized Real-Time Tasking with Minimal Energy Consumption,” 2020 IEEE International Conference on Environment and Electrical Engineering and 2020 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), pp. 1-6, 2020, doi: 10.1109/EEEIC/ICPSEurope49358.2020.9160688.

Q. Lin, X. Liu, and Z. Zhang, “Mobile Robot Self-LocalizationUsing Visual Odometry Based on Ceiling Vision,” 2019 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1435-1439, 2019, doi: 10.1109/SSCI44817.2019.9003092.

T. T. Pham, M. T. Le, and C. N. Nguyen, “Omnidirectional mobile robot trajectory tracking control with diversity of inputs,” International Journal of Mechanical Engineering and Robotics Research, 10(11), 639-644, 2021, doi: 10.18178/ijmerr.10.11.639-644.

S. Morales, J. Magallanes, C. Delgado, and R. Canahuire, “LQR Trajectory Tracking Control of an Omnidirectional Wheeled Mobile Robot,” 2018 IEEE 2nd Colombian Conference on Robotics and Automation (CCRA), pp. 1-5, 2018, doi: 10.1109/CCRA.2018.8588146.

A. Ubaidillah, A. F. Ibadillah, I. Turmudzi, and A. Rachmad, “Representation of Soccer Robotics in The Fastest Trajectory Tracking,” IEEE 8th Information Technology International Seminar (ITIS), pp. 90–95, 2022, doi: 10.1109/ITIS57155.2022.10010172.

K. N. Hitesh, J. M. Kumar Reddy, K. T. Ilayarajaa, R. M. Joany, and V. Vijayakumar, “IOT Based Omni Directional Robot Control by Using ARM-Series,” IOP Conf. Ser. Mater. Sci. Eng., vol. 590, no. 1, 2019, doi: 10.1088/1757-899X/590/1/012054.

S. Fadlo, N. Rabbah, and A. Ait Elmahjoub, “Energy estimation based on path tracking for a differential drive wheeled mobile robot,” E3S Web Conf., vol. 229, pp. 1–5, 2021, doi: 10.1051/e3sconf/202122901029.

A. J. Clark, K. A. Cissell, J. M. Moore, and X. Liu, “Evolving Controllers for a Transformable Wheel Mobile Robot,” Complexity, vol. 2018, pp. 1-12, 2018, doi: 10.1155/2018/7692042.

W. Ao, L. Zhang, H. Zhang, Z. Li, and G. Huang, “Structure Design and Event-Triggered Control of a Modular Omnidirectional Mobile Chassis of Life Support Robotics,” Fractal and Fractional, vol. 7, no. 2, p. 121, 2023, doi: 10.3390/fractalfract7020121.

B. He, S. Wang, and Y. Liu,”Underactuated robotics: a review,” International Journal of Advanced Robotic Systems, vol. 16, no. 4, pp. 1-29, 2019, doi: 10.1177/1729881419862164.

G. Yi, J. Mao, Y. Wang, S. Guo, and Z. Miao, “Adaptive Tracking Control of Nonholonomic Mobile Manipulators Using Recurrent Neural Networks,” Int. J. Control. Autom. Syst., vol. 16, no. 3, pp. 1390–1403, 2018, doi: 10.1007/s12555-017-0309-6.

Z. Hong, W. Du, and H. Wang, “Design and Implementation of Path Planning for Wheel-Track Hybrid Mobile Robot,” Mob. Inf. Syst., vol. 2022, 2022, doi: 10.1155/2022/6418706.

B. Xu and C. Sem-Lin, “Motion Trajectory Error of Robotic Arm Based on Neural Network Algorithm,” J. Control Sci. Eng., vol. 2023, 2023, doi: 10.1155/2023/3958434.

N. A. Abd Rahman, K. S. M. Sahari, N. A. Hamid, and Y. C. Hou, “A coverage path planning approach for autonomous radiation mapping with a mobile robot,” International Journal of Advanced Robotic Systems, vol. 19, no. 4, 2022, doi: 10.1177/17298806221116483.

A. M. El-Dalatony, T. Attia, H. Ragheb, and A. M. Sharaf, “Cascaded PID Trajectory Tracking Control for Quadruped Robotic Leg,” Int. J. Mech. Eng. Robot. Res., vol. 12, no. 1, pp. 40–47, 2023, doi: 10.18178/ijmerr.12.1.40-47.

J. Santos, A. Conceição, T. Santos, and H. Araújo, “Remote control of an omnidirectional mobile robot with time-varying delay and noise attenuation,” Mechatronics, vol. 52, pp. 7–21, 2018, doi: 10.1016/j.mechatronics.2018.04.003.

A. Saenz, V. Santibañez, E. Bugarin, A. Dzul, H. Ríos, and J. Villalobos-Chin, “Velocity Control of an Omnidirectional Wheeled Mobile Robot Using Computed Voltage Control with Visual Feedback: Experimental Results,” Int. J. Control. Autom. Syst., vol. 19, no. 2, pp. 1089–1102, 2021, doi: 10.1007/s12555-019-1057-6.

F. Umam, M. Fuad, I. Suwarno, A. Ma'arif, and W. Caesarendra, “Obstacle Avoidance Based on Stereo Vision Navigation System for Omni-directional Robot,” Journal of Robotics and Control (JRC), vol. 4, no. 2, pp. 227-242, 2023, doi: 10.18196/jrc.v4i2.17977.

P. L. Wu, J. J. Li, and J. S. Shaw, “Development of an Omnidirectional AGV by Applying ORB-SLAM for Navigation Under ROS Framework,” J. Autom. Mob. Robot. Intell. Syst., vol. 16, no. 1, pp. 14–20, 2022, doi: 10.14313/JAMRIS/1-2022/2.

Q. Ran, S. Yao, X. Chen, and G. Bi, “Trajectory Tracking of Swing-Arm Type Omnidirectional Mobile Robot,” Math. Probl. Eng., vol. 2022, 2022, doi: 10.1155/2022/3297789.

Y. Zhao, “Dynamic Path Planning Analysis of Warehouse Handling Robot,” J. Sensors, vol. 2022, pp. 1–7, 2022, doi: 10.1155/2022/4434971.

G. Ziwei and L. Rong, “2D Range Flow-based Odometry fusing LiDAR and IMU,” 2019 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 2761-2765, 2019, doi: 10.1109/ROBIO49542.2019.8961747.

S. A. S. Mohamed, M. H. Haghbayan, T. Westerlund, J. Heikkonen, H. Tenhunen, and J. Plosila, “A Survey on Odometry for Autonomous Navigation Systems,” IEEE Access, vol. 7, pp. 97466–97486, 2019, doi: 10.1109/ACCESS.2019.2929133.

G. Liu, J. Guan, H. Liu, C. Wang, and X. L. Wang, “Multirobot Collaborative Navigation Algorithms Based on Odometer/Vision Information Fusion,” Math. Probl. Eng., vol. 2020, pp. 1-16, 2020, doi: 10.1155/2020/5819409.

X. Zhao, H. Min, Z. Xu, X. Wu, X. Li, and P. Sun, “Image antiblurring and statistic filter of feature space displacement: Application to visual odometry for outdoor ground vehicle,” J. Sensors, vol. 2018, 2018, doi: 10.1155/2018/2987819.

S. Maldonado-Bascón, R. J. López-Sastre, F. J. Acevedo-Rodríguez, and P. Gil-Jiménez, “On-board correction of systematic odometry errors in differential robots,” J. Sensors, vol. 2019, 2019, doi: 10.1155/2019/8269256.

J. Zhu, Y. Tang, X. Shao and Y. Xie, “Multisensor Fusion Using Fuzzy Inference System for a Visual-IMU-Wheel Odometry,” in IEEE Transactions on Instrumentation and Measurement, vol. 70, pp. 1-16, 2021, doi: 10.1109/TIM.2021.3051999.

Z. Huai and G. Huang, “Robocentric visual–inertial odometry,” The International Journal of Robotics Research, vol. 41, no. 7, pp. 667-689, 2022, doi: 10.1177/0278364919853361.

Y. Teekaraman, I. Kirpichnikova, H. Manoharan, R. Kuppusamy, and A. Radhakrishnan, “Uncovering Resilient Actions of Robotic Technology with Data Interpretation Trajectories Using Knowledge Representation Procedures,” Security and Communication Networks, vol. 2023, 2023, doi: 10.1155/2023/7419259.

C. Gu, A. Feng, G. Wang, and X. Liu, “Robot Path Planning of Improved Adaptive Ant Colony System Algorithm Based on Dijkstra,” J. Robot., vol. 2022, 2022, doi: 10.1155/2022/9229155.

Y. Sun, M. Fang, and Y. Su, “AGV Path Planning based on Improved Dijkstra Algorithm,” J. Phys. Conf. Ser., vol. 1746, no. 1, 2021, doi: 10.1088/1742-6596/1746/1/012052.

L. S. Liu et al., “Path Planning for Smart Car Based on Dijkstra Algorithm and Dynamic Window Approach,” Wirel. Commun. Mob. Comput., vol. 2021, pp. 1-12, 2021, doi: 10.1155/2021/8881684.

Q. Liu, H. Xu, L. Wang, J. Chen, Y. Li, and L. Xu, “Application of Dijkstra Algorithm in Path Planning for Geomagnetic Navigation,” 2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM), pp. 1-4, 2020, doi: 10.1109/SAM48682.2020.9104382.

Z. Halim, A. Khan, M. Sulaiman, S. Anwar, and M. Nawaz, “On finding optimum commuting path in a road network: A computational approach for smart city traveling,” Trans. Emerg. Telecommun. Technol., vol. 33, no. 2, pp. 1–28, 2022, doi: 10.1002/ett.3786.

B. Zhang and D. J. Hu, “Retraction Note: Research on the construction and simulation of PO-Dijkstra algorithm model in parallel network of multicore platform,” Eurasip J. Wirel. Commun. Netw., vol. 2022, no. 121, pp. 1-14, 2022, doi: 10.1186/s13638-022-02201-8.

W. Hadikurniawati, E. Winarno, A. Hernawan, and D. Abdullah, “Retracted: Optimization of ISP Service Maintenance Router Using Dijkstra and Flyod-Warshall Algorithm,” J. Phys. Conf. Ser., vol. 1114, no. 1, 2018, doi: 10.1088/1742-6596/1114/1/012101.

A. Alyasin, E. I. Abbas, and S. D. Hasan, “An Efficient Optimal Path Finding for Mobile Robot Based on Dijkstra Method,” 2019 4th Scientific International Conference Najaf (SICN), pp. 11-14, 2019, doi: 10.1109/SICN47020.2019.9019345.

T. Irfan, R. Hakimi, A. C. Risdianto, and E. Mulyana, “ONOS Intent Path Forwarding using Dijkstra Algorithm,” 2019 International Conference on Electrical Engineering and Informatics (ICEEI), pp. 549-554, 2019, doi: 10.1109/ICEEI47359.2019.8988853.

Z. Ullah, H. Bashir, R. Anjum, S. A. Alqahtani, S. Al-Hadhrami, and A. Ghaffar, “Analysis of the Shortest Path in Spherical Fuzzy Networks Using the Novel Dijkstra Algorithm,” Math. Probl. Eng., vol. 2021, pp. 1-15, 2021, doi: 10.1155/2021/7946936.

L. Wenzheng, L. Junjun, and Y. Shunli, “An Improved Dijkstra's Algorithm for Shortest Path Planning on 2D Grid Maps,” 2019 IEEE 9th International Conference on Electronics Information and Emergency Communication (ICEIEC), pp. 438-441, 2019, doi: 10.1109/ICEIEC.2019.8784487.

H. Li, P. Tong, and X. Zhang, “Method for Determining the Location of Highway Passenger Transportation Hubs Using POI Data and the Dijkstra Algorithm in Large City,” Math. Probl. Eng., vol. 2022, 2022, doi: 10.1155/2022/2189598.

C. Zhou, Z. Chen, X. Lv, D. Gao, and M. Zhao, “Design of intelligent sorting trash dustbin based on STM32,” E3S Web Conf., vol. 198, pp. 1–4, 2020, doi: 10.1051/e3sconf/202019804032.

X. He, Y. Kuang, N. Song, and F. Liu, “Intelligent Navigation of Indoor Robot Based on Improved DDPG Algorithm,” Mathematical Problems in Engineering., vol. 2023, 2023, doi: 10.1155/2023/6544029.

N. Matsui et al., “Local and Global Path Planning for Autonomous Mobile Robots Using Hierarchized Maps,” J. Robot. Mechatronics, vol. 34, no. 1, pp. 86–100, 2022, doi: 10.20965/jrm.2022.p0086.

B. Tan, “Soccer-assisted training robot based on image recognition omnidirectional movement,” Wirel. Commun. Mob. Comput., vol. 2021, pp. 1-10, 2021, doi: 10.1155/2021/5532210.

M. Ouyang, Z. Cao, P. Guan, Z. Li, C. Zhou, and J. Yu, “Visual-gyroscope-wheel odometry with ground plane constraint for indoor robots in dynamic environment,” IEEE Sensors Letters, vol. 5, no. 3, pp. 1-4, 2021, doi: 10.1109/LSENS.2021.3057088.

J. Li et al., “A Lightweight Stereo Visual Odometry System for Navigation of Autonomous Vehicles in Low-Light Conditions,” Wirel. Commun. Mob. Comput., vol. 2022, 2022, doi: 10.1155/2022/5249449.

G. Schatzberger, F. P. Leisenberger, P. Sarson, and A. Wiesner, “High efficient low cost EEPROM screening method in combination with an area optimized byte replacement strategy which enables high reliability EEPROMs,” 2018 IEEE 36th VLSI Test Symposium (VTS), pp. 1-6, 2018, doi: 10.1109/VTS.2018.8368631.




DOI: https://doi.org/10.18196/jrc.v4i3.18489

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Achmad Ubaidillah; Hanifudin Sukri

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 


Journal of Robotics and Control (JRC)

P-ISSN: 2715-5056 || E-ISSN: 2715-5072
Organized by Peneliti Teknologi Teknik Indonesia
Published by Universitas Muhammadiyah Yogyakarta in collaboration with Peneliti Teknologi Teknik Indonesia, Indonesia and the Department of Electrical Engineering
Website: http://journal.umy.ac.id/index.php/jrc
Email: jrcofumy@gmail.com


Kuliah Teknik Elektro Terbaik